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Abstract. We study the boundary value problem

div(|∇u|m−2∇u) + uavb = 0 in �,

div(|∇v|m−2∇v) + ucvd = 0 in �,

u = v = 0 on ∂�,

where � ⊂ �n (n ≥ 2) is a bounded connected smooth domain, and the exponents
m > 1 and a, b, c, d ≥ 0 are non-negative numbers. Under appropriate conditions on
the exponents m, a, b, c and d, a variety of results on a priori estimates and existence
of positive solutions has been established.

2000 Mathematics Subject Classification. 35J55, 35J65

1. Introduction. In the articles [10, 12], the author considered, among other
matters, the following systems of elliptic differential equations

�mu + uavb = 0 in �,

�mv + ucvd = 0 in �,
(1.1)

where � ⊂ �n (n ≥ 2) is a connected smooth domain, together with, whenever � has
a non-empty boundary ∂�, the boundary condition

u = v = 0 on ∂�. (1.2)

Here the exponents m, a, b, c and d are non-negative numbers and

�m· = div(|∇ · |m−2∇·)

is the m–Laplace operator. Specifically, the author was concerned with the question
of existence of a non-negative and non-trivial solution u = (u, v) ≥ 01 satisfying (1.1).
This issue was raised as an open question for systems of equations such as (1.1) in
the survey article [6] and has since been studied by a number of authors. See for
example [10] and the references therein. Due to the presence of multiple components
and multiple equations, the structure of systems is more complicated than that of scalar

1All relations involving vectors are understood in the component-wise sense.
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equations. For instance, generically, (1.1) does not admit a variational structure and
consequently variational methods typically do not apply.

Denote

β := bc − αδ; α := m − 1 − a, δ := m − 1 − d,

and for m ∈ (1, n),

m∗ := n(m − 1)
n − m

, m∗ := n(m − 1) + m
n − m

.

It is understood that m∗ = m∗ = ∞ for m ≥ n.
We say that (1.1) is pseudo-subcritical provided that

min(a + b, c + d) < m∗, max(a + b, c + d) ≤ m∗. (1.3)

(When m∗ = ∞, the convention max(a + b, c + d) < ∞ is used instead.)
Also (1.1) is said to be fully-coupled if the exponents a, b, c, d satisfy

min(b, c) > 0, min(a, d) ≥ 0,

and strongly-coupled if (1.1) is fully-coupled and, in addition,

a + d > 0.

See, for example, [10] for details.
We shall assume throughout the entire paper that m > 1, min(b, c) > 0 and

min(a, d) ≥ 0 (so that (1.1) is fully-coupled). Moreover, for simplicity, all solutions
u considered throughout will be classical; i.e., in the space of C2,γ

loc (�) for m = 2 and
C1,γ

loc (�) for m 	= 2 for some γ ∈ (0, 1). When � is bounded, then (1.2) is prescribed
and solutions will be in C2,γ

0 (�) and C1,γ

0 (�) respectively.
We say that an (ALT) condition holds provided that the exponents m, a, b, c and

d satisfy one of the following conditions:

(A) n ≤ m;

(B) n > m, min(α, δ) > 0 and max{b + δ, c + α} >
nβ

mm∗
;

(C) n > m, δ ≤ 0 < α and max
{ β

c − δ
, c + α

}
>

nβ
mm∗

;

(D) n > m, α ≤ 0 < δ and max
{

b + δ,
β

b − α

}
>

nβ
mm∗

;

(E) n > m, max(α, δ) ≤ 0 and min(a + b, c + d) < m∗.

Let C be a class of solutions of (1.1). Then an a priori estimate (EST) is said to be
valid for C, if there exists a positive constant C > 0 (independent of u) such that

(EST) ||u||L∞(�) ≤ C

for all solutions u ∈ C of (1.1).
For m > 1, the following theorem was proved in [12].
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THEOREM I ([12]). Let � ⊂ �n be uniformly normal [12, Definition 2.2]. Assume
that the condition (ALT) holds,

β > 0, max(a, d) < m∗, (1.4)

and

min(a, d) ≥ m − 1. (1.5)

Then the estimate (EST) is valid for all non-negative solutions u of (1.1) that are
monotone in � [12, Definition 2.3]. Moreover, (1.1) has a positive solution u.

REMARK. If m ≥ n, then (1.4)2 is superfluous, since m∗ = ∞.

For the case m = 2 (i.e., the Laplace operator), corresponding results were obtained
in [10, 12] (see also the references therein). For clarity, we state the results for the spatial
dimension n = 2 and n > 2 separately. The first result is for n = 2.

THEOREM II ([10]). Let m = 2 and let � ⊂ �2 be uniformly normal. Suppose that
β 	= 0 and

min(a + b, c + d) ≥ m − 1. (1.6)

Then the estimate (EST) is valid for all non-negative solutions u of (1.1). Moreover, (1.1)
has a positive solution u if β > 0.

Note particularly that there is no upper bound restriction on any of the exponents
a, b, c, d in Theorem II. When the spatial dimension n > 2, we have the following result.

THEOREM III ([10, 12]). Let m = 2 and let � ⊂ �n (n > 2) be uniformly normal.
Then the following conclusions hold.

(A) Suppose that β 	= 0. Assume that (1.3) and (1.6) hold. Then the estimate (EST)
is valid for all non-negative solutions u of (1.1). Moreover, (1.1) has a positive
solution u if β > 0.

(B) Suppose that (ALT), (1.4) and (1.5) hold. Then the estimate (EST) is valid for all
non-negative solutions u of (1.1) that are monotone in � and, furthermore, (1.1)
has a positive solution u.

REMARKS. 1. Theorem III(B) is a special case of Theorem I.

2. The supremum a priori estimates in Theorems II and III-(A) are classical.
Namely, they are valid for all non-negative solutions u of (1.1).

For Theorems I–III above, the essential core is to obtain a certain form of
supremum a priori estimates. One typical approach in achieving this is to apply the
blow-up method introduced for scalar equations in [5] in which establishing the desired
estimates was converted to proving Liouville-type non-existence of positive solutions.
For systems of equations with special structures (i.e., weakly-coupling), this procedure
has been lately adapted directly by several authors for the very same purpose. However,
in view of a possible strongly-coupling feature (i.e., a + d > 0), it is not yet clear whether

https://doi.org/10.1017/S0017089506003247 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003247


440 HENGHUI ZOU

the aforementioned straight generalization of the standard blow-up procedure remains
applicable to (1.1). Nevertheless, a new blow-up procedure was then developed in [10]
for (1.1) that recovers the original key feature of the blow-up method; non-existence
implies a priori estimates. We refer the interested reader to [10] and the references
therein for more details. To further illustrate this assertion, our first purpose is to prove
the following theorem.

THEOREM 1.1. Let m = 2 and let � ⊂ �n (n > 2) be uniformly normal. Suppose that
(1.4) and (1.6) hold. Assume that (1.1) has no positive solutions on � = �n. Then the
estimate (EST) is valid for all non-negative solutions u of (1.1). Moreover, (1.1) has a
positive solution u.

