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Introduction. In this paper, we give a connection between incidence 
matrices of affine resolvable balanced incomplete block designs and rectangular 
integer matrices subject to certain arithmetical conditions. The definition of 
these terms can be found in paper II of this series or in (2). For some necessary 
conditions on the parameters of affine resolvable balanced incomplete block 
designs and their properties see (2). 

We begin with a lemma. 

LEMMA. Let A be a v X b matrix and 

(3.1) A'A = 

Bn Bi2 Bu 
B21 B22 B2Z 

Br\ BT2 BT% 

B\r 

B%T 

Brr 

where Bu is an nt X nt matrix with kt down its main diagonal and at 9^ kt 

elsewhere (i = 1, 2 , . . . , r) and Btj is an ntX n3 matrix with c 7^ 0 everywhere 
(i 7e j ; i9 J = 1, 2, . . . , r; E L i nt = 6). If b > v + r — 1 then b = v + r — 1 
and cnt = kt + (nt — l) au (i = 1, . . . , r). 

Proof. We use the notations introduced in the proof of Theorem 2 of paper 
II. 

Write di = kt — at and mt = kt + (nt — l)dt. 
In view of the special pattern of the matrix A 'A, it is not difficult to deter­

mine its rank. For this purpose, subtract its iV^th row from its (iV*_i + l)-th, 
(iV<_i + 2)-th, . . . , (iVf-i + »<_i)-th rows, (i = 1, 2, . . . , r). After these 
operations, add the (N^ + l)-th, (Nt-i + 2)-th, . . . , (iV,_i + n^-th 
columns to the iV^th column (i = 1, 2, . . . , r). Then on permuting some of 
its rows and columns it appears as 
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(3.2) 

di 

dx 

di 

dT 

dr 

dT 

mi 
en i 

cti2 cn% 
m2 cnz 

cni cri2 cnz 

cnT 

cnr 

mr 

where the unwri t ten elements in the 

£ (nt-l) = b-r 
1 = 1 

first rows and columns are all 0. As dt 9^ 0, the rank of this mat r ix is b — r 
plus the rank of the submatr ix a t the lower corner. As the operat ions per­
formed have not changed the rank of A 'A, the r ank of this new matr ix equals 
the rank of A 'A = rank of A < v. Now remembering t h a t c ^ O , the rank 
of the submatr ix is seen to be a t least one. By (i) of the hypothesis we imme­
diately infer t h a t the rank of the submatr ix is exactly one and then b = v + 
r — 1. Considering the submatr ix again, we obta in the relation 

cnt = mt = dt + niât (i = 1, 2, . . . , r ) . 

This completes the proof. 

T H E O R E M 3. Let A be a v X b integer matrix such that 

Bu Bu . . . B\T 

(3.3) A'A = I B21 B22 . . . B2r 

BT\ Br Brr 
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where Bu is an nt X nt matrix with kt down the main diagonal, and at else­
where (i = 1, 2, . . . , r) and Btj is an n{ X nj matrix with c ?* 0 everywhere 
(i 7e j\i,j — 1, 2, . . . , r; Xï=i n% = b. Moreover, suppose that 

(i) b>v + r -1, 
(ii) v>l(8- D(Xg)"1 9*0, 

(iii) 1 < q(r - \)l-\ 
(iv) qfv < b, 
(v) all the (ki — aj)'s are odd, 

where 
T 

Z is /&e least common multiple of the (ki — a^ 's , / > 0, and 

lb2(Tl(b - l ) - 1 = f2q\-\ 

f, q, X denoting integers, r > 0, X > 0, and q being square-free and (r2, q\) = 1. 
Then either A is the incidence matrix of an affine resolvable b.i.b. design or 

becomes one when some of its rows are multiplied by —1. 

