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A NOTE ON FUNCTION SPACES GENERATED BY
RADEMACHER SERIES

by GUILLERMO P. CURBERA*

(Received 29th March 1995)

Let X be a rearrangement invariant function space on [0, 1] in which the Rademacher functions (r,) generate
a subspace isomorphic to £>. We consider the space A(R, X) of measurable functions f such that fg € X for
every function g = " b,r, where (b,) € €. We show that if X satisfies certain conditions on the fundamental
function and on certain interpolation indices then the space A(R, X) is not order isomorphic to a
rearrangement invariant space. The result includes the spaces L,, and certain classes of Orlicz and Lorentz
spaces. We also study the cases X = L, and X = L,, for ¢,(1) = exp(f) — 1.

1991 Mathematics subject classification: Primary 46E30, 42C10; Secondary 46B42.

Let A(R) be the space of measurable functions f such that fg € L'[0, 1] for every
g€ R, where R is the subspace generated by the Rademacher functions (r,) in
L'[0,1]. Endowed with the norm [ f|| =sup{| fgll,; 9= b, Lb:<1} it is a
Kothe function space. This space arises as the space of functions which are integrable
in the sense of Bartle, Dunford and Schwartz with respect to the vector measure
v(A)=(/, r.(t)dt) € €%, see [3]. It can alternatively be described as the space of
functions f such that for every measurable set 4 the Rademacher-Fourier coefficients
of the function fy, are in €. The question we investigate is the following. Can the
functions in A(R) be described by their distribution function? In other words, is A(R)
order isomorphic to a rearrangement invariant space?

We study the problem in a more general setting, replacing L'[0,1] by a
rearrangement invariant (r.i.) function space X on [0, 1] in which the Rademacher
functions generate a subspace isomorphic to £> (these spaces have been studied in [6]
and [S, Theorem 2.b.4]). We will denote by A(R, X) the space of measurable functions
f:[0,11 > R such that fg e X for every function g =3 b,r, with (b,) € £>. It is a
Kothe function space when endowed with the norm

171l \= SUP{ 1fally:9=> bura Y b2 < 1}.
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This space can also be viewed as the space of multiplication operators from the
subspace spanned by the Rademacher functions in X into the whole space.

In this paper we prove that if the fundamental function of the space X is nearly
submultiplicative (see below) and the lower Boyd and fundamental indices coincide
then the space A(R, X) is not order isomorphic to a rearrangement invariant space.
The result includes the spaces L, [0, 1], for I <p < +400,1 < g < 400, 0or p=gq = 1; the
Orlicz spaces L4[0, 1] where the function ¢ satisfies the A’ condition globally (see
{4, Definition [.5.1]), and the Lorentz spaces Ly [0, 1], for 1 < p < 400, where the
function W is nearly submultiplicative.

We also show that if X is the Orlicz space L, given by the function
¥,(t) = exp(?) — 1, then A(R, X) is order isomorphic to L0, 1]. For X = L., we show
that A(R, X) is order isomorphic to L, .

By (1) we will denote the fundamental function of X defined by ¢x(t) = || 104/l ,-
The dilation operators E, : X — X, for 0 <t < 400, are defined by E, f(s) = f(st) for
s <min(1, 1/t) and E,f(s) = 0 for 1/t <s <1 (if t > 1). We will denote hy(t) = || E,, ||,
where ||E,, || is the norm of E,, as an operator on X. For any undefined notation we
refer the reader to [1] or [5].

Lemma 1. There exists a constant K > 0 such that for each n of the form n = 2" there
are measurable sets B,, D, of equal measure n2™" with

K- ”XB,.

S 27 (¢x(2_")>'/2_
A TRy (n277)  \@x(n277)

A ||XDn

Proof. Let n be a fixed positive integer such that n = 2", for m € N. Consider the
dyadic intervals of order n, A; = (( —1)27",j27"), for 1 <j <2". Consider the n x 2"
matrix (a;), where a; (1 <i < n; 1 <j < 2")is the value of the function r; on the interval
A;. Let J be a subset of {1,...2"} with cardinality n. Associated with J we have the
measurable set 4 = U,;4; of measure n2™". Consider the characteristic function of the
set A in A(R, X), then

FARE sup{ 24 ) bl () e B,z]
! X
< sup{ Xa be’i ((b) e Bz;} +sup[ A Zb,-r,. ((b) € B,z].
1 X n+1 x

In order to estimate the second term in the right hand side take into account that

Xonm P biri = Epizp (Z b,-r,-+,,,_,,) .

n+1 n+1

https://doi.org/10.1017/50013091500023488 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023488

FUNCTION SPACES GENERATED BY RADEMACHER SERIES 121

Considering that X is r.i., we obtain:

Xa Zb Xi0,n2-) Zbr
n+l n+l
Z biri+m—n

n+1

'12" <Z bl l+m—n)
n+l X
oo 172
< || Evin| - M- (Z |b,-|’) ,
X n+1

where M is a constant not depending on n. Hence

supl XAZb"