The proof of the existence in Theorem 1.1 is somewhat standard by the fixed
point theorems, provided that a somewhat stronger version of (EST) is available.
As mentioned earlier, via blow-up, the Liouville-type non-existence that (1.1) has
no positive solutions on � = �n plays a crucial role in deriving such estimates.
Naturally, in the light of Theorem 1.1, the second purpose of this paper is thereby
to establish a corresponding Liouville-type non-existence for (1.1) and therefore, as a
direct consequence of Theorem 1.1, to prove the following result.

THEOREM 1.2. Let m = 2 and let � ⊂ �n (n > 2) be uniformly normal. Suppose
that (ALT), (1.4) and (1.6) hold. Then the estimate (EST) is valid for all non-negative
solutions u of (1.1). Moreover, (1.1) has a positive solution u.

For existence alone, as observed in [12], it suffices to develop a priori estimates only
for monotone solutions (as in Theorem I). Based on such an observation, we are able
to extend Theorems I, II and III on existence below. The first result in this direction is
for m = 2.

THEOREM 1.3. Let m = 2 and let � ⊂ �n be uniformly normal. Suppose that (1.4)
holds. Assume that one of the following conditions holds:

(A) (1.1) has no positive solutions on � = �n,
(B) (1.3) holds.

Then the estimate (EST) is valid for all non-negative solutions u of (1.1) that are monotone
in �. Moreover, (1.1) has a positive solution u.

The next theorem is valid for arbitrary m > 1.

THEOREM 1.4. Let � ⊂ �n be uniformly normal. Suppose that (1.4) holds. Assume
one of the following conditions holds.

(A) (1.1) has no positive solutions on � = �n.
(B) (ALT) holds.

Then the estimate (EST) is valid for all non-negative solutions u of (1.1) that are monotone
in �. Moreover, (1.1) has a positive solution u.

Theorem 1.3 removes the condition (1.6) in Theorems II and III (but only for
monotone solutions), while Theorem 1.4 removes (1.5) in Theorem I, and (1.6) in
Theorems 1.1-1.2 (again only for monotone solutions).

When m = 2, (1.1) (in fact a general system of k equations) was studied in [3]. A
priori estimates and existence of a positive solution were obtained under, among other
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restrictions, the upper growth bound

lim
u→∞

|f(u)|
|u|(n+1)/(n−1)

= 0.

When the domain � is convex, then the condition above was also weakened to

lim
u→∞

|f(u)|
|u|p = 0, p ∈ (1, 2∗).

In [7], the authors further extended the studies in this direction and obtained
similar estimates (and existence) for (1.1) (with m = 2). The results of both [3] and
[7] are valid on general bounded domains. When � = B is a Euclidean ball, (1.1)
was treated in [2]. Under the additional condition a, d ≤ m − 1, the authors derived
existence of radial solutions under both (1.4) and part (B) of (ALT). When (1.1)
has a variational structure, some existence and non-existence results were obtained
in [9].

Our main interest in studying (1.1) is to attempt to identify an optimal region of
the quadruples (a, b, c, d) in which (1.1) admits a priori estimates and/or existence
of positive solutions. In this regard, Theorems 1.2-1.4 are partially new, enlarging
substantially such regions given in Theorems I-III. In particular, Theorems 1.2-1.4, II
and III together extend earlier results in this direction for (1.1). We refer the interested
reader to [10, 12] and the references therein for details.

Plainly, the region defined by (1.6) is larger than that given by (1.5). On the other
hand, the regions defined by (1.4) and (ALT), and by (1.3), respectively, overlap with
each other, with neither containing the other. Indeed, the exponents a + b and c + d are
bounded from above under (1.3), while both a + b and c + d may be arbitrarily large
(not simultaneously though) under (1.4) and (ALT)). When a + b and c + d are close,
however, (1.4) and (ALT) together do imply (1.3). For example, when n > 2, m = 2 and
a + b = c + d, one readily checks that (1.4) and (ALT) imply a + b = c + d < 2∗ < 2∗,
but (1.3) only requires a + b = c + d < 2∗.

The paper is organised as follows. A new monotonicity result Lemma 2.2, which
plays an important role and also is of independent interest, is proved in Section 2.
Some preliminary results are given in Section 3. In Section 4, we develop the desired a
priori estimates. Theorems 1.1–1.4 are then proved in Section 5.

2. An auxiliary lemma. In this section, we prove an auxiliary monotonicity result
(Lemma 2.2 below) that will be used later. The result is new, particularly in view of the
presence of non-Lipschitz non-linearities. See the remarks right after Lemma 2.2.

Let k ≥ 1 be an integer. For non-negative vectors p, u ∈ �k, we write

|p| = p1 + p2 + . . . + pk, up = up1
1 · up2

2 . . . upk
k ,

where we have used the convention 00 = 1.
For �n

+ = {(x′, xn) ∈ �n | xn > 0}, consider the system of semi-linear elliptic
equations

�ui + κixσi
n upi + δi = 0 in �n

+,

u = 0 on ∂�n
+,

(2.1)
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where, for i = 1, . . . , k, pi = (pi1, . . . , pik) ≥ 0 are constant vectors and κi > 0, σi, δi ≥ 0
are non-negative numbers satisfying

min
i

{σi + |pi|} ≥ 1 and max
i

|pi| ≤ 2∗(< ∞ if n = 2). (2.2)

As a direct consequence of the strong maximum principle, we have the following
lemma.

LEMMA 2.1. Let 
 ⊂ �n
+ be bounded and let u be a non-negative non-trivial solution

of (2.1). Then u is strictly positive and there exists C = C(u, 
) > 0 such that

C−1 ≤ min
i,j

inf
x∈


ui(x)
uj(x)

≤ max
i,j

sup
x∈


ui(x)
uj(x)

≤ C

and

C−1xn ≤ min
i

inf
x∈


ui(x) ≤ max
i

sup
x∈


ui(x) ≤ Cxn.

Proof. The proof is essentially the same as that of Lemma 3.1 of [10]. �
LEMMA 2.2. Suppose (2.2) holds. Then the only non-negative solutions u of (2.1)

are u = hxn, where h is a non-negative constant vector. Moreover, there necessarily holds
that δi = 0 for i = 1, . . . , k.

REMARKS. 1. If |pi| = 0, then the condition σi + |pi| = σi ≥ 1 is superfluous.

2. When |pi| ≥ 1, the nonlinearity upi is called locally Lipschitz in the magnitude of
u for u ≥ 0 in [10] and was treated in [10]. Evidently, a locally magnitude-Lipschitz upi

need not be locally Lipschitz in u for u ≥ 0 since some components of pi may be in the
interval (0, 1). In Lemma 2.2, however, it is allowed that |pi| ∈ (0, 1) in (2.1), whence
upi is not even locally magnitude-Lipschitz and is left untreated in [10]. Moreover, the
appearance of xσi

n in (2.1) is also new.

