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Abstract

The aim of this paper is to discuss the commutativity of a Banach algebra A via its derivations. In
particular, we prove that if A is a unital prime Banach algebra and A has a nonzero continuous linear
derivation d : A→ A such that either d((xy)m) − xmym or d((xy)m) − ym xm is in the centre of A for an
integer m = m(x, y) and sufficiently many x, y, then A is commutative. We give examples to illustrate the
scope of the main results and show that the hypotheses are not superfluous.
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Keywords and phrases: Banach algebra, derivation.

1. Introduction and results
This research has been motivated by the work of Yood [16]. Throughout, we let A
denote a Banach algebra over the complex field with identity e, Z(A) denote the centre
of A and M be a closed linear subspace of A. Recall that an algebra A is said to be
prime if for any a, b ∈ A, aAb = (0) implies a = 0 or b = 0, and A is semiprime if for
any a ∈ A, aAa = (0) implies a = 0. For any x, y ∈ A, the symbol [x, y] will denote
the commutator xy − yx. We shall use several times the readily established fact that if
the polynomial p(t) =

∑n
r=0 brtr ∈ A[t] lies in M for infinitely many values of the real

variable t, then each br lies in M.
A linear mapping d : A −→ A is said to be a derivation on A if d(xy) = d(x)y + x d(y)

holds for all x, y ∈ A. In [10, Theorem 2], Posner proved that if a prime ring R admits a
nonzero derivation d such that [d(x), x] ∈ Z(R) for all x ∈ R, then R is commutative. The
analogous result was obtained for automorphisms [9]. Many authors have generalised
Posner’s result in the setting of rings and algebras (see [2, 7, 11–13], where further
references can be found). Considerable attention has been paid to commutativity
theorems for rings and algebras (see, for example, [6, Ch. 3] and [3, Ch. 2]), where
again further references can be found. Our results on commutativity for Banach
algebras take a different direction.

In [4, 5], Herstein proved that a ring R is commutative if it has no nonzero
nilpotent ideal and there is a fixed integer n > 1 such that (xy)n = xnyn for all x, y ∈ R
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(see also [1]). In the case of Banach algebras, Yood [16] sharpened these results. More
precisely, he proved the following result:

Theorem 1.1. Suppose that there are nonempty open subsets G1 and G2 of A such that
for each x ∈G1 and y ∈G2 there is an integer n = n(x, y) > 1 where either (xy)n − xnyn

or (xy)n − ynxn lies in M. Then [x, y] ∈ M for all x, y ∈ A.

This result motivated us to prove the following theorems.

Theorem 1.2. Let A be a unital prime Banach algebra and d : A→ A be a nonzero
continuous linear derivation. Suppose that there are open subsets G1, G2 of A such
that either d((xy)m) − xmym ∈ Z(A) or d((xy)m) − ymxm ∈ Z(A) for each x ∈ G1 and
y ∈ G2 and an integer m = m(x, y) > 1. Then A is commutative.

Theorem 1.3. Let A be a unital prime Banach algebra and d : A→ A be a nonzero
continuous linear derivation. Suppose that there are open subsets G1, G2 of A such that
either d((xy)m) − d(xm)d(ym) ∈ Z(A) or d((xy)m) − d(ym)d(xm) ∈ Z(A) for each x ∈ G1

and y ∈ G2 and an integer m = m(x, y) > 1. Then A is commutative.

Theorem 1.4. Let A be a unital prime Banach algebra and d : A→ A be a nonzero
continuous linear derivation. Suppose that there is an open subset G1 of A such
that either d(xm) − xm ∈ Z(A) or d(xm) + xm ∈ Z(A) for each x ∈ G1 and an integer
m = m(x) > 1. Then A is commutative.

