
242

MATHEMATICAL ANALYSIS OF THE LAG-PHASE
IN BACTERIAL GROWTH.

BY J. C. .G. LEDINGHAM AND W. J. PENFOLD.

(From the Bacteriological Department of the Lister
Institute, London.)

(With 9 Charts and 1 Text-figure.)

OF the large number of experiments recorded by Penfold (1914)
in connexion with the question of lag in bacterial growth, a certain
proportion have been carried out in such detail as to render them
eminently suitable for mathematical analysis. In all work of this
kind, which is intended to throw light on the numerical aspect of
bacterial growth, it is desirable to take observations at frequent and,
if possible, regular intervals, during the period of lag, and to count
a sufficiently large number of colonies on the plates. To secure this
last and most important desideratum, orientating experiments must
be performed, from the results of which one is enabled to calculate
what dilution of the culture at any given period of growth will yield
a tolerably large and accurately countable plate population.

The experiments which Penfold has performed on the influence
exerted on lag by variations in the initial seeding, lend themselves
admirably to mathematical analysis, and we propose here to confine
our mathematical treatment solely to the two parallel series of
experiments dealing with this point. The literature of the subject
has been fully dealt with in the paper by Penfold (loc. cit.).

The term " lag" has been used in different senses by different
writers on the subject. By some, it is understood as a definite period
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during which growth is apparently in abeyance. More usually, it is
taken to mean that period which elapses between the time of seeding
and the point at which the velocity of reproduction attains its maximal
level or, in other words, the point at which the generation-time becomes
minimal.

The attainment of this minimal level of generation-time is the
prelude to what is known as the second or logarithmic phase of bacterial
growth during which the generation-time remains at this constant
minimum.

In most recorded work on the multiplication of bacteria, analysis
of the lag-phase has received scanty attention, whereas the second or
logarithmic phase has been very fully dealt with. There can be no
doubt, however, that the phenomenon of lag is of profound significance
in the life-history of the organism, and in the following analysis we hope
to show that this phase proceeds in an orderly fashion and according
to a perfectly definite law, until the logarithmic phase commences.
In other words, we shall hope to show that the generation-time
diminishes steadily and regularly from the commencement of seeding
till a minimal length is reached.

What the minimal generation-time is to which a B. coli culture can
attain, is difficult to state with exactness, but, in practice, it has not
been possible to demonstrate a generation-time of less than 18-20
minutes. That the interval between two successive divisions cannot
be reduced below a certain minimum, is an important fact in the
mechanics of bacterial growth, and has to be reckoned with in any
theory which attempts to explain growth in a nutrient medium as a
continuous or discontinuous process. This point will be discussed
later. At present, there are no data covering the whole period of
growth from the commencement of seeding to the period when growth
ceases altogether and cell-death comes into play. Ample observations
are available on the logarithmic phase or phase of constant generation-
time, but only a few isolated observations have been made on the
subsequent phase during which the generation-time increases till it
probably again becomes infinite as at the commencement of seeding.
Accurate and sufficient data on these phases, as also on that of cell-
death, will, it is hoped, soon be forthcoming.

16—2
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Analysis of experiments on lag.

Series A. Experiments 1—4.
In these four experiments, the initial seedings, calculated from the plates, were

respectively 217 -5, 59-4, 20-2, and 2-4 bacilli per drop, or roughly as 100: 25 : 1 0 : 1 .
Incubation at 37° C.

Experiment 1.
Time(JT) Bacilli (F)

0 217*5
45 287
60 345
80 470

100 718
120 1362
150 2535
180 7610

Transfer the origin from (0, 0) to (0, 2-3374).
Then log ¥ or ¥' becomes

0
0-1204
0-2004
0-3347
0-5187
0-7967
1-0665
1-5439

The values of log X and of log Y were plotted out in the usual way and from the shape
of the smooth curve so obtained, it was conjectured that an equation of the form X"=kY'
would fit most closely the observed data. If this proved to be the case, then the points
obtained by plotting log X against log Y', i.e. against log (log Y) ought to lie on a straight
line.

The values of log (log Y) are as follows :
- a>

1-0806
1-3016
1-5246
1-7149
1-9012
0-0277
0-1886

These values were then plotted against the corresponding values of log X and it was
found that the points so obtained lay very closely along a straight line the tangent of
whose inclination to the axis of X was 1-88.

This value of n, viz. 1-88, gives the following values for log k the other constant in the
equation X"=k log Y.