Proof. We employ a proof used in [10] and refer the reader to [10] for further
details. (See also [8, 11].) We shall use some notations from [10].

We first show that u depends only on xn and is non-decreasing. By the strong
maximum principle, every component of u is either strictly positive or identically zero,
and so is κixσi

n upi for i = 1, . . . , k. Without loss of generality, there exists 1 ≤ k′ ≤ k
such that (note k′ > 0 for otherwise there is nothing to prove)

ui > 0 for i = 1, . . . , k′; ui ≡ 0 for i = k′ + 1, . . . , k.

It follows that for i = 1, . . . , k′, either

�ui + κixσi
n ūp̄i + δi = 0, in �n

+,

where ū = (u1, . . . , uk′ ), provided that pi = (p̄i, 0, . . . , 0) = (pi1, . . . , pik′ , 0, . . . , 0) (so
that κixσi

n ūp̄i > 0), or

�ui + δi = 0, in �n
+, (2.3)

provided that pi j > 0 for some j > k′. If the latter occurs, by applying Theorem 4.2
of [10] to (2.3)i, then necessarily δi = 0 and ui = hixn, for some hi > 0, since ui > 0.
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Again, without loss of generality, there exists 1 ≤ k′′ ≤ k′ such that

ui 	= hixn for i = 1, . . . , k′′; ui = hixn for i = k′′ + 1, . . . , k′.

(Note that k′′ > 0 again.) It follows that, for i = 1, . . . , k′′, we have

�ui + κ̂ixσ̂i
n ûp̂i + δi = 0 in �n

+,

where κ̂i > 0, û = (u1, . . . , uk′′ ), p̂i(pi1, . . . , pik′′ ) and

σ̂i + |p̂i|σi + pi,k′′+1 + . . . + pik′ + |p̂i| = σi + |p̄i| = σi + |pi| ≥ 1, |p̂i| ≤ |pi| ≤ 2∗.

In turn, we may consider a sub-system in û > 0 of u under the same assumptions
of Lemma 2.2 (the other components of u are monotone and depend only on xn as
shown). Therefore we shall assume that u is positive in the sequel.

In spherical coordinates, with the origin at (0′,−1), we have

xn = r cos φ − 1, �n
+ =

{
(r, θ )|θ = (ψ1, . . . , ψn−2, φ) ∈ Sn−2 × [0, π/2), r >

1
cos φ

}
,

where r is the radius, and φ ∈ [0, π/2) is the (positive) angle between the positive xn-axis
and x − (0′,−1) for x ∈ �n

+. As in [10], make the changes of variables

v(t, θ ) = r(n−2)/2u(r, θ ); (t, θ ) = (ln r, θ ),

(so that t ≥ 0) and for T ≥ 0,

vT (t, θ ) = v((t, θ )T ), w(T, t, θ ) = vT − v; (t, θ )T = (2T − t, θ ).

It follows that the function w satisfies the equation in �T {(t, θ ) | t ∈ (ln(1/ cos φ), T)}
∂2

t wi + �θwi + δi
(
e(n+2)(2T−t)/2 − e(n+2)t/2)

+ κie{(n+2)−(n−2)|pi |}(2T−t)/2(e2T−t cos φ − 1)σi vpi
T

− κie{(n+2)−(n−2)|pi |}t/2(et cos φ − 1)σi vpi − 1
4

(n − 2)2wi = 0.

For σi ≥ 0, T ≥ t ≥ 0, |pi| ∈ [0, 2∗], φ ∈ [0, π/2) and (t, θ ) ∈ �T , there hold

e(n+2)(2T−t)/2 ≥ e(n+2)t/2, e{(n+2)−(n−2)|pi |}(2T−t)/2 ≥ e{(n+2)−(n−2)|pi |}t/2,

and

(e2T−t cos φ − 1)σi ≥ (et cos φ − 1)σi ≥ 0,

since et cos φ − 1 ≥ 0 for (t, θ ) ∈ �T . Therefore, noting that δi, κi, v, vT ≥ 0, w satisfies
the inequality,

∂2
t wi + �θwi − 1

4
(n − 2)2wi + κie{(n+2)−(n−2)|pi |}t/2(et cos φ − 1)σi

[
vpi

T − vpi
] ≤ 0. (2.4)

For i, j = 1, . . . , k, using the integration presentation, we rewrite

(et cos φ − 1)σi
[
vpi

T − vpi
]
Pi j(t, θ )wj(T, t, θ ),
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where

Pi j(t, θ ) = (et cos φ−1)σi (vT )pi1
1 . . . (vT )

pi,j−1

j−1 · v
pi,j+1

j+1 . . . v
pik
k pi j

∫ 1

0
[s(vT )j + (1−s)vj]pi j −1ds

≥ 0.

For pi j ∈ (0, 1) and fixed T ≥ 0, by Lemma 2.7 of [10] and Lemma 2.1, we deduce that
there exists C = C(u, T) > 0 (independent of pi j) such that

(vT )pi1
1 . . . (vT )

pi,j−1

j−1 v
pi,j+1

j+1 . . . v
pik
k pi j

∫ 1

0
[s(vT )j + (1 − s)vj]pi j−1ds

≤ (vT )pi1
1 . . . (vT )

pi,j−1

j−1 v
pi,j+1

j+1 . . . v
pik
k · min

{
(vT )

pi j−1
j , v

pi j−1
j

}

=
(

(vT )1(x)
(vT )j(x)

)pi1

. . .

(
(vT )j−1(x)
(vT )j(x)

)pi,j−1

·
(

vj+1(x)
vj(x)

)pi,j+1

. . .

(
vk(x)
vj(x)

)pik

·(vT )
pi1+...+pi,j−1

j (x) · v
pi,j+1+...+pik

j (x) · min
{
(vT )

pi j−1
j , v

pi j−1
j

}
≤ C max

{
(vT )|pi|−1

j (x), v|pi|−1
j (x)

} ≤ C
(
1 + x|pi|−1

n

)
,

where we have used Lemma 2.1 and the fact that (t, θ ) ∈ �T , so that we obtain

0 < vj(t, θ ) ≤ Cxn(t, θ ), 0 < (vT )j(t, θ ) ≤ Cxn((t, θ )T ),

and

0 < xn(t, θ ) = et cos φ − 1 ≤ xn((t, θ )T ) = e2T−t cos φ − 1 ≤ e2T .