Proof. Use the notations given in the proofs of Theorem 2 and the above 
lemma. Put 

Nt Nt 

S ai* = riti S ai9ajv = rtJt (i^j), 
v^Nt-l+l v=Nt-1 + 1 

ht = (c - a,)* (i,j = 1, 2, . . . , v; t = 1, 2, . . . , r). 

As by (v) of the hypothesis dt 9e 0, we infer, with the aid of the lemma, 
that 

b = v + r — 1, c = mt nt~
l, 

(3.4) 
hr2 = (c - au-1 = nt dc1 > 0 (i = 1, 2, . . . , r). 

It follows that ô > r. 
To prove our theorem, we augment A by introducing r new row vectors 

at its bottom and one column vector on its right-hand side. The ith row of 
the new row vectors is 

(3.5) (0 ,0 , . . . ,0,huhi}... ,hiy0,0,... ,0) , 

where the elements at the (iVz_i + l)-th, (iV*_i + 2)-th, . . . , iV^th positions 
are all ht (i = 1, 2, . . . , r). The new column vector has 0 in its first v posi­
tions and then c/h\, c/h2, . . . , c/hr. 

Let the square matrix thus obtained be B. Then, using the hypothesis, 
we see that the off-diagonal elements of B'B are equal to c while the j th 
diagonal element is 

kt - at + c > c + 1 when i W i <j<Nf (i = 1 , 2 , . . . , r). 
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It is cb T£ 0 when j = b + 1. Hence \B'B\ = c52 ̂  0. So for some column 
vector £, gB = (c, c, . . . , c). Write the elements of £ as Xi, x2, . . . , x», xv+ï hlf 

xv+% ^2, . . . , ^»+r ^r- Then we see that these x's are rational numbers. 
Let A0 be the (b + 2) X (b + 2) matrix obtained by adjoining £ to the 

right of B and a (6 + 2)-vector (( —c)*, ( —c)*, . . . , ( —c)*) at its bottom. 
Then 4̂o has the form 

(3.6) Ao = 

i l l 

hi h i . . . hi 

AT 

hi h i . . . hi 

0 Xi 

0 x2 

ô xc 

c/&i Xp+i hi 

cA2 Xv+2 hi 

. . . rlr flr . . . flT CIrlf Xv+T rlf 

L(-c)*(-c)* (-c)* (-c)*J 
where the empty spaces are to be filled by 0's. 

I t is easy to see that all the x's above can be assumed to be non-negative, 
if necessary by multiplying some of the rows of A by — 1. Thus if xt is negative 
for some i (1 < i < v), we multiply the ith row of A by — 1. If for some 
i (1 < v < r), xv+i is negative, we interpret the corresponding ht as the 
negative square root of c — at. The matrix thus modified satisfies the hypo­
thesis of the theorem. Without changing the notation, we shall suppose that 
A is the modified matrix, and all the x / s are non-negative. 

By (3.3) the scalar product of any two of the first b + 1 columns of A0 

is 0. I t is now easily seen that the column vectors of A0 are linearly inde­
pendent in the field of complex numbers. So \A0\

2 = A0
f A0 ^ 0. But A0' A0 

is a diagonal matrix D with di, di, . . . , di\ di, di, . . . , di; dT1 dT7 . . . , dr\ u, w 
as its elements, where 

(3.7) u = 22 c2 h 2 7 - 2 
i C = c(Ô - 1) J* 0, 

(3.8) w = ]C xi + S * 
2 2 

c j * 0. 

Now from AoD~xAo = / , where i* is the identity matrix, comparing ele­
ments on both sides, we derive 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

rndr1 + r^dc1 + 

run + rij2 dr1 + 

sndr1 + suae1 + 

+ rir dr~
l + Xi2w = 1 (i = 1, 2, . 

. + rijr dr~
l + xt Xj w~l = 0 

(i ^J'JJ = 1,2, . 

+ s*r d r
_1 + xt w~l — 0 (i = 1, 2, . 

