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On particle separation from turbulent particle
plumes in a cross-flow
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We present new experiments of particle-driven turbulent plumes issuing from a constant
source of dense particle-laden fluid, with buoyancy flux, B, in a uniform horizontal
current, u. Experiments show that a turbulent, well-mixed plume develops, in which
the downward vertical speed w decreases with depth z according to w = 0.76(B/uz)1/2

while the horizontal speed rapidly asymptotes to the current speed u, provided that the
Stokes settling speed of the particles v < 0.92w. For v > 0.92w, the particles separate
from the plume fluid, and their depth z increases according to the simple sedimentation
trajectory dz/dx = v/u. As the particles sediment, they form clusters of particles, which
lead to fluctuations in the particle load with position, but do not appear to change the
time-average sedimentation speed. We explore the impact of these results for deep-sea
mining, in which the fate of the plume water as well as the particles is key for assessing
potential environmental impacts.
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1. Introduction

Many geophysical and environmental flows involve particle-laden plumes, driven by
buoyancy, in cross-flows, with important examples including volcanic ash plumes (Sparks
et al. 1997; Woodhouse et al. 2013) and particle plumes produced during deep-sea mining
if particle suspensions are discharged from the mining vessel (see figure 1a, cf. Rzeznik,
Flierl & Peacock 2019; Drazen et al. 2020). The dynamics of volcanic plumes has been
modelled by reference to single-phase buoyant plumes in a cross-flow (e.g. Woodhouse
et al. 2013, others), following the classical work of Hewett, Fay & Hoult (1971), Hoult,
Fay & Forney (1969) and Slawson & Csanady (1967). These models follow the motion
of the centreline of the plume, using equations for the motion parallel and perpendicular
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Figure 1. (a) Schematic of a deep-sea mining situation, with a particle-laden discharge plume; (b)
experimental analogue system.

to the centreline. A key aspect of such models is the empirical entrainment coefficient
associated with the motion along and normal to the centreline of the plume (Hewett et al.
1971; Woodhouse et al. 2013; Aubry, Carazzo & Jellinek 2017a; Aubry et al. 2017b). The
entrainment coefficients in the models have been tested with laboratory experiments by
comparing the plume trajectory with the model predictions (Carazzo et al. 2014; Aubry
et al. 2017a,b).

There have been some experiments modelling the dynamics of particle-laden plumes in
a still ambient. These experiments have shown that, provided the fall speed of the particles
is smaller than the convective speed of the plume, based on the buoyancy associated
with the particle load, then the flow develops as a convective plume, entraining and
mixing ambient fluid (cf. Mingotti & Woods 2019). Less is known about the transport
and sedimentation of particles from plumes in a cross-flow, and we are not aware of
any detailed experiments modelling the dynamics of such plumes. There have, however,
been a number of experimental studies of bubble plumes in a cross-flow (e.g. Socolofsky
& Adams 2002; Murphy et al. 2016), which have identified that, as the flow moves
downstream, there is separation of the bubbles and fluid, and this has some analogy with
the separation of particles and fluid discussed in the present paper. These works focussed
on describing and quantifying the distribution of the bubbles/droplets in the plume, but
did not develop a criterion to determine the depth of separation of the fluid and bubbles in
the plume. Furthermore, the dynamics of bubble plumes can be more complex owing to
bubble merger and break up, and also the possible range of bubble sizes.

In order to explore the dynamics of particle-driven plumes, we have therefore carried
out a series of simplified laboratory experiments of dense particle-driven plumes, and this
forms the main topic of this paper. However, before launching into these new experiments,
we first carry out a series of reference experiments of a dense single-phase plume driven
by an aqueous saline solution supplied to a reservoir of fresh water. These experiments
provide new insight into the dynamics of a turbulent plume in a cross-flow, in particular
demonstrating that, after a transition region just beyond the source, the horizontal speed
of the plume fluid matches that of the ambient current. Subsequently, the dynamics and
entrainment into the plume can be described in terms of the vertical motion of the plume.
We establish that this vertical motion is directly analogous to the dynamics of a line
thermal produced by the release of a finite volume of dense fluid in a stationary ambient.
We illustrate that the motion can be described using a simple model for the trajectory of
the centreline of the plume, coupled with an entrainment coefficient associated with the
vertical motion of the flow (cf. Hewett et al. 1971; Chu 1975; Woitischek et al. 2021).
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Particle separation from turbulent plumes in a cross-flow