It follows that, for all (t, θ ) ∈ �T , we have

Pi j(t, θ ) ≤ C(et cos φ − 1)σi
(
1 + x|pi|−1

n

) = C
(
xσi

n + xσi+|pi|−1
n

) ≤ C, (2.5)

since xn = et cos φ − 1 ∈ (0, eT − 1] for (t, θ ) ∈ �T and σi ≥ 0, σi + |pi| − 1 ≥ 0. (For
pi j ≥ 1 or pi j = 0, estimate (2.5) is trivial, for the function tpi j is locally Lipschitz for
t ≥ 0). Combining (2.4) and (2.5), we finally deduce that w satisfies the inequality

∂2
t wi + �θwi − 1

4
(n − 2)2wi + ci j(t, θ )wi ≤ 0,

where

ci j(t, θ ) = κie{(n+2)−(n−2)|pi |}t/2Pi j(t, θ ) ∈ [0, C(u, T)].

The rest of the proof of Theorem 4.1 of [10], carries over, which shows that the function
rn−2u(r, θ ) is strictly increasing in the radius r.

Therefore, for all non-negative solutions u of (2.1), rn−2u(r, θ ) is non-deceasing in
r (with positive components being strictly increasing). Since (2.1) is independent of x′,
rn−2u(r, θ ) is thus non-decreasing in every radius direction with the origin at any point
(x′,−1). In turn, u = u(xn) depends only on xn and is non-decreasing in xn. (We refer
the reader to [8] for a detailed proof.)

Now we claim that κixσi
n upi + δi ≡ 0, for i = 1, . . . , k. Assume that κixσi

n upi + δi =
C0 > 0 for some i at some point x0

n > 0. Then κixσi
n upi + δi ≥ C0 > 0 for xn ≥ x0

n >

0, since κi, σi, δi ≥ 0 and u = u(xn) ≥ 0 is non-decreasing in xn. Directly integrating
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the equation u′′
i + κixσi

n upi + δi = 0 yields an immediate contradiction. It follows that
κixσi

n upi + δi ≡ 0 and u′′
i = 0 for i = 1, . . . , k, whence one easily concludes that δi ≡ 0

and ui = hixn, for some hi ≥ 0, i = 1, . . . , k. The proof is complete. �

3. Preliminaries. Let n ≥ 2 be an integer and let � ⊂ �n be a connected smooth
domain. Consider

�mu + κ1uavb + t1 = 0 in �,

�mv + κ2ucvd + t2 = 0 in �,
(3.1)

together with, whenever � has a non-empty boundary ∂�, the boundary condition

u = v = 0 on ∂�, (3.2)

where m > 1 and κ1, κ2, t1, t2 ≥ 0 are constants, u = (u, v) ≥ 0 is a function and
a, b, c, d are non-negative numbers as given in the introduction. When � is bounded
and t1 = t2 = t, with the help of the strong maximum principle, every non-negative
solution u ≥ 0 of (3.1) must be either identically zero or strictly positive in � since (3.1)
is fully-coupled (i.e., b, c > 0).

Our first lemma is a monotonicity result.

LEMMA 3.1. Let m = 2 and let � ⊂ �n be a uniformly normal domain. Suppose that
(1.6) holds. Then all non-negative solutions u of (3.1) are necessarily monotone in �.

Proof. This is essentially Theorem 3.1 of [10] that continues to hold for (3.1) with
arbitrary κ1, κ2, t1, t2 ≥ 0. �

For x ∈ �n
+, let φ > 0 be the (positive) angle between x and the positive xn-

direction. We call φ = φ(x) > 0 the directional angle of x. For φ0 ∈ (0, π/2], a non-
negative function u is said to be φ0-monotone in �n

+ if u is monotone in all directions
x ∈ �n

+ with φ(x) ∈ [0, φ0). Our second lemma is the following Liouville-type non-
existence result.

LEMMA 3.2. Suppose that κ1, κ2 > 0.
(1) Let � = �n. Assume that m = 2 and (1.3) holds. Then (3.1) has no positive

solutions u.
(2) Let � = �n. Assume that (1.4) and (ALT) hold. Then (3.1) has no positive

solutions u.
(3) Let � = �n

+ = {(x′, xn) ∈ �n | xn > 0} and assume β > 0. Then (3.1) cannot have
a positive solution u which is φ0-monotone in �n

+ for some φ0 ∈ (0, π/2].

Proof. Part (1) follows directly from Lemmas 2.4 and 2.6 of [10] (no need of (1.6)!),
while Part (2) follows from Lemma 2.3 and Theorem 1.1 of [12].

To prove (3), suppose the contrary and let u be a positive solution of (3.1) that is
φ0-monotone in �n

+, for some φ0 > 0 (say φ0 < π/4). Then one has

inf
|x′|<tan(φ0)xn

u(x′, xn) ≥ inf
|x′|<tan(φ0)

u(x′, 1) > 0.
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On the other hand, Lemma 3.2 of [12] applies since β, κ1, κ2 > 0 and t1, t2 ≥ 0. In
particular, one infers that there exist ε > 0 and C > 0 such that for xn > 0 large2

min{ inf
|x′|<tan(φ0)xn

u(x′, xn), inf
|x′|<tan(φ0)xn

v(x′, xn)} ≤ Cx−ε
n .

The two inequalities above clearly yield a contradiction and the proof is
complete. �

The next lemma yields a bound for the ratio of the components of a solution u of
(3.1).

LEMMA 3.3. Let 
 ⊂ � ⊂ �n be smooth and bounded and let u be a positive solution
of (3.1). Then there exists a positive constant C = C(u, t1, t2, κ1, κ2, 
) > 0 such that

1
C

≤ inf
x∈


u(x)
v(x)

≤ sup
x∈


u(x)
v(x)

≤ C.

Proof. When m = 2, this is essentially Lemma 3.1 of [10]. For general m > 1, the
proof of Lemma 3.1 of [10] carries over by using the strong maximum principle for the
m-Laplace operator. �

We conclude this section with an upper bound of the parameter t1 = t2 = t in
(3.1).

LEMMA 3.4. Let � ⊂ �n be smooth and bounded and let u be a solution of (3.1)
with t1 = t2 = t ≥ 0. Suppose that β, κ1, κ2 > 0. Then there exists a positive constant
t0 = t0(a, b, c, d, m, n, κ1, κ2,�) > 0 such that t ≤ t0.

Proof. Let u be a solution of (3.1). As observed earlier, u is either identically zero
or strictly positive since t1 = t2 = t and � is bounded. Hence we shall assume that
u = (u, v) > 0 (u ≡ 0 ⇒ t = 0).

Let λ1 be the first eigenvalue of −�m (with homogeneous Dirichlet boundary data)
and φ1 > 0 an associated first eigenfunction. For ε > 0 and m > 1, it has been observed
in [4], as a consequence of the Young inequality, that there holds for u1 = u + ε (note
that ∇u1 = ∇u)

|∇φ1|m − ∇
(

φm
1

um−1
1

)
|∇u|m−2∇u ≥ 0 (x ∈ �).

