A NOTE ON FUNCTION SPACES GENERATED BY RADEMACHER SERIES

by GUILLERMO P. CURBERA*

(Received 29th March 1995)

Let X be a rearrangement invariant function space on [0, 1] in which the Rademacher functions (r_n) generate a subspace isomorphic to ℓ^2 . We consider the space $\Lambda(\mathcal{R}, X)$ of measurable functions f such that $fg \in X$ for every function $g = \sum b_n r_n$ where $(b_n) \in \ell^2$. We show that if X satisfies certain conditions on the fundamental function and on certain interpolation indices then the space $\Lambda(\mathcal{R}, X)$ is not order isomorphic to a rearrangement invariant space. The result includes the spaces $L_{p,q}$ and certain classes of Orlicz and Lorentz spaces. We also study the cases $X = L_{exp}$ and $X = L_{\varphi}$, for $\psi_2(t) = \exp(t^2) - 1$.

1991 Mathematics subject classification: Primary 46E30, 42C10; Secondary 46B42.

Let $\Lambda(\mathcal{R})$ be the space of measurable functions f such that $fg \in L^1[0, 1]$ for every $g \in \mathcal{R}$, where \mathcal{R} is the subspace generated by the Rademacher functions (r_n) in $L^1[0, 1]$. Endowed with the norm $||f|| = \sup\{||fg||_1 : g = \sum b_n r_n, \sum b_n^2 \le 1\}$ it is a Köthe function space. This space arises as the space of functions which are integrable in the sense of Bartle, Dunford and Schwartz with respect to the vector measure $v(A) = (\int_A r_n(t) dt) \in \ell^2$, see [3]. It can alternatively be described as the space of functions f such that for every measurable set f the Rademacher-Fourier coefficients of the function f(x) are in f(x) are in f(x) the question we investigate is the following. Can the functions in f be described by their distribution function? In other words, is f order isomorphic to a rearrangement invariant space?

We study the problem in a more general setting, replacing $L^1[0, 1]$ by a rearrangement invariant (r.i.) function space X on [0, 1] in which the Rademacher functions generate a subspace isomorphic to ℓ^2 (these spaces have been studied in [6] and [5, Theorem 2.b.4]). We will denote by $\Lambda(\mathcal{R}, X)$ the space of measurable functions $f:[0,1] \to \mathbb{R}$ such that $fg \in X$ for every function $g = \sum b_n r_n$ with $(b_n) \in \ell^2$. It is a Köthe function space when endowed with the norm

$$||f||_{\Lambda} = \sup \{||fg||_{X} : g = \sum b_{n}r_{n}, \sum b_{n}^{2} \le 1\}.$$

^{*}Research supported in part by DGICYT grant #PB93-0926.

This space can also be viewed as the space of multiplication operators from the subspace spanned by the Rademacher functions in X into the whole space.

In this paper we prove that if the fundamental function of the space X is nearly submultiplicative (see below) and the lower Boyd and fundamental indices coincide then the space $\Lambda(\mathcal{R}, X)$ is not order isomorphic to a rearrangement invariant space. The result includes the spaces $L_{p,q}[0, 1]$, for $1 , <math>1 \le q \le +\infty$, or p = q = 1; the Orlicz spaces $L_{\phi}[0, 1]$ where the function ϕ satisfies the Δ' condition globally (see [4, Definition I.5.1]), and the Lorentz spaces $L_{W,p}[0, 1]$, for $1 \le p < +\infty$, where the function W is nearly submultiplicative.

We also show that if X is the Orlicz space L_{ψ_2} given by the function $\psi_2(t) = \exp(t^2) - 1$, then $\Lambda(\mathcal{R}, X)$ is order isomorphic to $L_{\infty}[0, 1]$. For $X = L_{\exp}$ we show that $\Lambda(\mathcal{R}, X)$ is order isomorphic to L_{ψ_2} .

By $\varphi_X(t)$ we will denote the fundamental function of X defined by $\varphi_X(t) = \|\chi_{[0,t]}\|_X$. The dilation operators $E_t: X \to X$, for $0 < t < +\infty$, are defined by $E_t f(s) = f(st)$ for $s \le \min(1, 1/t)$ and $E_t f(s) = 0$ for $1/t < s \le 1$ (if t > 1). We will denote $h_X(t) = \|E_{1/t}\|$, where $\|E_{1/t}\|$ is the norm of $E_{1/t}$ as an operator on X. For any undefined notation we refer the reader to [1] or [5].

