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1. Introduction

Groups for which the distributively generated near-ring generated by the
endomorphisms is in fact a ring are known as U-groups and are discussed in (3). R.
Faudree in (1) has given the only published examples of non-abelian JS-groups by
presenting defining relations for a family of p-groups. However, as shown in (3),
Faudree's group does not have the desired property when p = 2.

In this note, it is shown that most of the groups discussed by D. Jonah and M.
Konvisser in (2) are actually E-groups. These groups, described below in Section 2
are proved by Jonah and Konvisser to be such that all their automorphisms are
central. Here, it is shown that most of these groups are E-groups by proving that each
strict endomorphism (i.e. an endomorphism that is not an automorphism) has its image
in the centre of the group. Since one of the groups treated is a 2-group, this paper
provides the only published example of a non-abelian 2-group which is an E-group.

E-groups are also discussed in (4) and (5). However, no examples are given in
those papers.

2. The Groups of Jonah and Konvisser

The groups treated in (2) are described as follows. Let A = (Al5 A2) be a vector with
integer entries at least one of which is relatively prime to p. Then let Gx =
(aua2,bu b2) be the p-group of class 2 with the additional relations:

a\ = [au b{\, a\ = [a,, bK], where bk = b\*b&,

b\ = [a2, M d , b\ = [a2, b2], and [au a2] = [bu b2] = 1.

It is noted in (2) that G = Gx has order p8 and exponent p2, that Z(G) = G' =
([fli> b\\, [fl|, b2], [a2, b\], [a2, b2]) is elementary abelian of order p4, and that GM and Gx

are isomorphic if and only if /u. = fcA for some fc relatively prime to p. Thus, for each
prime p, there are p + 1 non-isomorphic groups given as A varies over the set {(0,1),
(1,0), (1 ,1) , . . . , ( l , p - 1)}. However, there is some difficulty with the defining rela-
tions when A = (1,0) since a\ = a\ so that Gx does not have order p8. Therefore, that
case will not be considered in this paper.

If p = 2 and A =(1,1), then application of the defining relations shows that
(a1a2&2)?= 1. Thus G2* G'. But Theorem 2 of (3) says that, in our context, G2 = G'
is a necessary condition for G to be an E-group. Therefore, when p = 2, the case of
A = (1,1) will also not be considered in this paper.
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In (2) it is noted that the normal subgroups A = {a\, a2, Z(G)) and B =
{b\, b2, Z(G)) are the only abelian subgroups of order p2 over the centre. Furthermore,
A" =£[x, G] for some x in A while there is no y in B such that B" < [y, G], For F a
p-group as given in (1) by Faudree, Lemma 6 of (1) implies that the centralisers CF(a2)
and CF(ai) are the only abelian subgroups of order p2 over the centre. Thus, if F and
G are to be isomorphic, the two centralisers in F must correspond, in some order, to
A and B in G. From Lemma 6 we also have that any element of order p2 in CF(a2) has
the form a2a% and an element of order p2 in CF(a3) has the form a\a\a\ with at least
one of r and s relatively prime to p. But, the defining relations in F indicate there is
no y in CF(a2) such that (af, al) = (CF(a2))

p «[y, F] and no x in CF(a}) such that
(ap,apaP) = (CF(a3)y ^[x, F]. Hence F and G are not isomorphic since neither
centraliser of order p6 in F can correspond to A in G.

3. The Strict Endomorphisms

The groups described in Section 2 for which p is odd and A is in {(0,1), (1,1),
(1 ,2 ) , . . . , (1, p - 1)} or p = 2 and A = (0,1) will be referred to as JK-groups.

Lemma 1. For any JK-group, Z{G) = G' = G" = UP(G), where UP(G) is the set of
elements whose order divides p.

Proof. From the defining relations it is immediate that G' = (ap, ap,bp,bp) = G",
G'« Z{G), and G' =£ UP(G) with \G\ = p* and \G'\ = p\ If \Z(G)\ ^ p5, then \GIZ(G)\«
p\ But GIZ(G) is generated by {axZ{G), a2Z(G), bxZ{G), b2Z(G)}. So two generators
of G are congruent mod Z(G) and G/Z(G) is generated by at most three elements.
Thus |G'|=sp3, a contradiction. Hence Z(G) = G'. Also, for x and y in G, (xyf =
jCypty, x]p(p"1)/2 by Proposition VI.l.k(4) of (6). Since, for odd p, G' has exponent p, it
follows that (xyY = jc"y". Then 1 = (a\as

2b'MY = afoa2pfcip*2p implies p divides each
of r, s, t, u so that a\a\b\bl is in Gp. Hence UP(G) = G" for odd p. For p = 2we show
directly from the generating relations that G2 = U2(G). Let g = aT^pbVbp be an
element of order 2 in G. Then e = g2 = a2™i<»+«i)fl,|(m2+«2™I>fc2«I<i-».2)fo2<«2-i-«2W.2+»Im̂  s i n c e f

has order 2, each exponent in g2 must be divisible by 4. If m2 is odd, then the
exponent of a2 shows that n2 and m\ must also be odd. Then, from the exponent of au

n\ must be odd. But now, the b2 exponent is not divisible by 4. If m2 is even, then m\,
Hi, and n2 must also be even. Hence U2{G) =£ G2 and the Lemma is proved.

Lemma 2. Let m\, m2, nx, n2, Xu A2 be integers modulo p and k2
x be the inverse of

A2 in the field of order p. Then the matrix A has rank 2 or greater over the field of order p if
at least one o / % m2, nu n2 is not congruent to 0 modulo p.

A =

— A]A2 m2

0
- H i

AiAj'n,

A2 ^ 2

0
0

-Aj'n,

0
m.

-n2
0

0
— /Wj + /W2

^2

— /I2

https://doi.org/10.1017/S0013091500003606 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003606


A NON-ABELIAN 2-GROUP 59

Proof. If either mt or m2^0(mod. p), the first two rows of A are linearly
independent. If either n\ or n2^0(mod. p), the last two rows of A are linearly
independent.

Theorem. Any JK-group is an E-group.

Proof. In (2) it is shown that all automorphisms of JK-groups are central. The
theorem will be established if it is demonstrated that any strict endomorphism of one
of these groups has its image in the centre of the group. This will be shown by arguing
as was done in Lemma 5 of (1).

Let 0 be a strict endomorphism of G. Then (h)OGG' for some h&G' and
h = aVa^bT'b?2 with at least one exponent ^0(mod p). Also, ([c, h])0 =
[(c)0, (h)6] = 1 so that

([c, h]: c G {ai, a2, bu b2}) =£ Ker 0. Note that

[fl,, h] = (If-rP»i»!Sflp
1»ij

[a2, h] =

[b2, h] = apX>^'n'a2
pxr'''b2'"

1\

The matrix of the powers of ap, a\, bp, ftf in (*) is A. Hence |Ker 6 (1 G'\^p2 and
there exists {A,: 1 =£ i =£ 4} such that G = \hu h2, hJy h4) and (hp)6 = (/if)6 = 1. Thus for
i = l or 2, (hJOGG' and ((G)0)' = ((hJO, (h4)0)'. Hence \(G')0\ = |((G)0)'| ^ p and
|Ker 6 n G'\ s=p3. We can then additionally assume that (hp)0 = 1 and (hjd e G'. But
now, ((G)0)' = (1). Hence (G)0 is abelian, G' ^ Ker 0 and (G)0 « C = Z(G).
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