The inequality above is sometimes referred to as Picone’s identity and has since been
used for its applications in studying equations involving the m-Laplace operator. See
also, for example, [1] and the references therein. It follows that, by using the equations
of φ1 and u respectively (note that (φm

1 /um−1
1 ) ∈ C1,γ

0 (�) for some γ ∈ (0, 1))

λ1

∫
�

φm
1 −

∫
�

(t + κ1uavb)
φm

1

um−1
1

=
∫

�

(
|∇φ1|m − ∇

(
φm

1

um−1
1

)
|∇u|m−2∇u

)
≥ 0.

2Lemma 3.2 in [12] was proved for exterior domains, but it remains valid here since for xn > 0 all balls Br(O)
centered at O = (0′, xn) with radius r = tan(φ0)xn are contained in � = �n+.
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Letting ε → 0 immediately yields (since {φm
1 /um−1

1 } are uniformly bounded in � for
ε > 0)

∫
�

(t + κ1uavb)u1−mφm
1 ≤ λ1

∫
�

φm
1 .

Similarly, one has
∫

�

(t + κ2ucvd)v1−mφm
1 ≤ λ1

∫
�

φm
1 .

Combining the two together, we have
∫

�

{(t + κ1uavb)u1−m + (t + κ2ucvd)v1−m}φm
1 ≤ 2λ1

∫
�

φm
1 . (3.3)

Since β, b, c > 0, one readily infers that there exists λ,µ ≥ 0 (λ,µ > 0 if α, δ > 0)
such that λ + µ = 1, and

r, s ≥ 0, r + s > 0, where r = −λα + µc, s = λb − µδ.

For example, one may take (with µ = 1 − λ) λ = 1 if α ≤ 0, λ = 0 if δ ≤ 0 and

δ/(b + δ) < λ < c/(α + c) if α, δ > 0.

By Young’s inequality, for u, v > 0 we have that

κ1(uavb)u1−m + κ2(ucvd)v1−m = κ1u−αvb + κ2ucv−δ ≥ Curvs,

for some C = C(κ1, κ2, r, s, λ, µ) > 0. It follows that

(t + κ1uavb)u1−m + (t + κ2ucvd)v1−m ≥ t(u1−m + v1−m) + Curvs.

However, a direct computation shows that for t ≥ 0 (since m > 1)

inf
u,v>0

{t(u1−m + v1−m) + Curvs} = Ct(r+s)/(r+s+m−1),

for some positive constant C depending only on κ1, κ2, r, s, λ, µ and m. Now the
conclusion follows from (3.2) by taking t0 = (2λ1C−1)(r+s+m−1)/(r+s). �

4. A priori estimates. In this section, we develop supremum a priori estimates for
non-negative solutions of (3.1) when t1 = t2 = t. We first consider the case m = 2.

THEOREM 4.1. Let m = 2 and let � be a uniformly normal domain. Assume that
κ1κ2 > 0 and t1 = t2 = t ≥ 0. Suppose that (1.4) and (1.6) hold. Then there exists a
positive constant C > 0 depending on the structural constants such that

t + max
x∈�

u(x) + max
x∈�

v(x) ≤ C, (4.1)

for all non-negative solutions u of (3.1), provided one of the following holds.
(A) (1.1) has no positive solutions on � = �n.
(B) (ALT) holds.
(C) (1.3) holds.
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Proof. We proceed similarly as in proving Theorem 5.1 of [10], and use the same
notation. As observed earlier, one only needs to consider strictly positive solutions u
and therefore it is assumed all solutions u are actually strictly positive in the sequel.

Let u = (u1, u2) be a positive solution of (3.1). Write

n1(x) := u−α
1 (x)ub

2(x), n2(x) := uc
1(x)u−δ

2 (x),

and

Ui := max
x∈�

ui(x) > 0, Ni := sup
x∈�

ni(x) > 0 (i = 1, 2).

By the homogeneous Dirichlet boundary condition, there exist ξi ∈ � such that

Ui = ui(ξi) < ∞ (i = 1, 2).

Using (1.6) and Lemma 3.3, one also readily deduces that there exist ζi ∈ � such that

ni(ζi) ≥ Ni/2, Ni < ∞ (i = 1, 2).

We shall prove (4.1) by contradiction. Suppose (4.1) is false and there exist a
sequence of positive solutions ul = (u1,l, u2,l) of (3.1) and a corresponding sequence of
numbers tl ≥ 0 such that

0 < tl + U1,l + U2,l → ∞,

where ni,l(x), Ui,l, Ni,l, ξi,l and ζi,l are the various quantities given above, corresponding
to ul. By Lemma 3.4, the sequence {tl} is bounded. Hence, without loss of generality,
assume that

lim
l→∞

U1,l = lim
l→∞

max{U1,l, U2,l} = ∞. (4.2)

For zl ∈ � and Ql ≥ 1 to be determined later, make the change of variables

vi,l(y) = ui,l(x)
ui,l(zl)

, y = (x − zl)Ql; i = 1, 2, l = 1, 2, . . . . (4.3)

Put

�l := {y ∈ �n | y = (x − zl)Ql, x ∈ �}; τl := dist(zl, ∂�)Ql = dist(0, ∂�l). (4.4)

The proof is next divided into three cases, with

N̄i = lim
l→∞

Ni,l ∈ [0,∞] (i = 1, 2),

where the limit can be infinite.3

Case (I). N̄1 = 0. One argues in exactly the same way as in Case (I) of Theorem 5.1
of [10] to derive a contradiction.

3It is understood all convergences here and in the sequel are up-to a subsequence.
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Case (II). N̄1 = ∞. In (4.3), take

zl := ζl, Q2
l := max{Nl, tlu−1

1,l (ζl), tlu−1
2,l (ζl)} → ∞,

where

Nl := max{N1,l, N2,l} → ∞, ζl := ζi,l if Nl = Ni,l.

The rest of the proof proceeds essentially the same as in [10], provided one can show
that all of the following hold simultaneously.4

(1) The system (3.1) admits no positive solutions on � = �n.
(2) The single equation �mu + κuλ = 0, where κ > 0 and either λ = a or λ = d,

has no positive solutions on � = �n.
(3) There holds the lower-bound estimate (4.5) below.

First, note that any one of assumptions (A), (B) and (C) of Theorem 4.1 implies
statement (1). Indeed, with the aid of Lemma 2.4(B) of [10], one readily verifies that (1)
is equivalent to assumption (A) since κ1, κ2 > 0 and β > 0 by (1.4). By Lemma 3.2, (1)
and (2), either (1.4) combined with assumption (B), or assumption (C) also implies (1).
The conclusion (2) follows directly from Lemma 2.3 of [12] since max(a, d) < m∗ by
(1.4). Finally, under (1.4) and (1.6), we shall prove the lower-bound estimate (4.5); see
Lemma 4.1 below. It follows that all (1)–(3) hold under the assumptions of Theorem 4.1.
Now with (1)-(3) above available, with the aid of (1.4), one readily adapts the arguments
of [10] to derive a contradiction. This finishes the proof of Case (II), pending the
completion of the proof of Lemma 4.1.