We then present a series of new experiments to explore the dynamics of dense
particle-driven plumes in a cross-flow. In particular, we compare the trajectory of the
particle-driven plume composed of fresh water and particles migrating through a tank
filled with fresh water with our simplified model for a single-phase plume of the same
source buoyancy flux, but composed of an aqueous saline solution moving through a tank
filled with fresh water. Based on this comparison we establish a quantitative model for
the control on the separation of the particles from the plume fluid. For simplicity, we
assume the density of the fluid in the particle plumes equals that of the surrounding
ambient fluid, so that the buoyancy in the plume is purely associated with the presence
of the relatively dense particles. Also, in each of the present experiments, we use particles
of a given size and hence well-characterised fall speed. By using the simplified model
of the plume, together with some experiments in which we have dyed the source fluid in
the plume, we present a new quantitative criterion for the depth at which particle–fluid
separation occurs, and we illustrate the trajectory of the particles and also the plume fluid
pre- and post-separation. We also demonstrate that, with the particle plumes, even though
the particles appear to form localised clusters as they settle through the ambient fluid
after separating from the plume, the fall speed of the particles closely approximates the
sedimentation speed of individual particles, rather than some larger convective fall speed.

In § 7, we consider the implications of our results for the dispersal of particles in plumes
produced during deep-sea mining.

2. Laboratory experiments

To model plumes in a cross-flow, we follow an experimental approach used in earlier
studies (e.g. Hewett et al. 1971; Chu 1975) and use a moving source of dense fluid
in a static tank of ambient fluid; by Lagrangian transformation, we expect the moving
dense plume which forms to be equivalent to the plume which develops when there is a
stationary source of dense fluid in a uniformly translating body of fluid. The experimental
system consisted of a tank of length 245 cm, width 60 cm and depth 35 cm, in which
there is a moving source which runs along a bespoke track at the top of the tank
with a constant, but controllable speed. The source was connected to a stirred reservoir
containing the source fluid, which was supplied to the tank using a peristaltic pump
(Watson Marlow). The tank was filled with fresh water, and an electroluminescent light
sheet (LightTape by Electro-LuminiX Lighting Corp.) was placed behind the tank. A
Nikon D5300 camera was used to record the experiments, with a frame rate of 50 f.p.s.
(figure 1b).

A series of experiments were carried out with different flow rates and traverse speeds.
Initially, we carried out a series of experiments using a dyed aqueous saline solution for the
source fluid, and we analysed the ensuing dense plumes in order to quantify the trajectory
of the centreline and the entrainment coefficient of the flow, for comparison with the
simplified single-phase model of a buoyant plume in a cross-flow. We also carried out
a series of experiments in which we released a finite volume of dense fluid from a line
source, 1.6 m long, located just below the surface of the tank, in order to compare the
motion of and entrainment into the plume with that of the line thermal produced by a
line source of dense fluid. We then carried out a systematic series of experiments using
mixtures of fresh water and silicon carbide particles (Carborex by Washington Mills) as
the source fluid. In order to ensure a uniform suspension of particles in the source fluid,
we used a stirrer in the source tank, which produced a uniform suspension of particles in
the source fluid. Table 1 summarises the conditions of the experiments.
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Exp. Q × 10−6 g′ B × 10−6 u d × 10−6 v × 10−3 Φ