4-027
4-039
4-053
4-045
4-007
4063
4-050
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These values indicate a quite satisfactory constancy of k.
The average value of k is found to be 10988.
Transfer back to the old origin and we find that the following equation

will fit most closely the experimental data.
Experiments 2, 3, and 4 were treated similarly and the following values for the

exponent n were obtained, 1-77, 1-56 and 1-56 respectively.
These values for n give the following values for log k', log k" and log k"' resp.

Bxp. 2 Exp. 3 Exp. 4

»=l-77
Log*'
3-814
3-750
3-795
3-837
3-790
3-801
3-811

»=l-56
Log*"

3-343
3-391
3-382
3-371
3-367
3-365
3-346

»=l-56
Logfc"'

3-364
3-337
3-402
3-447
3-433
3-387
3-358

The average values for k', k", and k'" are 6322, 2329, and 2465 resp.
The following equations, therefore, will fit most closely the experimental data in

Experiments 2, 3, and 4.

Series B, Experiments 5—8.
In this parallel series, the initial seedings were 144, 35-7,14, and 1-7 bacilli per drop

resp. or roughly as 100:25 :10:1.
The data from these experiments were dealt with in a similar way and the following

values for the exponent n were obtained, viz. 1-97, 1-74, 2-01 and 2-7 resp.
These values for n gave the following values for log k, log k', log k", and log k'" resp.

Exp. 5 Exp. 6 Exp. 7 Exp. 8

»=l-97
Log*;

4-298
4-228
4-184
4-185
4-178
4-239
4-236

M = 1 7 4
Logifc'

3-565
3-762
3-723
3-730
3-744
3-736
3-742

n=201
Logfc"

4-667
4-366
4-374
4-351
4-343
4-359
4-379

n=2-7
Log*"'
6-225
6-160
6-052
5-985
6-017
6025
6-020

It will be observed that the constancy obtained for log *, log k1, log k", and log k'"
in these four experiments is very satisfactory. The following equations will, therefore,
fit very closely the experimental data.
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Y
g 1 4 4 '

* ! •»= 5483 log ^ ,

X2-01 = 23020 log ~ ,

X™ = 1045000 log -^=.

In the following tables the observed values for Y (Bacilli per drop) are compared in
parallel columns with those calculated from the theoretical equations.

X (time)

0
45
60
80

100
120
150
180

X (time)

0
45
60
80

100
120
150
180

Series A.
Exp. 1.

1 88 Y

217*5
Y (observed)

217-5
287
345
470
718

1362
2535
7610

Exp. 2.

Equation: X1-" = 6322 log gj—j.

Y (observed)

59-4
80

105-5
140-5
189-5
354
789

1950

Y (theoretical)

217-5
284-49
344-95
480-67
726-88

1188-2
2888-4
8288-9

Y (theoretical)

59-4
80-72
99 01

138-99
21003
339-4
790-6

2112-8

Exp. 3.

Equation: Z1-66=2329 log
20-2'

X(time)

0
45
60
80

100
120
150
180

Y (observed)

20-2
30
35-2
49-1
73-8
114-4
240
621

Y (theoretical)

20-2
29-37
36-33
50-64
74-37

113-86
234-72
525-40
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A' (time)

0
45
60
80

100
120
150
180

Jf (time)

0
40
60
80

100
120
150
180

X (time)

0
40
60
80

100
120
150
180

X(time)

0
40
60
80

100
120
150
180

Exp. 4.

Equation: X1 66=2465 log . ^ .

Y (observed)

2*4
3-5
4-5
5-6
7-1

10-6
25
67

Series B.
Exp. 5.

Equation: X1-97=16732 log ^ .

r (observed)

144
170
222
335
533
966

1885
5840

Exp. 6.

Equation: Z ' -"=5483 log ^ .

Y (observed)

35-7
52-4
58-5
87
130
199
472

1194

Exp. 7.
-y

Equation : -X2-01 = 23020 log - .
F (observed)

14
15-2
20-3
26-8
41
67-8

151-3
371

F (theoretical)

2-4
3-42
4-18
5-72
8-22

12-31
24-35
52-03

r (theoretical)

144
175-39
223-2
311-61
477-5
800-49

2067-84
6537-6

Y (theoretical)

35-7
46-19
60-11
84-50

126-84
203-73
465-52

1215-22

r (theoretical)

14
16 52
20-37
27-31
39-91
6318

148-96
422-80
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X(time)
0

40
60
80

100
120
150
180

Exp. 8.
Equation: X™=1045000 log p=

Y (observed)

1-7
1-75
1-88
2-25
3 09
4-22
8-66

25-16

•

y (theoretical)

1-7
1-78
1-95
2-30
2-95
4 19
8-87

25-43

30

30 60 90 120 150 180

Chart I. Series A. Exp. 1. Ordinates. Bacilli. (Initial seeding taken as 1.)
Abscissae. Time (minutes).