Lemma 1. There exists a constant K > 0 such that for each n of the form $n = 2^m$ there are measurable sets B_n , D_n of equal measure $n2^{-n}$ with

$$K \cdot \|\chi_{B_n}\|_{\Lambda} \cdot \|\chi_{D_n}\|_{\Lambda}^{-1} \leq \frac{h_X(n2^{-n})}{n^{1/2} \cdot \varphi_X(n2^{-n})} + \left(\frac{\varphi_X(2^{-n})}{\varphi_X(n2^{-n})}\right)^{1/2}.$$

Proof. Let n be a fixed positive integer such that $n = 2^m$, for $m \in \mathbb{N}$. Consider the dyadic intervals of order n, $A_j = ((j-1)2^{-n}, j2^{-n})$, for $1 \le j \le 2^n$. Consider the $n \times 2^n$ matrix (a_{ij}) , where a_{ij} $(1 \le i \le n; 1 \le j \le 2^n)$ is the value of the function r_i on the interval A_j . Let J be a subset of $\{1, \ldots 2^n\}$ with cardinality n. Associated with J we have the measurable set $A = \bigcup_{j \in J} A_j$ of measure $n2^{-n}$. Consider the characteristic function of the set A in $\Lambda(\mathcal{R}, X)$, then

$$\|\chi_{A}\|_{\Lambda} = \sup \left\{ \left\| \chi_{A} \sum_{1}^{\infty} b_{i} r_{i} \right\|_{X} : (b_{i}) \in B_{\ell^{2}} \right\}$$

$$\leq \sup \left\{ \left\| \chi_{A} \sum_{1}^{n} b_{i} r_{i} \right\|_{X} : (b_{i}) \in B_{\ell^{2}_{2}} \right\} + \sup \left\{ \left\| \chi_{A} \sum_{n=1}^{\infty} b_{i} r_{i} \right\|_{X} : (b_{i}) \in B_{\ell^{2}} \right\}.$$

In order to estimate the second term in the right hand side take into account that

$$\chi_{[0,n2^{-n}]} \sum_{n+1}^{\infty} b_i r_i = E_{n-12^n} \left(\sum_{n+1}^{\infty} b_i r_{i+m-n} \right).$$

Considering that X is r.i., we obtain:

$$\left\| \chi_{A} \sum_{n+1}^{\infty} b_{i} r_{i} \right\|_{X} = \left\| \chi_{[0,n2^{-n}]} \sum_{n+1}^{\infty} b_{i} r_{i} \right\|_{X} = \left\| E_{n^{-1}2^{n}} \left(\sum_{n+1}^{\infty} b_{i} r_{i+m-n} \right) \right\|_{X}$$

$$\leq \left\| E_{n^{-1}2^{n}} \right\| \cdot \left\| \sum_{n+1}^{\infty} b_{i} r_{i+m-n} \right\|_{X} \leq \left\| E_{n^{-1}2^{n}} \right\| \cdot M \cdot \left(\sum_{n+1}^{\infty} |b_{i}|^{2} \right)^{1/2},$$

where M is a constant not depending on n. Hence

$$\sup \left\{ \left\| \chi_A \sum_{n+1}^{\infty} b_i r_i \right\|_{X} : (b_i) \in B_{\ell^2} \right\} \leq M \cdot h_X(n2^{-n}).$$

Select a set $J_1 \subset \{1, \ldots, 2^n\}$ with cardinal n, such that the $n \times n$ matrix $n^{-1/2}(a_{ij})_{j \in J_1}$ is orthogonal. Denote $B_n = \bigcup_{i \in J_1} A_i$, it follows that

$$\sup \left\{ \left\| \chi_{B_{n}} \sum_{i=1}^{n} b_{i} r_{i} \right\|_{X} : (b_{i}) \in B_{\ell_{2}^{n}} \right\} = \sup \left\{ \left\| \sum_{j \in J_{1}} \left(\sum_{i=1}^{n} b_{i} a_{ij} \right) \chi_{A_{j}} \right\|_{X} : (b_{i}) \in B_{\ell_{2}^{n}} \right\}$$

$$= \sup \left\{ \left\| \sum_{j \in J_{1}} \beta_{j} \chi_{A_{j}} \right\|_{X} : (\beta_{j}) \in n^{1/2} B_{\ell_{2}^{n}} \right\}$$

$$= n^{1/2} \cdot \sup \left\{ \left\| \sum_{j \in J_{1}} \beta_{j} \chi_{A_{j}} \right\|_{X} : (\beta_{j}) \in B_{\ell_{2}^{n}} \right\}.$$