1 7.724 1.087 8.399 0.137 165 32.895 0.050
2 6.432 1.087 6.994 0.138 165 32.895 0.050
3 5.285 1.087 5.747 0.138 165 32.895 0.050
4 3.977 1.087 4.325 0.141 165 32.895 0.050
5 7.724 1.087 8.399 0.131 145 25.404 0.050
6 6.432 1.087 6.994 0.133 145 25.404 0.050
7 5.285 1.087 5.747 0.135 145 25.404 0.050
8 3.977 1.087 4.325 0.140 145 25.404 0.050
9 7.724 1.087 8.399 0.136 122 17.984 0.050
10 6.432 1.087 6.994 0.135 122 17.984 0.050
11 5.285 1.087 5.747 0.139 122 17.984 0.050
12 3.977 1.087 4.325 0.139 122 17.984 0.050
13 7.724 1.087 8.399 0.142 102 12.571 0.050
14 6.432 1.087 6.994 0.140 102 12.571 0.050
15 5.285 1.087 5.747 0.141 102 12.571 0.050
16 3.977 1.087 4.325 0.139 102 12.571 0.050
17 7.724 1.087 8.399 0.138 45 2.393 0.050
18 6.432 1.087 6.994 0.137 45 2.393 0.050
19 5.285 1.087 5.747 0.138 45 2.393 0.050
20 3.977 1.087 4.325 0.138 45 2.393 0.050
21 7.724 1.087 8.399 0.143 17 0.362 0.050
22 6.432 1.087 6.994 0.139 17 0.362 0.050
23 5.285 1.087 5.747 0.140 17 0.362 0.050
24 3.977 1.087 4.325 0.139 17 0.362 0.050
25 5.285 2.175 11.490 0.089 122 17.980 0.100
26 5.285 1.087 5.747 0.090 122 17.980 0.050
27 5.285 0.544 2.873 0.090 122 17.980 0.025
28 5.265 0.446 2.349 0.121 — — —
29 5.265 0.446 2.349 0.107 — — —
30 5.265 0.446 2.349 0.087 — — —
31 5.265 0.446 2.349 0.075 — — —
32 5.265 0.446 2.349 0.056 — — —
33 5.265 0.446 2.349 0.037 — — —

Table 1. Conditions of the experiments. Here, Q (m3 s−1) is the source volume flux; g′ (m s−2) is the reduced
gravity of the source fluid; B (m4 s−3) is the source buoyancy flux; u (m s−1) is the speed of the moving source;
d (m) is the mean particle diameter; v (m s−1) is the particle settling speed; Φ is the particle volume fraction
in the suspension. In experiments 28–33, a saline solution was used as the source fluid. The inner radius of
the source was fixed across the whole set of experiments, r0 = 3 × 10−3 m. The density of the silicon carbide
particles was also fixed at ρp = 3206 kg m−3.

3. Experimental observations: single-phase plumes in a cross-flow and line thermals
in a stationary ambient

In figure 2, we present images of a typical saline plume in a cross-flow, both (a) an
instantaneous image and (b) the associated time average, averaged over 20 s, plotted in
false colour and shown in the frame of the moving source. In this time-averaged image,
the vertical distribution of the dye along each vertical line through the plume has been
fit with a Gaussian distribution, leading to estimates of the position of the centre and
the standard deviation of the plume as a function of distance downstream (see figure 2c).
The instantaneous image (figure 2a) illustrates the somewhat irregular shape of the lower
descending front, while the upper front of the plume is much smoother (cf. Hewett et al.
1971). In a number of experiments, the colour of the dye was changed part way through the
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Figure 2. (a) Instantaneous image captured during a saline experiment. (b) Time average of all the images
captured during the experiment in the source frame, plotted in false colour. (c) Solid lines are used to plot
three vertical dye concentration profiles as a function of height in the tank. Dotted lines illustrate the best-fit
Gaussian for each of these profiles. (d) Five images recorded at regular time intervals �t = 1.30 s during an
experiment in which the colour of the dye was changed part way through the experiment. (e) Time series of the
vertically averaged dye concentration profiles recorded during the same experiment.