Case (III). N̄1 ∈ (0,∞). Then, as in [10], one infers that N̄2 = ∞ since β, b, c > 0.
Take

zl = ζ2,l, Q2
l = max{N2,l, tlu−1

1,l (ζ2,l), tlu−1
2,l (ζ2,l)} → ∞

and this becomes an analogue of Case (II) and one deduces a contradiction similarly.

To complete the proof, in view of Case (II) above, it remains to prove the next
result.

LEMMA 4.1. Let m = 2 and let � ⊂ �n be a uniformly normal domain. Assume that
u is a positive solution of (3.1). Suppose that κ1 > 0, κ2 > 0, (1.4) and (1.6) hold, and

max(N̄1, N̄2) = ∞.

For l = 1, 2, . . . , put

Nl := max{N1,l, N2,l} → ∞, ζl := ζi,l if Nl = Ni,l,

and

Q2
l := max

{
Nl, tlu−1

1,l (ζl), tlu−1
2,l (ζl)

} → ∞.

4The conclusions (1) and (2) below are the key ingredients Lemmas 2.6 and 5.1, respectively, used in [10],
that are ensured by (1.4) plus either one of the conditions (A), (B) or (C).
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Then

lim sup
l→∞

Qldist(ζl, ∂�) = ∞. (4.5)

Proof. A proof was given in [10, Lemma 5.1] under the pseudo-subcriticality (1.3),
which can be readily carried over under assumption (1.4).

By (1.6) and Lemma 3.3, one has

dist(ζi,l, ∂�) > 0 (i = 1, 2, l = 1, 2, . . .).

Suppose that (4.5) fails. Then one readily sees the arguments in Lemma 5.1 of [10]
carry over without change to imply that there exist non-negative numbers σ ∈ (0, 1),
δ1, δ2, κ1, κ2 ≥ 0 (abusing notation: κ1, κ2 here maybe different from the original κ1, κ2

in (3.1)) and a function v = (v1, v2) ∈ C1,σ
loc (�n+) such that v ≥ 0 satisfies v(0′, 1) = (1, 1)

and the limiting equations

�v1 + κ1v
a
1v

b
2 + δ1 = 0 in �n

+,

�v2 + κ2v
c
1v

d
2 + δ2 = 0 in �n

+,

v = 0 on ∂�n
+

(which is simply (2.1) with k = 2). Moreover, we claim that

(1) The sequence of domains �l converges to the half-space �n
+ = {y ∈ �n | yn > 0}

and

lim
l→∞

vl(y) = v(y) (4.6)

on any compact set 
1 ⊂ �n
+ in the C1,σ -topology, where {vl} and {�l} are the

sequences given in the (4.3) and (4.4) respectively.
(2) There exists a positive constant φ0 > 0 such that v is φ0-monotone in �n

+. See
the definition in Section 2.

Claim (1) was shown in [10] (simply by construction).
Next we prove (2). As in [10], for each l and by suitable rotations and translations,

the inner normal direction of ∂� at a boundary point ζ ′
l ∈ ∂� is chosen to be the

positive xn-direction. Moreover, under the transform (4.3)–(4.4), the point ζ ′
l ∈ ∂� is

mapped to the origin O ∈ ∂�l in y-coordinates and the inner normal direction of ∂�l

at the origin O ∈ ∂�l becomes the positive yn-direction (i.e., the positive xn-direction
is mapped to the positive yn-direction).

By Lemma 3.1, all ul are monotone in �. It follows that (thanks also to the uniform
normality of �) there exist two positive constants δ0 > 0 and φ0 > 0 (independent of
l) such that for x ∈ � and ν ∈ Sn−1

Dνui,l(x) ≥ 0 (i = 1, 2, l = 1, 2, . . .),

provided that |x − ζ ′
l | ≤ δ0 and φx(ν) < φ0, where φx(ν) is the directional angle of ν

between ν and the positive xn-direction and Dν is the directional derivative in the
ν-direction. In turn, by the formula (4.3), we have for y ∈ �l and ν ∈ Sn−1

Dνvi,l(y) = Q−1
l u−1

i,l (zl)Dνui,l(x) ≥ 0 (i = 1, 2, l = 1, 2, . . .),
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provided that |y|(= |x − ζ ′
l |Ql) ≤ δ0Ql and φy(ν) = φx(ν) < φ0, where φy(ν) is the

directional angle of ν between ν and the positive yn-direction. For each r > 0, there
exists l0 = l0(r) > 0 such that Ql > rδ−1

0 for l ≥ l0, since Ql → ∞. It follows that, for
all l > 0 sufficiently large (i.e., Ql > rδ−1

0 ),

Dνvl(y) ≥ 0, ∀y ∈ (Br(0) ∩ �l) and ν ∈ Sn−1

with φy(ν) < φ0. Now invoking the convergence (4.6), we conclude that, for each r > 0

Dνv(y) ≥ 0, ∀y ∈ (Br(0) ∩ �n
+) and ν ∈ Sn−1

with φy(ν) < φ0. It follows that v is φ0-monotone in �n
+.

In summary, v is a (strictly positive) solution of (3.1) that is φ0-monotone in �n
+

for some φ0 > 0. There are three possibilities concerning the coefficients κ1 and κ2 in
(3.1).

(A) κ1 · κ2 > 0. Then Lemma 3.2(3) implies that (3.1) cannot have a positive solution
v which is φ0-monotone in �n

+ for some φ0 > 0, an immediate contradiction.
(B) κ1 · κ2 = 0 but κ1 + κ2 > 0, say κ1 = 0 and κ2 > 0. Then �v1 + δ1 = 0 and v1 ≥

0 in �n
+, v1 = 0 on ∂�n

+ and v1(0′, 1) = 1. Clearly, Theorem 4.2 of [10] implies
that δ1 = 0 and v1(x) = xn. It follows that �v2 + κ2xc

nv
d
2 + δ2 = 0 and v2 ≥ 0

in �n
+, v2 = 0 on ∂�n

+ and v2(0′, 1) = 1. That is, with the aid of (1.4) and (1.6),
(2.1) has a positive solution u = v2 with k = 1, κ = κ2 > 0, σ1 = c and p1 =
d ≥ 0 satisfying

c + d ≥ 1, d ≤ 2∗.

This is impossible in view of Lemma 2.2.
(C) κ1 + κ2 = 0. Then Theorem 4.2 of [10] implies that v1(x) = v2(x) = xn with δ1 =

δ2 = 0. But then the proof of Lemma 5.1 in [10] shows that this is impossible
(necessarily κ1 + κ2 > 0). Note particularly that this part of the proof requires
only (1.6).

The proof of Lemma 4.1 is complete. �

In conclusion, turning back to the proof of Theorem 4.3, we have derived a
contradiction for each of the cases (I)–(III) above. In turn, (4.2) is necessarily false.
Therefore the a priori estimate (4.1) holds and the proof is complete. �

For monotone solutions, it turns out that (1.6) is superfluous. We have the following
corollary.