Then, for a certain constant C > 0, we have

$$\left\|\chi_{B_n}\right\|_{\Lambda} \leq C \cdot \left(h_X(n2^{-n}) + n^{1/2} \cdot \sup\left\{\left\|\sum \beta_j \chi_{A_j}\right\|_{Y} : (\beta_j) \in B_{\ell_2^n}\right\}\right). \tag{1}$$

Select next a set $J_2 \subset \{1, \ldots, 2^n\}$ with cardinality n, such that each column of the $n \times n$ matrix $(a_{ij})_{j \in J_2}$ has exactly one entry equal to -1 and the rest are equal to 1. Hence we have that $\sum_{i=1}^n a_{ij} = n-2$, for each $j \in J_2$. Denote $D_n = \bigcup_{j \in J_2} A_j$. Then

$$\|\chi_{D_n}\|_{\Lambda} \ge \left\| \sum_{j \in J_2} \left(\sum_{i=1}^n \frac{a_{ij}}{n^{1/2}} \right) \chi_{A_j} \right\|_{X}$$

$$= (n^{1/2} - 2n^{-1/2}) \cdot \|\chi_{D_n}\|_{X}$$

$$= (n^{1/2} - 2n^{-1/2}) \cdot \varphi_{X}(n2^{-n}).$$
(2)

From (1) and (2) it follows that for a constant K > 0 not depending on n

$$K \cdot \frac{\|\chi_{B_n}\|_{\Lambda}}{\|\chi_{D_n}\|_{\Lambda}} \leq \frac{h_X(n2^{-n})}{n^{1/2} \cdot \varphi_X(n2^{-n})} + \varphi_X(n2^{-n})^{-1} \cdot \sup \left\{ \left\| \sum \beta_j \chi_{A_j} \right\|_X : (\beta_j) \in B_{\ell_2^n} \right\}.$$

Let X_n be the n-dimensional subspace generated in X by the functions χ_{A_j} for $j \in J_1$. Consider the operators $T_i : \ell_i^n \longrightarrow X_n$ given by $T_i(\beta_j) = \sum \beta_j \chi_{A_j}$, where $i = 1, 2, \infty$. Then

$$||T_2|| = \sup \left\{ \left\| \sum_X \beta_j \chi_{A_j} \right\|_X : (B_j) \in B_{\ell_2^n} \right\}$$

$$||T_\infty|| = \left\| \sum_X \chi_{A_j} \right\|_X = \varphi_X(n2^{-n})$$

$$||T_1|| = \left\| \chi_{A_j} \right\|_X = \varphi_X(2^{-n}).$$

Since $\sum_{1}^{n} x_{i}^{2} \leq \max |x_{i}| \cdot \sum_{1}^{n} |x_{i}|$, we deduce that $||T_{2}^{*}|| \leq ||T_{1}^{*}||^{1/2} \cdot ||T_{\infty}^{*}||^{1/2}$, where T_{i}^{*} are the adjoint operators, thus $||T_{2}|| \leq ||T_{1}||^{1/2} \cdot ||T_{\infty}||^{1/2}$. Hence

$$\varphi_{X}(n2^{-n})^{-1} \cdot \sup \left\{ \left\| \sum \beta_{j} \chi_{A_{j}} \right\|_{X} : (\beta_{j}) \in B_{\ell_{1}^{n}} \right\}$$

$$= \left\| T_{\infty} \right\|^{-1} \cdot \left\| T_{2} \right\| \leq \left\| T_{1} \right\|^{1/2} \cdot \left\| T_{\infty} \right\|^{-1/2} = \left(\frac{\varphi_{X}(2^{-n})}{\varphi_{X}(n2^{-n})} \right)^{1/2},$$

and the claim follows.

We recall the following interpolation indices of a r.i. space X, the Boyd index $\beta(X)$ and the fundamental index $P_0(X)$, respectively

$$\beta(X) = \sup_{0 \le t \le 1} \log h_X(t) / \log t, \quad P_0(X) = \sup_{0 \le t \le 1} \log M_X(t) / \log t,$$

where $M_X(t) = \sup_s \varphi_X(st)/\varphi_X(s)$, see [2], and [8]. In general $0 \le \beta(X) \le P_0(X)$. We will say that a function f is nearly submultiplicative if $f(st) \le cf(s)f(t)$ for a constant c > 0. It is easily checked that the following holds.