experiment. Figure 2(d) shows five images captured at regular time intervals during one
of these experiments in the frame of the laboratory. For each frame captured during this
experiment, we calculated the vertical average of the dye colour in the plume, as a function
of time. A time series of this vertical average, in the frame of the laboratory, is shown in
figure 2(e). Figure 2(d,e) illustrates that the location of the change of colour of the dye
remains approximately fixed in the laboratory frame, suggesting that, soon after issuing
from the nozzle, the lateral motion of the plume relative to the ambient fluid decreases to
zero and, to leading order, the plume may be regarded as descending vertically through the
ambient fluid, as it moves downstream with the ambient fluid. This observation suggests
that the entrainment of ambient fluid arises owing to the vertical motion of the plume,
and hence may be parameterised by a single entrainment coefficient, as assumed by Chu
(1975).

In order to test this observation in more detail, we have run a series of experiments in
which a finite volume (200 ml) of dense saline solution, with buoyancy g′ ranging between
0.15 and 1.09 m s−2, was released from a horizontal line source, 1.6 m long, located 2 cm
below the surface of the tank. After release, the fluid produced a line thermal which
gradually descended to the base of the tank while entraining ambient fluid. In figure 3(a),
we illustrate a series of images of a representative line thermal as a function of time and
in panel (b), we present a time series of the horizontally averaged light intensity of this
thermal, as a function of depth and time, illustrating how the thermal descends through
the tank. This image is remarkably similar in form to figure 2(b), although representing
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Figure 3. Results of a single-phase line thermal experiment, in which 200 ml of fluid with buoyancy g′ =
0.15 m s−2 was released from a source 1.6 m long. (a) Series of 4 images captured at times 2 s, 7 s, 17 s and 27 s
after the beginning of the experiment and plotted in false colour to illustrate the concentration of dye in the line
thermal fluid. (b) Time series of the horizontally averaged dye concentration profiles, showing the trajectory of
the thermal fluid as it sinks to the bottom of the tank.

a different flow, and in § 4, we compare the depth–time trajectories and the rate of
entrainment of these different flows in detail.

4. Modelling the time-averaged flow: single-phase plumes and line thermals

Numerous models have been proposed to capture the dynamics of turbulent single-phase
plumes in a cross-flow, following the pioneering work of Hewett et al. (1971). We now
compare the results of the experiments discussed in § 3 with the simplified picture in which
we assume that following an initial adjustment, the plume fluid moves downstream with
the ambient fluid, as suggested by the experiments shown in figure 2(d,e). We compare the
model with the trajectory and entrainment into a line thermal produced by the release of
a finite volume of dense fluid from a line source. We adopt this model helping to interpret
the particle plume experiments later in the paper. If the horizontal speed of the plume fluid
matches that of the ambient fluid, u, (figure 2d,e) then the horizontal position of the plume
centreline, x, increases as

dx
dt

= u. (4.1)

The downward motion can be described in terms of a speed w = dz/dt and the effective
radius r of the vertical cross-section of the plume of area A = πr2. This increases through
mixing with ambient fluid as it descends through the ambient fluid according to the relation
(cf. Turner 1969; Hewett et al. 1971)

w
dr
dz

= βw, (4.2)

where β is an entrainment coefficient. The vertical momentum of the thermal evolves as

d
(
r2w

)
dt

= γ g′r2. (4.3)

Here, g′ is the buoyancy and γ < 1 is a factor which accounts for the momentum
associated with the added mass of the ambient fluid which is displaced as the plume
fluid sinks, combined with any circulation directed along the axis of the plume, whose
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Particle separation from turbulent plumes in a cross-flow

angular velocity is expected to be proportional to w/r. This has some analogy to the
circulation which develops in an axisymmetric buoyant thermal (cf. Turner 1969; Mott
& Woods 2009). If the source has buoyancy flux B, then the buoyancy flux per unit length
is g′r2 = B/u, and (4.3) can be re-expressed in the form

d
(
r2w

)
dt

= γ B
u

, (4.4)

and so

r2w = γ B
u

t + r2
0w0. (4.5)