< || E"—lzn

(bi) € le} <M - hy(n2™).

n+l1
Select a set J, C {1,. 2"} with cardinal n, such that the n x n matrix n™"*(a;),, is
orthogonal. Denote B, = U, 4;, it follows that
SUP[ Xs, Zbiri (b)) € Be;} = SUP[ Z(Z b; au)XA ((b) e Bc;}
1 X jedy i=1
= SuP[ H ZB'XA,- | 1(B) € nllth;}
SuP[ ”Zﬂ,XA, (B) € B¢"}~
Then, for a certain constant C > 0, we have
Vs, 1l = € (har2 + - sup{ | S Bt || : 8) € By))- m

Select next a set J, C {1,...,2"} with cardinality n, such that each column of the
n x n matrix (a;),,, has exactly one entry equal to —1 and the rest are equal to 1.
Hence we have that 3, a; = n — 2, for each j € J,. Denote D, = U,;, 4;. Then

2%

— (nl/2 _ 2n—l/2) .

= (1" = 2n7'7%) . g, (n2).

” Xp,

o 2

From (1) and (2) it follows that for a constant K > 0 not depending on n

hy(n27")

K-
0,1 = 072 - @x(n2™)

+ @y(n2) SUP{ " ZﬂjXA,

SB)e By).
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Let X, be the n-dimensional subspace generated in X by the functions X4, for

Jj € J,. Consider the operators T; : £{—> X, given by T;(8)) = 3 B;x,, where i = 1,2, co.
Then

I %] = sup{|| 3" B

i (B)e B,;}

1Tl = |20 24 | = 0xtr27
1T =[xy ||, = ex@™.
Since Y| x! <max|x|- Y| Ix;], we deduce that ||Ty| < | T l/2-|| T ' where T
are the adjoint operators, thus | ;|| < || ;|| l/2-|| T. | "2 Hence
oxm27y " sup{ | - B LB e By )
-1 172 -1 (277 2
=Tl Um0 = I ) = ()
and the claim follows. O

We recall the following interpolation indices of a r.i. space X, the Boyd index B(X)
and the fundamental index Py(X), respectively

B(X) = sup loghy(t)/logt, Py(X) = suplogM,(t)/logt,

O<t<l O<t<l1

where My (t) = sup, @,(5t)/¢x(s), see [2], and [8]. In general 0 < B(X) < Py(X). We will
say that a function f is nearly submultiplicative if f(st) < cf(s)f(t) for a constant ¢ > 0.
It is easily checked that the following holds.

Lemma 2. Let X be a r.i. space, then @, is nearly submultiplicative and f(X) =
Py(X) if and only if the functions @, and hy are equivalent (p,(t) < hy(t) < ap(t) for all
0 <t <1 anda constant a > 1).

Theorem. Let X be a rearrangement invariant function space on [0, 1] such that
the Rademacher functions generate in X a subspace isomorphic to €*. Suppose that
B(X) = Py(X) and ¢, is nearly submultiplicative. Then the space A(R, X) is not order
isomorphic to a rearrangement invariant space.

Proof. Since ¢, is submultiplicative, ¢,(27")/9x(n27") is bounded above by a
constant multiple of @,(n™'). This converges to zero as n tends to infinity since
@x(0%) = 0. This last statement holds since the Rademacher functions generate in X a
subspace isomorphic to ¢, see [6, Lemma 3 and Theorem 7]. By Lemma 2
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hyx(n27")/@4(n27™") is bounded from above, so n™""*hy(n27")/@,(n2™") converges to zero.
Hence we can apply Lemma 1 and deduce that there exists two sequences of
measurable sets (B,) and (D,) of equal measure and such that the ratio | s, || - || s, || ;'
converges to zero. This implies that the space A(R, X) is not order isomorphic to a
r.i. space. d

The r.i. spaces X in which the Rademacher functions generate a subspace isomorphic
to €7 are precisely those satisfying

I llx= MIIfIl,, ~foreveryf e Ly[0,1],

where M >0 is a constant and L, is the Orlicz space given by the function
¥,(t) = exp(t’) — 1, [6, Theorem 6]. This condition is implied by B(X) > 0, or Py(X) > 0
(which is equivalent to X being in the class £ defined in [7]), or L?[0, 1] C X for some
p.1 <p<oo.

The conditions in the previous theorem are satisfied for the following classes of r.i.
spaces:

(a) The spaces L, [0, 1] (see [S, Definition 2.b.8]) for 1 < p < +00,1 < g < 400, or
p =g =1, since hy(t) = @y(t) = £'".

(b) The Lorentz spaces Ly [0, 1] for 1 <p <400 (see [5, p. 121]) such that the
function W is nearly submultiplicative, since in this case ®(t) = f; W(s) ds is nearly sub-

multiplicative and ¢,(t) = ®(¢)"” and hy(t) = (sup,,, D(s)/D(s/t))'", [2, Theorem 4.1].