Lemma 2. Let X be a r.i. space, then φ_X is nearly submultiplicative and $\beta(X) = P_0(X)$ if and only if the functions φ_X and h_X are equivalent $(\varphi_X(t) \le h_X(t) \le a\varphi_X(t))$ for all $0 < t \le 1$ and a constant $a \ge 1$.

Theorem. Let X be a rearrangement invariant function space on [0,1] such that the Rademacher functions generate in X a subspace isomorphic to ℓ^2 . Suppose that $\beta(X) = P_0(X)$ and φ_X is nearly submultiplicative. Then the space $\Lambda(\mathcal{R}, X)$ is not order isomorphic to a rearrangement invariant space.

Proof. Since φ_X is submultiplicative, $\varphi_X(2^{-n})/\varphi_X(n2^{-n})$ is bounded above by a constant multiple of $\varphi_X(n^{-1})$. This converges to zero as n tends to infinity since $\varphi_X(0^+) = 0$. This last statement holds since the Rademacher functions generate in X a subspace isomorphic to ℓ^2 , see [6, Lemma 3 and Theorem 7]. By Lemma 2

 $h_X(n2^{-n})/\varphi_X(n2^{-n})$ is bounded from above, so $n^{-1/2}h_X(n2^{-n})/\varphi_X(n2^{-n})$ converges to zero. Hence we can apply Lemma 1 and deduce that there exists two sequences of measurable sets (B_n) and (D_n) of equal measure and such that the ratio $\|\chi_{B_n}\|_{\Lambda} \cdot \|\chi_{D_n}\|_{\Lambda}^{-1}$ converges to zero. This implies that the space $\Lambda(\mathcal{R}, X)$ is not order isomorphic to a r.i. space.

The r.i. spaces X in which the Rademacher functions generate a subspace isomorphic to ℓ^2 are precisely those satisfying

$$||f||_{X} \le M ||f||_{L_{\psi}}$$
 for every $f \in L_{\infty}[0, 1]$,

where M > 0 is a constant and L_{ψ_2} is the Orlicz space given by the function $\psi_2(t) = \exp(t^2) - 1$, [6, Theorem 6]. This condition is implied by $\beta(X) > 0$, or $P_0(X) > 0$ (which is equivalent to X being in the class \mathcal{L} defined in [7]), or $L^p[0, 1] \subset X$ for some p, 1 .

The conditions in the previous theorem are satisfied for the following classes of r.i. spaces:

- (a) The spaces $L_{p,q}[0, 1]$ (see [5, Definition 2.b.8]) for $1 , <math>1 \le q \le +\infty$, or p = q = 1, since $h_X(t) = \varphi_X(t) = t^{1/p}$.
- (b) The Lorentz spaces $L_{W,p}[0, 1]$ for $1 \le p < +\infty$ (see [5, p. 121]) such that the function W is nearly submultiplicative, since in this case $\Phi(t) = \int_0^t W(s) ds$ is nearly submultiplicative and $\varphi_X(t) = \Phi(t)^{1/p}$ and $h_X(t) = (\sup_{s>0} \Phi(s)/\Phi(s/t))^{1/p}$, [2, Theorem 4.1].
- (c) The Orlicz spaces $L_{\phi}[0, 1]$ (see [1, Chap. 4.8]) such that the function ϕ satisfies the Δ' condition globally (which is precisely ϕ being nearly submultiplicative, see [4, Definition I.5.1]), since $\varphi_X(t) = 1/\phi^{-1}(1/t)$ where ϕ^{-1} is the right-continuous inverse of ϕ , and in the computation of $\beta(X)$ we can replace $h_X(t)$ by $g(t) = \limsup_{s \to \infty} \phi^{-1}(s)/\phi^{-1}(s/t)$, see [1, Theorem 4.8.18].

Remark. The Zygmund space $L \log L$ is included in case (c).

The previous result does not hold for every r.i. space in which the Rademacher functions generate a subspace isomorphic to ℓ^2 . This is shown by the following examples.