2. Proofs of the theorems

Proof of Theorem 1.2. Fix x ∈ G1. For each n we define the set Un = {y ∈ A |
d((xy)n) − xnyn < Z(A) and d((xy)n) − ynxn < Z(A)}. We claim that Un is open. To
show that Un is open we prove that its complement, Uc

n, is closed. For this, we take
a sequence (zk) ∈ Uc

n such that zk → z as k→∞ and prove that z ∈ Uc
n. Since zk ∈ Uc

n,
either

d((xzk)n) − xnzn
k ∈ Z(A) (2.1)

or

d((xzk)n) − zn
k xn ∈ Z(A). (2.2)

From (2.1), since d is continuous,

lim
k→∞

(d((xzk)n) − xnzn
k) = d

((
x lim

k→∞
zk

)n)
− xn lim

k→∞
zn

k = d((xz)n) − xnzn

is in Z(A) and, similarly, from (2.2), we see that d((xz)n) − znxn is in Z(A). This implies
that z ∈ Uc

n and so Uc
n is closed and Un is open.

By the Baire category theorem, if every Un is dense then their intersection is also
dense, which contradicts the existence of G2. Hence, there exist a positive integer r
such that Ur is not dense and a nonempty open set G3 in the complement of Ur such
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that either d((xy)r) − xryr ∈ Z(A) or d((xy)r) − yr xr ∈ Z(A) for all y ∈ G3. Take v0 ∈ G3
and w ∈ A. For sufficiently small real t, v0 + tw ∈ G3 and either

d((x(v0 + tw))r) − xr(v0 + tw)r ∈ Z(A) (2.3)

or

d((x(v0 + tw))r) − (v0 + tw)r xr ∈ Z(A). (2.4)

Thus at least one of (2.3) and (2.4), say (2.3), is valid for infinitely many t. The
expression d((x(v0 + tw))r) − xr(v0 + tw)r can be written as

d(Ar,0(x, v0,w)) − xrBr,0(v0,w)
+ d(Ar−1,1(x, v0,w)) − xrBr−1,1(v0,w)t
+ · · ·

+ d(A1,r−1(x, v0,w)) − xrB1,r−1(v0,w)tr−1

+ d(A0,r(x, v0,w)) − xrB0,r(v0,w)tr.

Let i, j be nonnegative integers. If i + j = r, then Ai, j(x, v0,w) is the sum of all terms
in which xv0 appears exactly i times and xw appears exactly j times in the expansion
of d(x(v0 + tw)r). Similarly, Bi, j(v0,w) is the sum of all terms in which v0 appears
exactly i times and w appears exactly j times in the expansion of (v0 + tw)r. The above
expression is a polynomial in t and the coefficient of tr is just d((xw)r) − xrwr. Hence
d((xw)r) − xrwr ∈ Z(A). We have therefore shown that, given x ∈G1, there is a positive
integer r depending on w such that for each w ∈ A either d((xw)r) − xrwr ∈ Z(A) or
d((xw)r) − wr xr ∈ Z(A).

Next, fix y ∈ A and for each positive integer k, set Vk = {v ∈ A | d((vy)k) − vkyk <
Z(A) and d((vy)k) − ykvk < Z(A)}. Each Vk is open (as shown above). By the Baire
category theorem, if each Vk is dense then so is their intersection, which contradicts
the existence of the open set G1. Hence there exist an integer m > 1 and a nonempty
open subset G4 in the complement of Vm. If x0 ∈ G4 and y ∈ A, then x0 + tu ∈ G4 for
all sufficiently small real t and either

d(((x0 + tu)y)m) − (x0 + tu)mym ∈ Z(A)

or
d(((x0 + tu)y)m) − ym(x0 + tu)m ∈ Z(A)

for each u ∈ A and x0 ∈ G4. Arguing as before, we see that either d((uy)m) − umym ∈

Z(A) or d((uy)m) − ymum ∈ Z(A) for each u ∈ A.
Now let S k, k > 1, be the set of y ∈ A such that for each w ∈ A either d((wy)k) −

wkyk ∈ Z(A) or d((wy)k) − ykwk ∈ Z(A). By what we have shown, the union of S k is A.
It is easily seen that each S k is closed. Again, by the Baire category theorem, some
S l, l > 1, must have a nonempty open subset G5. For z ∈ A, y0 ∈ G5 and all sufficiently
small real t, either

d((w(y0 + tz))l) − wl(y0 + tz)l ∈ Z(A)
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or
d((w(y0 + tz))l) − (y0 + tz)lwl ∈ Z(A).