COROLLARY 4.1. Let m = 2 and let � be an uniformly normal domain. Suppose that
t1 = t2 = t ≥ 0, κ1, κ2 > 0 and (1.4) holds. Then there exists a positive constant C > 0
depending on the structural constants such that

t + max
x∈�

u(x) + max
x∈�

v(x) ≤ C,

for all solutions u of (3.1) that are monotone in �, provided one of the following holds.

(A) (1.1) has no positive solutions on � = �n.
(B) (ALT) holds.
(C) (1.3) holds.
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Proof. We proceed in the same way as in proving Theorem 4.1 and use the same
notation. The proof here is simpler since the solutions considered are monotone.
Indeed, the blown-up domain is always the entire space �n and consequently Lemma
4.1 is no longer needed.

By Theorem 4.1, we only need to consider the case

min(a + b, c + d) < m − 1.

Thus, without loss of generality, we assume that

a = min(a, d) < m − 1 =⇒ α = m − 1 − a > 0.

Let {ul} and {tl} be given as in Theorem 4.1 such that

lim
l→∞

(U1,l + U2,l) = ∞. (4.7)

By assumption, � is uniformly normal and {ul} are monotone in �. That is, there exists
δ0 > 0 (cf. [10]) such that

max
x∈�

ui,l(x) = max
x∈�0

ui,l(x) (i = 1, 2; l = 1, 2, . . .),

where

�0 := {x ∈ � | dist(x, ∂�) ≥ δ0}

is non-empty. In turn, one may choose ξi,l ∈ �0 such that for i = 1, 2 and l = 1, 2, . . .

Ui,l = ui,l(ξi,l), dist(ξi,l, ∂�) ≥ δ0.

We next consider two cases.

Case (I). We have U2,l ≤ C < ∞. Then U1,l → ∞ by (4.7) and, by Lemma 3.4,

max{U−1
1,l tl, U−α

1,l Ub
2,l} → 0

since α, b > 0. Rewrite (3.1)1 in the form

�w1,l(x) + κ1U−α
1,l ub

2,l(x)wa
1,l(x) + U−1

1,l tl = 0, (4.8)

where

w1,l(x) = u1,l(x)U−1
1,l ∈ (0, 1], max

x∈�
w1,l(x) = 1, w1,l(x)|x∈∂� = 0.

Letting l → ∞ in (4.8) immediately yields a contradiction since

max
x∈�

∣∣κ1U−α
1,l ub

2,l(x)
∣∣ ≤ κ1U−α

1,l Ub
2,l → 0.

Case (II). We have U2,l → ∞. We claim that

max{n1,l(ξ2,l), n2,l(ξ2,l)} → ∞.
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To this end, suppose, say, n1,l(ξ2,l) ≤ C for some C > 0, l = 1, 2, . . . . Then u1,l(ξ2,l) ≥
CUb/α

2,l since α > 0. In turn,

n2,l(ξ2,l) = uc
1,l(ξ2,l)U−δ

2,l ≥ CUbc/α−δ

2,l = CUβ/α

2,l → ∞,

since U2,l → ∞ and α, β > 0, which yields the claim.
Now, in (4.3), take

zl := ξ2,l, Q2
l := max

{
n1,l(zl), n2,l(zl), tlu−1

1,l (zl), tlu−1
2,l (zl)

} → ∞.

The rest of the proof becomes an analogue of Case (II) of Theorem 4.1. That is, all
(1)-(3) in Case (II) of Theorem 4.1 remain valid under our assumptions. Indeed, since
Qldist(ξ2,l, ∂�) ≥ Qlδ0 → ∞ as l → ∞, (3) holds automatically. By (1.4), (2) follows
from Lemma 2.3 of [12] since max(a, d) < m∗ by (1.4). Finally, assumption (A) is
equivalent to (1) since κ1, κ2 > 0 and β > 0, by (1.4), while by Lemma 3.2, (1) and
(2), either (1.4) combined with assumption (B), or assumption (C) also implies (1). It
follows that the arguments there carry over and one deduces a contradiction similarly,
provided that one can show that {v1,l} is uniformly bounded on any compact set 
 ⊂ �n

for l sufficiently large (so that 
 ⊂ �l). To this end, we note that, by the choice of Ql,
and the fact that 0 ≤ v2,l, by construction,

0 ≤ Q−2
l κ1n1,l(ξ2,l)va

1,l(y)vb
2,l(y) ≤ κ1(1 + v1,l(y)), 0 ≤ Q−2

l tlu−1
1,l (ξ2,l) ≤ 1,

since b > 0 and a ∈ [0, 1). Moreover, v1,l satisfies the equation

�v1,l(y) + Q−2
l κ1n1,l(ξ2,l)va

1,l(y)vb
2,l(y) + Q−2

l tlu−1
1,l (ξ2,l) = 0.

Now the uniform boundedness of {v1,l} follows from the Harnack inequality, since
v1,l(0, 0) = 1 for i = 1, . . . , and the proof is complete. �

Finally, in this section, we prove similar a priori estimates for monotone solutions
of (3.1) with arbitrary m > 1, without the restriction (1.6).

THEOREM 4.2. Let � be uniformly normal. Suppose that κ1κ2 > 0, t1 = t2 = t ≥ 0
and (1.4) holds. Then there exists a positive constant C > 0 depending on the structural
constants such that

t + max
x∈�

u(x) + max
x∈�

v(x) ≤ C,

for all solutions u of (3.1) that are monotone in �, provided one of the following holds.

(A) (1.1) has no positive solutions on � = �n.
(B) (ALT) holds.

Proof. We first prove Theorem 4.2 under assumption (B). In view of Theorem I,
with (1.4) and assumption (B) being valid, we may assume that

min(a, d) < m − 1.

Now one readily verifies that the arguments of Corollary 4.1 carry over with little
change (i.e., replacing 2 by m and 1 by m − 1 wherever applicable) and concludes the
desired estimates for monotone solutions as required.
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Now note that (B) is only used to show that (3.1) with κ1κ2 > 0 has no positive
solutions on � = �n in the entire proof. Moreover, that (3.1) with κ1κ2 > 0 has no
positive solutions on � = �n is equivalent to (1.1) having no positive solutions on
� = �n, since β > 0 by (1.4). Therefore it suffices to prove Theorem 4.2 under the
assumption (B) and the proof is complete. �

We should like to point out that, under the assumption that (1.1) has no positive
solutions on � = �n, the first part β > 0 of (1.4) can be replaced by β 	= 0, provided
that it is assumed that t1 = t2 = t = 0.

5. Proof of Theorems 1.1–1.4. In this section, we give proofs to Theorems 1.1–1.4
that are essentially the same as those given in [10, 12]. We only sketch the proof and
refer the reader to [10, 12] for further details.