Example 1. Consider the Orlicz space L_{ψ_2} mentioned above. This space is the smallest r.i. space in which the Rademacher functions generate a subspace isomorphic to ℓ^2 , in the sense that every such space must contain the closure in L_{ψ_2} of bounded functions, [6, Theorem 6]. Let B be an interval in [0, 1] and A a dyadic interval of order a suitable n, so that A is included in B. For appropriate signs $a_i = \pm 1$ we have $\sum_{i=1}^{n} a_i r_i = n$ on A. Consider χ_B in $\Lambda(\mathcal{R}, L_{\psi_2})$, then for a constant C > 0 not depending on n we have

$$\|\chi_B\|_{\Lambda} \ge \|\chi_A\|_{\Lambda} \ge \|\chi_A\|_{\Lambda} \ge \|\chi_A \sum_{i=1}^n \frac{a_i}{n^{1/2}} r_i\|_{L_{\psi_2}} = n^{1/2} \|\chi_A\|_{L_{\psi_2}} = n^{1/2} \varphi_{L_{\psi_2}}(2^{-n}) \sim C,$$

since $\varphi_{L_{\bullet_2}}(t) = \log(1 + 1/t)^{-1/2}$, up to some normalization constant. Let D be a measurable set of positive measure. By Lebesgue's Density Theorem we can find a dyadic interval A so that the Lebesgue measure of A and of $D \cap A$ are as close as desired. Let n be the order of A, then as before

$$\|\chi_{D}\|_{\Lambda} \geq \|\chi_{D\cap A}\|_{\Lambda} \geq \|\chi_{D\cap A}\sum_{i=1}^{n} \frac{a_{i}}{n^{1/2}}r_{i}\|_{L_{\psi_{2}}} = n^{1/2}\|\chi_{D\cap A}\|_{L_{\psi_{2}}},$$

but $\|\chi_{D\cap A}\|_{L_{\psi_2}} \sim \|\chi_A\|_{L_{\psi_2}}$, so $\|\chi_D\|_{\Lambda} \geq C$. Hence $\Lambda(\mathcal{R}, L_{\psi_2})$ contains no unbounded functions. From [6, Lemma 3] it follows that $\Lambda(\mathcal{R}, L_{\psi_2})$ is order isomorphic to $L_{\infty}[0, 1]$.

Example 2. Consider the space L_{ψ_1} given by the Orlicz function $\psi_1(t) = \exp(t) - 1$, also known in the literature as L_{\exp} . We will see that $\Lambda(\mathcal{R}, L_{\exp})$ is order isomorphic to L_{ψ_2} . Let f be in L_{ψ_2} and consider $\sum a_n r_n$ for $(a_n) \in \ell^2$, which is also in L_{ψ_2} . Since in general $g \in L_{\psi_2}$ implies $g^2 \in L_{\exp}$ and $4xy = (x+y)^2 - (x-y)^2$, it follows that $f \sum a_n r_n$ is in L_{\exp} , so f is in $\Lambda(\mathcal{R}, L_{\exp})$. For the reverse inclusion let us establish the next claim.

Lemma 3. For each $p(1 \le p < \infty)$ and for each function f in $L^p[0, 1]$ there exists a norm one sequence (a_n) in ℓ^2 such that

$$\left\| f \right\|_{p} \leq 3 p^{-1/2} \cdot \left\| f \sum_{n} a_{n} r_{n} \right\|_{p}.$$

Proof. Given $\varepsilon > 0$ let g be a simple function supported on dyadic intervals and such that $|g| \le |f|$ and $||f||_p \le (1+\varepsilon) ||g||_p$. Let N be the highest dyadic order of the intervals of constancy of g. Consider $m \in \mathbb{N}$ such that $m-1 \le p < m$. Define $a_n = 0$ for $n \le N$, $a_n = m^{-1/2}$ for $N+1 \le n \le N+m$, and $a_n = 0$ for n > N+m. Direct computation shows that $||\sum a_n r_n||_p \ge m^{1/2} 2^{-(m-1)/p} \ge p^{1/2} 2^{-1}$. Since g and $\sum a_n r_n = \sum_{n \ge N} a_n r_n$ are independent, we have

$$\int_0^1 \left| g \sum a_n r_n \right|^p = \int_0^1 \left| g \right|^p \cdot \int_0^1 \left| \sum a_n r_n \right|^p.$$

Hence

$$||f||_{p} \le (1+\varepsilon) \cdot ||g||_{p} \le (1+\varepsilon)2 \, p^{-1/2} \cdot ||g||_{p} \cdot ||\sum a_{n} r_{n}||_{p}$$

$$= (1+\varepsilon)2 \, p^{-1/2} \cdot ||g\sum a_{n} r_{n}||_{p} \le 3 \, p^{-1/2} \cdot ||f\sum a_{n} r_{n}||_{p}.$$