(c) The Orlicz spaces L4[0, 1] (see [1, Chap. 4.8]) such that the function ¢ satisfies
the A’ condition globally (which is precisely ¢ being nearly submultiplicative, see [4,
Definition 1.5.1]), since ¢, () = 1/¢~'(1/t) where ¢~' is the right-continuous inverse of
¢, and in the computation of B(X) we can replace hy(t) by g(t) = lim sup,_ . ¢~'(s)/
¢7'(s/t), see [1, Theorem 4.8.18].

Remark. The Zygmund space L log L is included in case (c).

The previous result does not hold for every r.i. space in which the Rademacher
functions generate a subspace isomorphic to £*. This is shown by the following
examples.

Example 1. Consider the Orlicz space L,, mentioned above. This space is the
smallest r.i. space in which the Rademacher functions generate a subspace isomorphic
to £2, in the sense that every such space must contain the closure in L, of bounded
functions, [6, Theorem 6]. Let B be an interval in [0, 1] and A a dyadic interval of order
a suitable n, so that A4 is included in B. For appropriate signs a, = +1 we have
> 1ari=non A. Consider x5 in A(R, L,,), then for a constant C > 0 not depending on
n we have
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n a;
X E —nTi
A - nl/z i

=n"{lxall, =10, @~ C

Ly,

”XB”A2 ”XA"AZ

since @, (t) =log(1 + 1/)™"?, up to some normalization constant. Let D be a measur-
able set of positive measure. By Lebesgue’s Density Theorem we can find a dyadic
interval A4 so that the Lebesgue measure of 4 and of DN A are as close as desired. Let
n be the order of A, then as before

lxolla 2= 1204l 4 =

i -
—_r.
Xpna nizi

= 1" xona | Ly,
L

vz
but || xpn | L, ~ || x4 ”Lw , 80 ||xp||,= C. Hence A(R,L,,) contains no unbounded
functions. From [6, Lemma 3] it follows that A(R, L,,) is order isomorphic to L[0, 1].

Example 2. Consider the space L, given by the Orlicz function () = exp(?) — 1,
also known in the literature as L.,,. We will see that A(R, L,xp) is order isomorphic to
Ly, Letf bein L, and consider Y a,r, for (a,,) € £2, which is also in L,,. Since in
general g € sz implies ¢° € L, and 4xy = (x + )’ = (x — y)?, it follows thatha r, 18
in L, so f is in A(R, L.,,). For the reverse inclusion let us establish the next claim.

Lemma 3. For each p(1 < p < o0) and for each function f in L’[0, 1] there exists a
norm one sequence (a,) in £* such that

171, < 307 || X am|

Proof. Given ¢ > 0 let g be a simple function supported on dyadic intervals and
such that |g| < |f| and ||f|| <(1+¢) ||g|| Let N be the highest dyadic order of the
intervals of constancy of g. "Consider m e N such that m — 1 < p < m. Define a,=0
for n<N, a,=m™"? for N+1<n<N+m, and a,=0 for n> N+ m. Direct
computation shows that || a,r,| > m'/2~m=rp > p"22 '. Since g and Y a,r, =

> ..n G.r, are independent, we have
1 , 1 »
= / |g, / ’Zanr,,
0 0

1
'/0 Igzanrn

Hence

I, =a+o-llall,=a+a2p- |4l

= +02p7" g ) ar | <357

n'n

17> ar,
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Assume now that f is in A(R, L,,;), that is ) a,r, is in L, for every (a,) € £ In
particular f € L°[0, 1] for every p,1 < p < co. Denote by h, the function }_ a,r, with
(a,) of norm one in £* given by Lemma 3. Using the power series expansion of the
functions ,(t) = exp(t) — 1 and ,(t) = exp(t’) — 1 we have the following equivalent
norms in the spaces L.,, and L,,:

lf

Lexp

= sup p7-||7Il, and 1], = s o711,
Then

171, =sep{p™- 151,71 < p < oo
< 3sup[p‘l . ||fh,,||p: 1<p< oo}
< 3sup[p" : ”fzanrn
=3sup[“f2a,,r,,

=3||f“/\'

:15p<oo,(a,,)eBlz}
P

:(a,) € B,z}
Lexp

Sofisin L, and || f||, <3| f],- Hence both spaces are order isomorphic.

We can also consider’the space A(R, X) for r.i. spaces where the subspace generated
by the Rademacher functions is other than €>. If X = L_[0, 1] then the Rademacher
functions generate a subspace isomorphic to €', so A(R, X) is L0, 1].

Example 3. Let X be the Orlicz space L,, where y () =exp(t')—1 and q > 2.
The Rademacher functions generate in X a subspace isomorphic to the sequence space
¢, ., where 1/p+1/q =1, [6, Section 6]. Then, as in Example 1, for a dyadic set 4 of
order n and for a constant C > 0 not depending on n, we have

lzall 2 me—,ﬂ,n > xZni,r =n'p,, @M ~C,

Ly, Ly,

since o, (©)=log(1 + 1/t)""%, up to some normalization constant. Hence A(R, L, ) and
L.[0, 1] are order isomorphic.
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