Equation (4.2) leads to the result

r = r0 + β (z − z0) , (4.6)

where z0 is a virtual origin which we set to have value z0 = r0/β. Combining (4.5) and
(4.6) and integrating in time, we then obtain

z3 = 3γ B
2β2u3 x2 + 3r2

0w0

β2u
x + z3

0, (4.7)

for the depth of the centreline of the plume as a function of distance downstream, where we
have used the substitution x = ut. From (4.7), we see that the buoyancy transition length
L, which corresponds to the distance downstream beyond which the buoyancy controls the
flow, is given by

L = 2u2r2
0w0

γ B
, (4.8)

which in the present experiments has value of order 0.1 m. Since the majority of the plumes
we have studied extend for lengths of 1 m or more and z0 ∼ 0.01 m, we expect that to
leading order the trajectory is given by (cf. (4.7))

z3 ≈ 3γ B
2β2u3 x2, (4.9a)

or alternatively z3 ≈ 3γ

2β2

(
B
u

)
t2. (4.9b)

Matching this relation with our experimental data, we find the best fit agreement when

γ

β2 = 0.87 ± 0.05, (4.10)

as shown in figure 4(a), in which we compare the experimental data for z (vertical axis) as
a function of (B/u3)1/3x2/3 (cf. (4.9a); horizontal axis) for experiments 28–33 in table 1.
This value is consistent with the values presented by Hewett et al. (1971) and Chu (1975).
Combining (4.9) and (4.10), it may be shown that the vertical speed in the plume follows
the relation

dz
dt

= w = 0.76
(

B
uz

)1/2

. (4.11)

The pink dashed line in figure 4(a) shows the measured depth z of the centreline of the
horizontal average of the line thermal illustrated in figure 3(b) (vertical axis) as a function
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Figure 4. (a) Shape of saline plume centrelines (experiments 28–33 in table 1) compared with the predictions
of the model (4.7). The pink dashed line illustrates the trajectory of the line thermal shown in figure 3.
(b) Growth of the radius of the saline plume with depth.

of the model prediction given by (4.9b), (B/u)1/3t2/3 (horizontal axis). It is seen that the
experimental data for the line thermal also lie close to the straight dashed line predicted
by (4.9b).

We have measured the light intensity along each vertical line through the time-averaged
plume, in the frame of the source; to good approximation this follows a Gaussian
distribution, and the increase of the standard deviation along each vertical line in the plume
as a function of the depth of the centre of the plume is shown in figure 4(b). This suggests
that the standard deviation is proportional to the depth of the centreline according to the
relation

σ = (0.40 ± 0.05) z. (4.12)

If we define the plume radius as equal to the standard deviation, this implies

β = 0.40 ± 0.05 and so γ = 0.15 ± 0.03. (4.13)

This value of β is consistent with the results of earlier experiments (e.g. Chu 1975).
The entrainment process is dominated by the double vortex structure of the descending
line thermal, as the ambient fluid is swept around the descending cloud. Analysis of the
time series image of the horizontal average of the line thermal shown in figure 3(b) also
indicates that β = 0.4 ± 0.04 for the case of the line thermal. This establishes the analogy
between the dynamics of a line thermal in stationary fluid and that of a steady plume in
a cross-flow, where the plume fluid moves laterally with the ambient current as it falls
vertically through the ambient fluid (4.8).

5. Experimental observations: particle-driven plumes in a cross-flow

We now present the results of a series of particle-driven plume experiments, which were
carried out using the same experimental setup described in § 2, using a suspension of
silicon carbide particles in fresh water as the source fluid.