Assume now that f is in $\Lambda(\mathcal{R}, L_{exp})$, that is $f \sum a_n r_n$ is in L_{exp} for every $(a_n) \in \ell^2$. In particular $f \in L^p[0, 1]$ for every $p, 1 \le p < \infty$. Denote by h_p the function $\sum a_p r_n$ with (a_n) of norm one in ℓ^2 given by Lemma 3. Using the power series expansion of the functions $\psi_1(t) = \exp(t) - 1$ and $\psi_2(t) = \exp(t^2) - 1$ we have the following equivalent norms in the spaces L_{exp} and L_{ψ_2} :

$$||f||_{L_{\exp}} = \sup_{1 \le p \le \infty} p^{-1} \cdot ||f||_{p} \quad \text{and} \quad ||f||_{L_{\psi_{2}}} = \sup_{1 \le p \le \infty} p^{-1/2} \cdot ||f||_{p}.$$

Then

$$||f||_{L_{\psi_{2}}} = \sup \left\{ p^{-1/2} \cdot ||f||_{p} : 1 \le p < \infty \right\}$$

$$\le 3 \sup \left\{ p^{-1} \cdot ||fh_{p}||_{p} : 1 \le p < \infty \right\}$$

$$\le 3 \sup \left\{ p^{-1} \cdot ||f\sum_{n} a_{n} r_{n}||_{p} : 1 \le p < \infty, (a_{n}) \in B_{\ell^{2}} \right\}$$

$$= 3 \sup \left\{ ||f\sum_{n} a_{n} r_{n}||_{L_{\exp}} : (a_{n}) \in B_{\ell^{2}} \right\}$$

$$= 3 ||f||_{\Lambda}.$$

So f is in L_{ψ_2} and $\|f\|_{L_{\psi}} \le 3 \|f\|_{\Lambda}$. Hence both spaces are order isomorphic. We can also consider the space $\Lambda(\mathcal{R}, X)$ for r.i. spaces where the subspace generated by the Rademacher functions is other than ℓ^2 . If $X = L_{\infty}[0, 1]$ then the Rademacher functions generate a subspace isomorphic to ℓ^1 , so $\Lambda(\mathcal{R}, X)$ is $L_{\infty}[0, 1]$.

Example 3. Let X be the Orlicz space L_{ψ_2} where $\psi_q(t) = \exp(t^q) - 1$ and q > 2. The Rademacher functions generate in X a subspace isomorphic to the sequence space $\ell_{p,\infty}$, where 1/p+1/q=1, [6, Section 6]. Then, as in Example 1, for a dyadic set A of order n and for a constant C > 0 not depending on n, we have

$$\|\chi_{A}\|_{\Lambda} \ge \|\chi_{A} \sum_{i=1}^{n} \frac{a_{i}}{i^{1/p}} r_{j}\|_{L_{\psi_{a}}} \ge \|\chi_{A} \sum_{i=1}^{n} \frac{a_{i}}{n^{1/p}} r_{i}\|_{L_{\psi_{a}}} = n^{1/q} \varphi_{L_{\psi_{q}}}(2^{-n}) \sim C,$$

since $\varphi_{L_{\psi_q}}(t) = \log(1 + 1/t)^{-1/q}$, up to some normalization constant. Hence $\Lambda(\mathcal{R}, L_{\psi_q})$ and $L_{\infty}[0, 1]$ are order isomorphic.

Acknowledgement. I would like to thank Professor S. Kwapień for suggesting extending a previous narrower result.

REFERENCES

1. C. Bennett and R. Sharpley, Interpolation of operators (Academic Press, Inc., Boston, 1988).

- 2. D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math. 19 (1967), 599-616.
- 3. G. P. Curbera, Banach space properties of L^1 of a vector measure, *Proc. Amer. Math. Soc.* 123 (1995), 3797-3806.
- 4. M. A. Krasnoselskii and Ya. B. Rutickii, Convex functions and Orlicz spaces (Noordhoff, Groningen, 1961).
- 5. J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces, vol. II (Springer-Verlag, Berlin, New York, 1979).
- 6. V. A. RODIN and E. M. SEMENOV, Rademacher series in symmetric spaces, Anal. Math. 1 (1975), 207-222.
 - 7. R. SHARPLEY, Spaces $\Lambda_{\alpha}(X)$ and interpolation, J. Funct. Anal. 11 (1972), 479-513.
- 8. M. ZIPPIN, Interpolation of operators of weak type between rearrangement-invariant function spaces, J. Funct. Anal. 7 (1971), 267-284.

FACULTAD DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA APTDO (P.O. Box) 1160 SEVILLA 41080 SPAIN E-mail address: curbera@cica.es