&t Wi d*-1 + cu~l ht~
l + xp+i hi w 0 (* = 1,2, 

, « 0 , 

, r ) , 

https://doi.org/10.4153/CJM-1966-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-003-7


COMBINATORIAL CONFIGURATIONS 13 

(3.13) —cnidr1 — cn^dr1 — . . . — cnrdr~
l — cur1 — cw~l = 1. 

From (3.13) and (3.7) and the hypothesis, one obtains 

(3.14) w-1 = è^c-^l - ô)-1 = -r2q(l\)-\ 

From (3.12), (3.4), (3.7), and (3.14), we obtain 

(3.15) xv+i = c r 1 ht
2 (i = 1, 2, . . . , r). 

Multiplying (3.9) by the least common multiple I of the d/s, we see that 
for each iy —xflw"1 is an integer, i.e. Xi2r2q\~l is an integer by (3.14). As 
q is square-free, we must have rxt = yit where yt is an integer (i = 1, 2, . . , v). 
Also multiplying (3.11) by /, we see that 

— Xi lw~l = xt f2q\~l = ji rq\~l 

is also an integer. By hypothesis (rq, X) = 1, so \\yt and thus xt = \Zi(r)~l, 
where zt is an integer (i = 1, 2, . . . , v). 

Moreover, no xt can be 0, for then we can derive a contradiction from 
(3.9) and (3.11) as r{j = stJ (mod 2) and dt = 1 (mod 2), exactly as in the 
proof of Theorem 1. 

Now from (3.8), (3.15), (3.7), and (3.14), we have 

(3.16) X) Xi = w + c(l - Ô"1) = c(l - ô ) r 2 + c(l - Ô"1) 
i = i 

and so 
c(d - 1 ) V 2 = (5 - lVHfq)-1 

(3.17) S «i1 = (8 - l^X-Y"1 as «i = \zt r \ 
i= i 

As the Zi's are non-zero integers, (3.17) in conjunction with (ii) of the 
hypothesis gives zt

2 = 1 (i = 1, 2, . . . , v) and l(b — l)(Xg) -1 = v. Thus 
r^i = X, as the x / s are non-negative by virtue of our modification. 

As the scalar product of the last column vector of A0 with the others is 
0, it now follows from (3.6) and (3.15) that 
(3.18) each column sum of A = (-co-1 + c)fX_1 = c(l — Sr^fX"1 = k, say. 

Subtracting (3.11) from (3.9) we obtain, using (3.14), 

T 

(3.19) £ (r„ - stud,-1 = 1 - ^ V 1 + xt w'1 = 1 + Xql'1 - rql~\ 
3=1 

As rtj > Sij, (3.19) together with (iii) of the hypothesis gives 1 = (f— X)̂ /""1 

and rtj = stj (i = 1 , 2 , . . . , v;j = 1, 2, . . . , r). From this, we immediately 
derive the useful fact that the elements of A are equal to 1 or 0. 

Summing up (3.11) over i and using (3.18), we obtain 

(3.20) 2 kfiid'1 = -J2 XiW-1 = (XiOCfVKJX)""1 = rvql~\ 
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i.e., 
T 

(3.21) X) ntikdr1 - 1) = rvqr1 - b. 

As the at s are non-negative integers and dt = kt — at = k — « * < & , the 
terms on the left are non-negative; (3.21) and (iv) of the hypothesis enable 
us to deduce that rvql~l = b and dt = k for i = 1, 2, . . . , r and then at — 0 
(i = 1, 2, . . . , r). Consequently, mt = k and from (3.4) all the w/s are equal, 
to w say, and then nc = k. Also I = k, nr = b, and 

r 

5 = ^ c(c — «i)"1 = r. 

From (3.10) it follows now that the scalar product of any two rows of A is 

(3.22) -XtXjkw-1 = \2r~2{r2qk){l\)-1 = \q. 