In figure 5, we present images from two different particle plume experiments, in which
a suspension of black particles and red-dyed fluid issues from the source. The experiments
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(a)

(b)

(c)

(d)

10 cm

Figure 5. (a,c) Instantaneous and (b,d) time-averaged images of two particle plumes. In (a,b) the plume was
laden with small particles of a mean diameter 45 μm (experiment 17 in table 1) which do not separate from
the red-dyed fluid. In (c,d) the plume was laden with larger particles of a mean diameter 165 μm (experiment
1) which separate from the dyed plume fluid and fallout. The photographs in panels (a,c) were captured 15.4 s
after the beginning of each experiment.

show the case of (a,b) small particles (experiment 17 in table 1) and (c,d) larger particles
(experiment 1), with panels (a,c) illustrating two instantaneous images as captured during
each experiment and panels (b,d) illustrating the time averages in the frame of the source.
It is seen that with the small particles of a mean diameter 45 μm (see table 1), owing to
the very small sedimentation speed, the particles and fluid remain coupled in space, and
the shape of the plume resembles the shape of the flow seen in figure 2(a); we explore this
quantitatively below (§ 6). In contrast, in panels (c,d), with the larger particles of a mean
diameter 165 μm (see table 1) and a relatively large sedimentation speed compared with
the plume speed, there is a clear separation of the fluid and particles as the flow moves
downstream relative to the source. Here, we note that, although apparently organised in
clusters of high and low particle concentration along the plume, the particles appear to
follow a straight line trajectory, as if simply sedimenting through the fluid, rather than
following the coherent convective motion suggested in panels (a,b) (see § 6).

6. Modelling the time-averaged flow: particle-driven plumes

In particle plumes, the reduced gravity of the suspension of particles in a neutrally buoyant
fluid can be written

g′ = Φ
ρp − ρamb

ρamb
g, (6.1)

where ρp is the density of the particles, ρamb is the density of the ambient fluid, g is
the acceleration of gravity and Φ is the particle volume fraction in the suspension (see
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Figure 6. (a) Growth of the radius of the small-particle plume with depth (experiments 21–24 in table 1),
which is very similar to the saline plume (see figure 4b). (b) Plot of the measured depth of the centreline of
the particle plume with the model prediction for a single-phase plume with the same buoyancy flux (4.7). (c)
Comparison of the simple sedimentation trajectory z = xv/u (6.2) with data from a series of experiments using
particles of different sizes (experiments 4, 8, 12, 16, 20 and 24 in table 1).

table 1), with a buoyancy flux given by B = g′Q. The initial stages of motion of the flow are
very similar to those of the saline plume. For the smallest particle sizes of mean diameter
17 μm (experiments 21–24 in table 1), the motion resembles that of a single-phase plume
throughout the tank; the width of the plume increases with depth in a similar way to
the saline plume (figure 6a), and the trajectory of the centre of the plume follows the
prediction of (4.7), as may be seen in figure 6(b) by comparing the black dashed line
(model) and the lines labelled 20 and 24 corresponding to plumes with small particles.
However, (4.9b) shows that the vertical speed of the plume gradually decreases with depth
and so eventually with larger particles, the plume speed will become comparable to the fall
speed of the particles. As this happens, the particles begin to separate from the original
plume fluid (see figure 5c,d). The subsequent motion of the particles suggests that the
descent speed of the centre of the particle cloud matches the particle Stokes settling speed,
v, with the time-averaged centre of the particle cloud following a trajectory with gradient

dx
dz

= u
v
. (6.2)

In order to demonstrate this change in behaviour, in figure 6(b,c) we present the
trajectory of the centre of the particle cloud for a series of particle plumes with the same
buoyancy but different fall speeds of the particles (experiments 4, 8, 12, 16, 20 and 24
in table 1). In panel (b), we have scaled the trajectory relative to the model (4.7), and in
panel (c) we have scaled the trajectory relative to the simple sedimentation law (6.2). It
is seen that, in panel (b), the trajectories of the particles follow that of the plume model
(4.7) for the small particles of mean diameter d < 45 μm (see table 1). As the particle size
increases, corresponding to experiments 16, 12, 8 and 4 in table 1, the trajectories depart
from the single-phase plume model at points progressively closer to the source. The data
show that the particles subsequently descend through the tank faster than given by the
convective flow speed of the equivalent single-phase plume. In panel (c), we see that for
the larger particles of mean diameter d > 145 μm, the centre of particle cloud follows the
ballistic trajectory (6.2). However, for the smaller particles, in the near-source region the
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Figure 7. (a) Time-averaged image of a plume containing dyed fluid (red) and large particles (black). The
white dotted line denotes the locus of points one standard deviation above the centreline of the particles, while
the white dashed line denotes the locus of points one standard deviation below the centreline of the dye. We
define the transition point (x∗, z∗) as the point where these two lines cross. (b) Comparison of the model
prediction of the depth of the particle separation (6.4) with the experimental measurement, for experiments
1–16 in table 1.