Proof of Theorem 1.1. One readily verifies that Theorem 4.1 applies under the
assumptions of Theorem 1.1. Thus the a priori estimates (EST) follow directly from
Theorem 4.1. The proof of the existence part is almost precisely the same as that of
Theorem 1.2 in [10] (Theorem 1.3 in [12] for general m > 1), with the aid of Theo-
rem 4.1. The only exception here is that one needs to prove, under the assumption
β > 0, the next result.

Step 2. For t ∈ [0, 1], there exists a positive number r such that u 	= tF(u) for
||u|| = r. Consider u = tF(u) with t ∈ [0, 1] and ||u|| = r > 0; that is,

�mu + tuavb = 0, in �,

�mv + tucvd = 0, in �,

u = v = 0, on ∂�.

(5.1)

For e, f ≥ 1, multiply the first equation by ue and the second equation by vf and
integrate over � to obtain

∫
�

|∇u|mue−1 ≤ C
∫

�

ua+evb,

∫
�

|∇v|mvf −1 ≤ C
∫

�

ucvd+f (5.2)

since t ∈ [0, 1].
We want to show that there exists r0 > 0 such that the equation u = tF(u); i.e.,

(5.1), actually has no solution in the punctured ball Br0 (0) − {0} for all t ∈ [0, 1]. By
the strong maximum principle, using (5.1), u is strictly positive in � since ||u|| = r > 0
and (5.1) is fully-coupled.

We next consider four cases. In the sequel, u is always taken as a positive solution
of (5.1) with r = ‖u‖ > 0.

Case (I). max{a, d} ≥ m − 1, say, d ≥ m − 1. Taking f = 1 in (5.2)2, we deduce
that ∫

�

|∇v|m = O(rc+d+1−m)
∫

�

vm = O(rc+d+1−m)
∫

�

|∇v|m,

where r = ‖u‖, c > 0 and d + 1 ≥ m, and we have used the Poincaré inequality. This is
impossible if r = ‖u‖ is small since v > 0. It follows that there exists r0 > 0 such that
the equation u = tF(u) has no solution in Br0 (0) − {0}, for all t ∈ [0, 1].
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Case (II). max{a, d} < m − 1, m ∈ (1, n) and max{a + b, c + d} ≤ m∗. Clearly,

max{a, d} < m − 1 =⇒ α, δ > 0. (5.3)

We take e = f = 1 in (5.2), and apply the Hölder and Sobolev inequalities to deduce
that

∫
�

|∇u|m ≤
∫

�

ua+1vb ≤
( ∫

�

um∗+1
) a+1

m∗+1
( ∫

�

v
b(m∗+1)

m∗−a

) m∗−a
m∗+1

≤ C
( ∫

�

|∇u|m
)(a+1)/m( ∫

�

v
b(m∗+1)

m∗−a

) m∗−a
m∗+1

≤ C
( ∫

�

|∇u|m
)(a+1)/m( ∫

�

vm∗+1
)b/(m∗+1)

≤ C
( ∫

�

|∇u|m
)(a+1)/m( ∫

�

|∇v|m
)b/m

,

where we have used the fact b(m∗ + 1)/(m∗ − a) ≤ m∗ + 1 (by assumption a + b ≤ m∗).
In turn,

∫
�

|∇u|m ≤ C
( ∫

�

|∇v|m
)b/α

.

Similarly, one has
∫

�

|∇v|m ≤ C
( ∫

�

|∇u|m
)c/δ

.

Combining the two inequalities together yields

1 ≤ C
(∫

�

|∇u|m
)β/αδ

,

since α, β, δ > 0 by (5.3). In turn, again, there exists r0 > 0 such that the equation
u = tF(u) has no solution in Br0 (0) − {0}, for all t ∈ [0, 1]. (Note that

∫
�

|∇u|m → 0 as
r = ‖u‖ → 0.)

Case (III). max{a, d} < m − 1, m ∈ (1, n) and max{a + b, c + d} > m∗. Rewrite
(5.2) in the form

∫
�

|∇w|m ≤ C
∫

�

wa′+1zb′
,

∫
�

|∇z|m ≤ C
∫

�

wc′
zd ′+1,

where u = wm/(e+m−1), v = zm/(f +m−1)

a′ = m(a + e)
e + m − 1

− 1 > 0, b′ = mb
f + m − 1

> 0,

and

c′ = mc
e + m − 1

> 0, d ′ = m(d + f )
f + m − 1

− 1 > 0

since e, f ≥ 1.
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We claim that one can choose suitable e, f ≥ 1 so that

a′ = m(a + e)
e + m − 1

− 1 < m − 1, d ′ = m(d + f )
f + m − 1

− 1 < m − 1, (5.4)

β ′ := b′c′ − α′δ′ = b′c′ − (m − 1 − a′)(m − 1 − d ′) > 0 (5.5)

and

max{a′ + b′, c′ + d ′} ≤ m∗. (5.6)

Indeed, direct computations show that (5.4) and (5.5) are equivalent to max{a, d} <

m − 1 and to β > 0, respectively, for any e, f > 0. To see (5.6), first fix f0 ≥ 1 such
that

m + bm
f0 + m − 1

< m∗ + 1,
(d + f0)m
f0 + m − 1

< m∗ + 1, (5.7)

which is equivalent to

b
f0 + m − 1

<
m

n − m
,

d + f0

f0 + m − 1
<

n
n − m

.

This is obviously possible by taking f0 ≥ 1 large. Next one simply chooses e0 ≥ 1 so
that

(a + e0)m
e0 + m − 1

+ bm
f0 + m − 1

< m∗ + 1,
(d + f0)m
f0 + m − 1

+ cm
e0 + m − 1

< m∗ + 1,

which is (5.6) with e0 and f0, and is again possible by taking e0 large since

(a + e)m
e + m − 1

→ m,
cm

e + m − 1
→ 0

as e → ∞, in view of (5.7). Now one readily applies the arguments of Case (II) to the
pair of (w, z) > 0, with the positive exponents a′, b′, c′, d ′ satisfying (5.4)-(5.6), to draw
the same conclusion as in Case (II). (Note that ‖(w, z)‖ → 0 as r = ‖u‖ → 0.)

Case (IV). max{a, d} < m − 1 and m ≥ n. Plainly, the arguments of Case (II) apply
(with slight modifications) since m∗ = ∞.

Therefore, Step 2 remains valid under the assumption β > 0 and the proof of
Theorem 1.1 is complete. �

The proofs of subsequent Theorems 1.2–1.4 are then essentially the same, by using
various estimates developed in Section 4, and are thus left to the reader.

Proof of Theorem 1.2. The proof is essentially the same as that of Theorem 1.1,
since again Theorem 4.1 applies under the assumptions of Theorem 1.2. �

Proof of Theorem 1.3. The proof is essentially the same as that of Theorem 1.1,
except we use the estimates Corollary 4.1 here. �
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Proof of Theorem 1.4. The proof is essentially the same as that of Theorem 1.1,
except we use the estimates Theorem 4.2 this time. �
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