In Charts I—VIII the theoretical curves have been drawn to scale
and the observed points have been inserted as circles. The closeness
of fit is, in most cases, very satisfactory.

Summarising the results of these eight experiments, we find that
during the whole lag-phase, growth takes place in a perfectly regular
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fashion, the bacterial content (Y) at any time (X) being very satis-
factorily determined from the general equation

(X"=klog Y/s),
where n and k are constants and s is the initial seeding.

The value of the exponent n falls slightly as the seeding is
reduced except in the last two experiments of Series B.

60 90 120

Chart II. Series A. Exp. 2.

150 180

The figures may be conveniently tabulated here:

Seeding

100
25
10
1

Series A

1-88

1-77
1-56
1-56

Series B

1-97
1-74
2-01

2-7

The two discrepant values for n in Series B will receive more full
consideration when we come to discuss the question of generation-
time during lag, but it would appear that in the case of very small
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initial seedings (as in Experiments 7 and 8 of Series B) where the
number of bacilli per drop were only 14, and 1-7 respectively, the
latter part of the lag-phase may be characterised by a very marked
acceleration of the growth-rate. This will appear when the genera-
tion-times have been calculated.

30 150 18060 90
Chart III. Series A. Exp. 3.

The question of generation-time.

The generation-time or the period which elapses between two
successive divisions of an organism is usually calculated from the
bacterial contents at the beginning and end of a certain arbitrary
period. It represents essentially the mean generation-time during
the period in question. If short and equal periods are chosen, a very
fair impression can be obtained of the changes which this function
undergoes in the course of growth. In practice, however, this is not
always feasible but it is always possible to get an approximation to
the value of the generation-time at any point, by determining the
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inclination of the tangent to the log-curve at that point. From the
mathematical expressions which we have obtained for the course of
the lag-phase in the above series of experiments, it is possible to
calculate with exactness the generation-time at any point in the course
of the lag.

Let P be any point (x, y) on the curve and P' and P" two points
on either side of P whose co-ordinates are (x — Bx, y — By) and
(x + Bx,y+ By) respectively, where Bx and By are very small. If r= the
number of generations between the bacterial contents corresponding
to y + By and y—By, we must have r log 2 = log (y + By) — log (y — By).

The whole period is 2Bx.
Therefore one generation-time equals

Let y'=logy, then dy'=-dy.
y

The expression for the generation-time becomes
28xlog2 _ Sx log 2

y' + dy'-y' + Sy'~ Sy'

In the limit, when Bx and By are infinitely small, the value for the

generation-time becomes y log 2 •£•. Now j - can be obtained directly

from the equation xn= k log y/s. We have nxn~* ;r = -• Therefore the

expression for the generation-time at the point P becomes
ley log 2 _ i log 2
nyx"~l ~ nxn~1

* The expression =— -X o g — may be otherwise reduced thus:
log(j/ + 5(/)-log(2/-S!/)

log (y + ̂ y) [expanded by Taylor's Theorem]=log y+— - s - ^ + 5 \-&e->
y * y A y
Sy 1 5«2 1 5w3 „

i°8 xy — °y) L do. do. ]=iog y — 0 ~% ~ s ~3" •>

.-. log (y + Sy) - log {y - Sy) = 2 -^ + - \ &a.

The expression for G. T. then becomes

2to log 2

In the limit, powers of Sy may be neglected and G. T.
becomes

y log 2 — (as before).
O G w R

If the tangent at the point P cuts the axis of X at Q and
the ordinate of P at It, then if the intercept between these two points be denoted by m,
the G. T. at the point P is equal to m log 2.
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We can therefore determine the generation-time at any moment (x)
after the commencement of growth, by substituting in this expression
the value of x and the values determined for k and n.

60 90 120"

Chart IV. Series A. Exp. 4.