particles descend with progressively larger speeds relative to their sedimentation speed,
and we infer from panel (b) that these correspond to the convective speed of the plume.

The depth of the transition from plume-driven flow to separated flow, z∗, can be defined
as the depth of the centre of the particle cloud at which the upper edge of the particle cloud
intersects the lower edge of the original dyed plume fluid (see figure 7a). In practice, we
estimate z∗ by finding the depth at which the point A , a distance equal to one standard
deviation of the vertical distribution of particles above the centre of the particle cloud,
coincides with the point B , a distance equal to one standard deviation of the vertical
distribution of dye below the centre of the dye cloud (dotted and dashed white lines in
figure 7a, respectively). Physically, we expect that at this depth the vertical plume speed,
w, equals a constant fraction of the particle fall speed, v

v = λw, (6.3)

so that

z∗ = λ
2

v2

(
2γ B
3β2u

)
. (6.4)

In figure 7(b), we show the measured value of z∗ as a function of B/(v2u). The data suggest
that

λ = 0.92 ± 0.08. (6.5)

We note that, for consistency of this model, it is required that the adjustment length scale
L given by (4.8) is small compared with the transition distance x∗ = uz∗/v so that the
separation of the particles and plume fluid only occurs after the buoyancy dominates
the motion of the plume. Using the results shown in figure 7(b), we estimate that in our
experiments the ratio L/x∗ is of order 10−1–10−2 in accord with this constraint.

7. Implications for particle plumes in nature

The above modelling identifies how a particle plume in a cross-flow progressively dilutes
with distance from the source, and that this leads to a gradual decrease in the vertical
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convective speed of the flow until eventually this falls below the particle fall speed. As
this happens, particles can sediment from the lower surface of the flow. Subsequently,
the particles descend with their individual particle settling speed, advancing ahead of the
original plume fluid. This observation is important for assessing the environmental impact
of such a particle-laden plume, given that the fate of the original suspension fluid as well
as the particles may be of interest.

One fascinating feature of the process is that the particles arrange themselves into a
series of discrete particle clouds along the axis of the main plume (e.g. see figure 5c).
These local particle clouds appear to develop in the early stages of the flow, while the
vertical convective motion dominates the vertical transport of the particles, and analogous
features may also be seen in the single-phase plumes (figure 2a). There is a continual
coarsening of these structures as the plume descends, as may be seen in figure 8(a).
Here, we show a time series of three vertical lines of pixels located at different distances
downstream from the source in the frame of the source (figure 8a). It is seen that in each
image, there are regions of high and low concentration, consistent with the discrete particle
clouds as seen in figure 5(a,c). We note that these discrete particle clouds appear gradually
to merge and become of greater size as the plume descends. We characterise the horizontal
length scale of the structures, δ, and the associated frequency f = u/δ, as the plume sinks
by analysing the time series images shown in figure 8(a) using the Matlab fast Fourier
transform algorithm. Figure 8(b) shows that for eight experiments δ increases linearly with
z for both particle and the equivalent single-phase plumes according to the relation

δ

z
= 0.84 ± 0.10. (7.1)

It is interesting that these clouds do not seem to influence the descent speed of the particles
once they have sedimented from the plume. To good approximation, the descent speed
is given by the sedimentation speed of the particles (figure 6c). This contrasts with the
convective sedimentation of particles described by Hoyal, Bursik & Atkinson (1999) from
a large areally distributed source of particle-laden fluid, in which the particle clouds
descended significantly faster than the particle fall speed.