By the same arguments as before, for each w, z ∈ A, either d((wz)l) − wlzl ∈ Z(A) or
d((wz)l) − zlwl ∈ Z(A). Since A is unital, for all real t, either

d(((e + tx)y)n) − (e + tx)nyn ∈ Z(A)

or
d(((e + tx)y)n) − yn(e + tx)n ∈ Z(A)

for all x, y ∈ A. Taking the coefficient of t in the expansion of the above equations, we
get either

d
(
xyn +

n−1∑
k=1

yk xyn−k
)
− nxyn ∈ Z(A) (2.5)

or

d
(
xyn +

n−1∑
k=1

yk xyn−k
)
− nynx ∈ Z(A) (2.6)

for all x, y ∈ A. Again, starting with d((y(e + tx))n) instead of d(((e + tx)y)n), we see
that either

d
(
ynx +

n−1∑
k=1

yk xyn−k
)
− nxyn ∈ Z(A) (2.7)

or

d
(
ynx +

n−1∑
k=1

yk xyn−k
)
− nynx ∈ Z(A) (2.8)

for all x, y ∈ A. Then at least one of the pairs of equations {(2.5), (2.7)}, {(2.5), (2.8)},
{(2.6), (2.7)} and {(2.6), (2.8)} must hold.

On combining the equations in these pairs, we get either d([x, yn]) ∈ Z(A) for all
x, y ∈ A or d([x, yn]) ± n[x, yn] ∈ Z(A) for all x, y ∈ A. Replacing y by e + ty in the
last expressions and using the same arguments as we have used above, we obtain
d([x, y]) ∈ Z(A) for all x, y ∈ A or d([x, y]) ± n[x, y] ∈ Z(A) for all x, y ∈ A.

If we assume that d([x, y]) ∈ Z(A) for all x, y ∈ A, then by [2, Theorem 2.2], since A
is prime, we conclude that A is commutative.

Suppose, instead, that

d([x, y]) − n[x, y] ∈ Z(A) for all x, y ∈ A.

This can be written as

[d([x, y]) − n[x, y], z] = 0 for all x, y, z ∈ A (2.9)
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which implies [d([x, y]), z] − n[[x, y], z] = 0 for all x, y, z ∈ A, that is,

[[d(x), y], z] + [[x, d(y)], z] − n[[x, y], z] = 0 for all x, y, z ∈ A.

Replacing y by [y,w] in the above expression,

[[d(x), [y,w]], z] + [[x, d([y,w])], z] − n[[x, [y,w]], z] = 0 for all w, x, y, z ∈ A,

that is, [[d(x), [y, w]], z] + [[x, d([y, w]) − n[y, w]], z] = 0 for all w, x, y, z ∈ A. An
application of (2.9) then yields [[d(x), [y,w]], z] = 0 for all w, x, y, z ∈ A, that is,

[d(x), [y,w]] ∈ Z(A) for all w, x, y ∈ A.

In view of [8, Theorem 2], we have either [y,w] ∈ Z(A) for all y,w ∈ A or A ⊆ Z(A). In
both cases, A must be commutative.

Finally, in a similar manner, we can prove the result for the case in which d([x, y]) +

n[x, y] ∈ Z(A) for all x, y ∈ A. This completes the proof of the theorem. �

The proof of Theorem 1.3 is the same as that of Theorem 1.2 and we omit the
details. The proof of Theorem 1.4 uses a simpler version of the same technique.