150 180

This determination has been made at half-hourly periods during
the lag-phase of each of the eight experiments with the following results :

Time

30
60
90

120
150
180

Exp. 1
«. T.
88-19
47-92
33-54
26-04
21-40
18-23

Series A.
Exp. 2

G. T.

78-36
45-95
33-62
26-94
22-69
19-72

Exp. 3
G. T.

66-90
45-38
36-16
30-78
27-17
24-53

Exp. 4
G. T.

70-81
48-03
38-27
32-58
28-75
25-96
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Time

30
60
90
120
150
180

Exp. 5
G . T .

103-4
48-14
32-55
21-63
19-80
16 62

Series B.
Exp. 6

G. T.

76-5
45-82

33-97
27-48
23-29
20-33

Exp. 7
G. T.

1 1 1 - 0

5 5 - 0 9

3 6 - 5 6

2 7 - 3 5

2 1 - 8 8

1 8 - 2 0

E x p . 8

G. T.

359-1

110-5

55-47

33-97

23-29

17-07

30

20

10

-e-
30 60 90 120

Chart V. Series B. Exp. 5.

150 180

Analysis of Series A. (Getieralion Times.)

In Exps. 1 and 2, in which the seedings were 217-5 and 59-4 bacilli
per drop respectively, the generation-times attained at each half-hourly
period are practically identical and at the end of the 3-hour period the
minimum generation-time of 18-19 minutes has been reached.
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The influence of reduction in the initial seeding is however very
apparent in Bxps. 3 and 4. Here the seedings were respectively
20-2 and 2-4 bacilli per drop. The value of the exponent n was in
both cases 1-56 and consequently there is practically no difference
between the generation-times attained at the half-hourly periods. In
both experiments, however, the end of the lag period has not been reached
in three hours, the final recorded generation-time being 24-25 minutes
as compared with 18-19 minutes in Exps. 1 and 2.

60 90 120

Chart VI. Series B. Exp. 6.

150 180

At each half-hourly period (after the 1st hour) the generation-times
are distinctly longer by 3-6 minutes than the corresponding times in
Exps. 1 and 2.

Series B.

In this series all have reached the minimum generation-time in three
hours so that the total period of lag is practically the same in all cases.
It will be observed, however, that at 90 minutes the generation-time of
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Exp. 7 is appreciably behind those of Exps. 5 and 6 while that of
Exp. 8 is very far behind. At 120 minutes the generation-time
of Exp. 8 is still behind the others, but at the end of the next half-
hour (at 150 minutes) the generation-time of Exp. 8 has reached
the level of the others. The remarkable acceleration in rate of growth
which has occurred in Exps. 7 and 8, during the latter period of
the lag is of course simply an expression of the enhanced value of the

30-

30 60
Chart VII.

90
Series B.

150 180120
Exp. 7.

exponent n in the derived equations and at present we have no
satisfactory explanation to offer for this fact. It may possibly find an
explanation when the factors that enter into the causation of lag are
more thoroughly understood.

The later phases of Growth.

It is not our purpose here to discuss in any detail the later phases
of growth succeeding the lag. The second or logarithmic phase has
been very thoroughly investigated by Lane-Claypon (1909) and others
who find that during this phase the generation-time remains at a constant
minimum.

https://doi.org/10.1017/S0022172400005829 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400005829


256 Bacterial Lag

Time and bacilli are related to each other by the simple equation
X — k log Y so that, when the logs of the bacilli are plotted against
time, the points so obtained lie on straight lines. The exponent of
X is unity during this phase. Its duration varies with the medium in
which the organisms are growing and with the temperature. In peptone-
water, at 37° C, it lasts about three to six hours according to the
size of seeding after which time the 3rd phase or phase of rising
(i.e. slower) generation-time ensues. This phase proceeds till growth
ceases and cell-death begins. Whether a plateau occurs during which
the bacillary content remains at a constant maximum for a certain

60 90 120 150 180,
Chart VIII. Series B. Exp. 8.

time is not definitely established though there is some evidence in
support of this occurrence. No complete data from a single experi-
ment are available from the period of seeding onwards to the
commencement of cell-death, but by a fortunate circumstance we are
in a position to state the most probable course taken by the growth
curve over a period including the lag, the 2nd phase, and a large portion
of the 3rd phase.

An experiment was performed in which the initial seeding was 37-3
bacilli per drop and the first observation was made at the 3rd hour and
at hourly intervals thereafter.
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The figures obtained were as
Time, hrs.