In the context of deep-sea mining, the typical discharge rates from a surface vessel
are expected to be in the range 0.001–0.1 m3 s−1, with particle loads of 1 %–10 %.
With sediment density in the range 2000–3000 kg m−3, we infer buoyancy fluxes may
have values 0.01–1.0 m4 s−3. With current speeds of order 0.01–0.1 m s−1, the buoyancy
transition length (4.8) is typically <1–10 m, so the analysis described in this paper applies.
The particle separation depth below the source, according to (6.4), would then be in the
range of 10–1000 m, for particles with fall speeds of 0.1–0.01 m s−1. The fate of the
particles subsequently involves direct sedimentation through the water column, and this
provides constraints on the settling time of the particles through the water column as well
as the depth of any contaminated fluid which is carried downwards by the initial convective
plume type motion. As an idealised example, if the particles fall 100 m in the plume and
then separate and sediment through the remainder of the water column, the travel time
to sink 1000 m would be in the range 3–30 h. With current speeds of 0.01–0.1 m s−1, this
suggests the particles may be dispersed by the current over lateral scales of 1–10 km from
the source.

It is also of interest to observe that the background stratification of the water
column imposes a second length scale on the flow, given in terms of the Brunt-Väisälä
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Figure 8. (a) Time series of three vertical lines of pixels at different distances from the source, illustrating the
sedimenting structures in the plume. It is seen that the scale of the structures increases with depth and distance
downstream. (b) Measured length scale of the sedimenting structures, δ, as a function of depth, z, for a number
of saline and particle experiments (n. 1, 2, 5, 6, 30, 31, 32 and 33 in table 1).

frequency, N,

z = ω

(
B
u

)1/3

N−2/3, (7.2)

where ω is an empirical constant which has been estimated to have value of order 2 (Briggs
1975; Devenish et al. 2010). In the deep ocean, where N ≈ 10−2–10−3 s−1, this leads
to depths of 10–1000 m. We deduce that particle plumes composed of smaller particles
may become arrested by the stratification prior to sedimenting from the flow. This would
lead to a particle–fluid intrusion forming within the water column, from which particles
then sediment into the deeper waters (cf. Mingotti & Woods 2019, 2020), although being
influenced by the cross-flow. In contrast, for the larger particle plumes, with particle
settling speeds of order 0.1 m s−1, the particles may sediment from the plume in the first
10–100 m, and will then settle through the water column as illustrated in the experiments
of the present paper, with much less influence of the stratification.

Comparing (6.4) and (7.2), we find that the separation will occur prior to the effects of
stratification being important if

0.24
(

BN
u

)2/3 1
v2 < 1. (7.3)

The ratio of the separation and intrusion heights as a function of particle settling speed are
shown in figure 9 for the cases N = 0.01, 0.001 and 0.0001 s−1, in the case B/u = 1. In this
figure, we see that plumes containing particles with larger fall speeds or in more weakly
stratified environments, are likely controlled by the dynamics described in this work, while
the effects of stratification become more significant for smaller particles.
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Figure 9. Ratio of the separation and intrusion heights in a particle plume as a function of the particle fall
speed, for the cases N = 0.01, 0.001 and 0.0001 s−1, in the case B/u = 1.

In the context of volcanic plumes, the dynamics is more complex owing to the heat
transfer between the solid particles and the host fluid in the plume, leading to the buoyancy
of the cloud being associated with both the plume fluid and the particles. We are presently
exploring this dynamics, building on the present understanding of the controls on particle
separation in a plume in cross-flow.

In closing, we note that the present work has focussed on plumes laden with a
monodisperse suspension of particles of a single size. In practice, there may be a range
of particle sizes in suspension in the plume. The present work suggests that there will be
a gradual loss of particles from the plume as the plume descends and slows down, with
the largest particles sedimenting first. As particles sediment from the plume, the buoyancy
of the residual plume will decrease, further reducing the plume speed. We plan to explore
this dynamics in a further contribution.
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