Proof of Theorem 1.4. First set Un = {x ∈ A | d(xn) − xn < Z(A) and d(xn) + xn <
Z(A)}. By applying the Baire category theorem to the sets Un we deduce, by reasoning
as above, that there is a positive integer r such that either d(yr) − yr ∈ Z(A) or
d(yr) + yr ∈ Z(A) for all y ∈ A. Since A is unital, then for infinitely many real t we
have either

d((e + ty)n) − (e + ty)n ∈ Z(A)

or
d((e + ty)n) − (e + ty)n ∈ Z(A)

for all y ∈ A. The coefficient of t in the above equations is d(y) − y or d(y) + y.
Hence, either d(y) − y ∈ Z(A) or d(y) + y ∈ Z(A) for all y ∈ A. If we suppose that
d(y) − y ∈ Z(A) for all y ∈ A then [d(y), z] = [y, z] for all y, z ∈ A. In particular, for
y = z,

[d(z), z] = 0 for all z ∈ A.

Hence, by Posner’s result [10], A is commutative. Replacing d = −d deals with the
alternative case. This proves the theorem.

The following example demonstrates that it is essential for A to be prime in the
hypotheses of Theorems 1.2 and 1.3 (in the case where A = G1 = G2).

Example 2.1. Let F be any field, and consider

A =


0 a12 a13
0 0 a23
0 0 0


∣∣∣∣∣∣∣∣ a12, a13, a23 ∈ F

 .
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Clearly, A is a Banach algebra under the norm ‖A‖ = maxk
∑3

j=1 |a jk| for all a jk ∈ F but
not prime. Define a map d : A −→ A by

d

0 a12 a13
0 0 a23
0 0 0

 =

0 0 a12
0 0 0
0 0 0

 .
Then it is straightforward to check that d is a nonzero continuous derivation on
A and, for n > 1, d((xy)n) − xnyn ∈ Z(A) or d((xy)n) − ynxn ∈ Z(A) and d((xy)n) −
d(xn)d(yn) ∈ Z(A) or d((xy)n) − d(yn)d(xn) ∈ Z(A) hold for all x, y ∈ A. However, A
is not commutative.

3. Applications

In this section we will discuss some applications of Theorem 1.2.

3.1. Let C be the field of complex numbers, let

M =

{(
a b
c d

) ∣∣∣∣∣∣ a, b, c, d ∈ C
}

be a noncommutative unital prime algebra of all 2 × 2 matrices over C with the usual
matrix addition, and define matrix multiplication as follows:

A ×K B = KAB for all A, B ∈ M where K =

(
λ 0
0 λ

)
and |λ| > 1.

For A = (α jk) ∈ M, define ‖A‖ = maxk
∑2

j=1 |α jk|. Then M is a normed linear space.
Further, define a map d : M → M by

d
(
a b
c d

)
=

(
0 −b
c 0

)
for all

(
a b
c d

)
∈ M.

Since M is finite-dimensional, it is straightforward to check that d is a nonzero
continuous linear derivation on M. Observe that

G1 =

{(
eit 0
0 e−it

) ∣∣∣∣∣∣ t ∈ R
}

and G2 =

{(
e−it 0
0 eit

) ∣∣∣∣∣∣ t ∈ R
}

are open subsets of M such that d((A ×K B)m) − Am ×K Bm ∈ Z(M) or d((A ×K B)m) −
Bm ×K Am ∈ Z(M) for all A ∈G1 and B ∈G2. Hence, it follows from Theorem 1.2 that
M is not a Banach algebra under the defined norm.

3.2. Define M, G1, G2 and matrix multiplication in the same way as above. Take the
Frobenius norm ‖A‖F on M defined by

‖A‖F =

( 2∑
i, j=1

|αi j|
2
)1/2

for all A = (αi j) ∈ M.

Then, M is a normed linear space under the defined norm. Next, let d : M→ M be the
inner derivation of M determined by e11 =

(1 0
0 0

)
, that is, d(A) = A ×K e11 − e11 ×K A for
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all A ∈ M. Since M is finite-dimensional, it is easily seen that d is a nonzero continuous
derivation on M. Also, for any A ∈ G1 and B ∈ G2, either d((A ×K B)m) − Am ×K Bm ∈

Z(M) or d((A ×K B)m) − Bm ×K Am ∈ Z(M). Hence, in view of Theorem 1.2, we
conclude that M cannot be made into a Banach algebra under the defined norm.
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