0
3
4
5
6
7
8
9

10
11
12

follows :
Bacilli per drop

37-3
1,692-5
7,833-3

46,000
231,000
553,888
974,166

1,166,666
1,643,333
2,112,222
2,396,470

Now, it will be noted that in Exp. 6 (Series B) the initial seeding
was 35-7 bacilli per drop and the figure reached at three hours was
1194. We can therefore legitimately employ the figures for the lag-
phase of Exp. 6 to complete the data in this new experiment where
the lag-phase was not observed. From the equation for Exp. 6 it
was calculated that a figure of 1692 bacilli per drop would have been
reached in 186 minutes. The logarithmic phase of the new experiment
lasted about 3 hours at a constant generation-time of about 25 minutes.
At the following times therefore (increments of 25 minutes) the following
figures would be reached :

Time, mine.

186
211
236
261
286
311
336
361
421
481
601
661
721

Bacilli per drop

1,692
3,384
6,768

13,536
27,072
54,144

108,288
216,576 (Actual figure obtained at
553,888 360 mins. was 231,000.)
974,166

1,643,333
2,112,222
2,396,470

The above figures and times along with those for the lag-phase of
Exp. 6 have been plotted in Chart IX.

The actual course of the growth curve is indicated by the successive
divisions OA (lag), AB (logarithmic phase), BO (3rd phase during which
the curve passes through a point of inflexion and becomes concave to
the axis of X). On the scale employed in Chart IX it is possible to
exhibit the lag-phase OA, as a straight line only.

Journ. of Hyg. xiv 17
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Had growth continued according to the law maintained during the
lag, the growth curve would have followed the route AA'.

Had the logarithmic phase continued, the curve would have
followed t"he route BB' instead of the actual route BC.

60000 .

Chart IX. Ordinates. Bacilli. (Initial seeding taken as 1.)
Abscissae. Time in hours.

We see therefore that growth proceeds in those phases during each
of which a definite law is maintained. Sufficient data are not at present
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available to establish the law which holds during the 3rd phase, and
consequently the point at which a maximum bacterial population
would be reached.

The general form of the complete curve OABC suggests that possibly
a frequency-curve might be got to fit all the data from the seeding
onwards. This possibility, however, cannot be seriously entertained at
present owing to the lack of data.

GENERAL CONCLUSIONS.

1. The phase of bacterial lag is a perfectly definite one, during which
growth proceeds regularly from the period of seeding to the attainment
of a minimum generation-time. During this phase time and bacilli are

Y
connected by an equation of the form Xn = k log — , where n arid k

s
are constants and s is the initial seeding.

2. At the close of the lag an entirely different law begins to hold
and is maintained for another period of variable duration. During this
phase the law X = k log Y holds and the generation-time remains
constant throughout.

3. The logarithmic or 2nd phase is succeeded by the 3rd phase
during which the generation-time gradually lengthens till it finally
becomes infinite and no further growth occurs.

4. Growth is probably discontinuous in the sense that it conforms
to different laws in the successive phases and it remains to be decided
what theory of lag will most adequately accord with the numerical
data and the mathematical laws derived therefrom. Various theories
of the causation of lag have been discussed by one of us (Penfold, 1914)
and special prominence has been given to two, viz. (1) based on variation
of the bacterial cell and (2) based on a purely chemical analogy with
ferment action generally and the importance of intermediate products
in particular. Which of these two theories would best accord with the
fact of discontinuous growth-laws cannot at present be decided in the
absence of further experimental evidence of a crucial nature. In the
meantime one cannot fail to be impressed by the analogy that exists
between recently ascertained facts with regard to bacterial variation
in a sugar-containing medium and the discontinuous growth-phases that
occur in a medium of simple constitution. It may, for example, be
assumed that during the lag-phase an organism is being selected out
which can propagate itself with a constant minimum generation-time.

17—2
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This selected strain holds the field during the second or logarithmic
phase just as the selected dulcite-fermenting B. typhosus variant holds
the field after the initial period of selection is over. In the 3rd phase
we again have competing strains, but here the mean result is of an
inverse character and the mean generation-time progressively lengthens.
(Phase of reversion.)

The hypothesis that variation processes are at work receives further
support from the fact that a seeding taken during the lag-phase grows
with diminished lag, while one taken during the 2nd phase proceeds to
grow with practically no lag.

It is possible that more frequent observations at the boundary zones of
these phases would shed further light on this problem.
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