Next consider the quantity 

Clearly it is equal to (f* — £;)
2, where ^ and £; are respectively the sums 

of the column vectors of Ai and A3-. Now £*2 = £ / = w^ and n£* J;- = w2^. 
Hence s„* = 5„, say (̂  = 1, 2, . . . , v\ i = 1, 2, . . . , r). 

Further, no sv can be zero. If possible, let Si = 0, without loss of gener­
ality. Then all the elements in the first row of A are zero, requiring its scalar 
product with the other rows to be zero and contradicting (3.22). It therefore 
follows that sv = 1 (v = 1, 2, . . . , v). This means that every row of A t con­
tains just one 1 and the rest of the elements are 0. Consequently any row 
sum of A is r. 

Remembering that / = k, 5 = r, zt
2 = 1, we obtain, from (3.17), 

nk = v = (r - l)k(\q)-\ 

when n\(r — 1). One also has 

(3.23) Wc-1^ - I )" 1 = kr2(k(r - l ) ) " 1 n = r2(r - 1)-*» = r2q\~\ 

But as 1 = (r r — 1) = (r2, r — 1) = (r2 (r — l)/n) we infer by virtue of 
our assumption that r = r, q = 1, n\ = (r — 1). So the scalar product of 
any two rows of A is Xq = X. Hence A is the incidence matrix of an affine 
resolvable b.i.b. design with the parameters v = nk, b = nr, r, k, X with 
b = v + r — 1. This completes the proof. 

We now show by examples that the conditions of the theorem cannot be 
relaxed. Let 

[ 2 - 2 0 0 0 0 "1 
0 0 2 - 2 0 0 
0 0 0 0 2 - 2 " 

| l 1 1 1 1 1 
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Here v = 4, ft = 6, r = 3, Wi = n% = w3 = 2, k\ = k% = kz = 5, ai = «2 = 
a3 = - 3 , di = d2 = d* = 8, / = 8, c = 1, 5 = f, r = 3, q = - 2 , X = 1. All 
the conditions of the theorem are satisfied except (iii) and (v). Clearly A 
cannot be the incidence matrix of a b.i.b. design. 

Consider another example. From each element of the existent incidence 
matrix of an affine resolvable b.i.b. design with v = 27, ft = 39, r = 13, 
k = 9, X = 4, subtract 1. Let the matrix thus obtained be A. For this matrix, 
we have v = 27, b = 39, r = 13, », = 13, kt = 18, a, = 9, dt = 9, Z = 9, 
c = 12, 5 = 52, r = 26, q = 1, X = 17. So all the conditions of the theorem 
hold except (iv). I t is easy to see that A or its modification cannot be the 
incidence matrix of any affine resolvable b.i.b. design. 

THEOREM 4. Let A be an integer matrix such that 

A'A = 
Bn Bu . . S i r 
JB21 Bï2 • • ^ 2 r 

Bri BT2 . . £ r r 

where Bu are nt X nt matrices with ki down the main diagonal and at ?* k% 

elsewhere (i = 1, 2, . . . , r) and Bfj is an w{ X nj matrix with c ^ 0 every­
where (i 7* j ; i, j = 1, 2, . . . , r; £ ï - i (», — ft). 

Moreover, assume that 
(i) ft>t, + r - 1; 

(ii) kj + (nj — ï)cùj > kt + (nt — l)a< if nt > nf, 
(iii) Zï-iûfi > 0; 
(iv) a£ Zm5̂  /ar some &̂ , say ku ki, n\ < v; 
(v) £/ze square of the length of any row vector of A is odd. 

Then either A is the incidence matrix of an affine resolvable b.i.b. design or 
becomes one when some of its rows are multiplied by — 1. 

Proof. We use the notations of the proofs of Theorems 2 and 3 and the 
lemma. Nore also that the lemma can be utilized in this proof. 

As before we have 

2 _ (svi — svj) — (£j — %j) , 

where £* and %j are the sums of the columns of A t and Aj respectively. Now 
by the hypothesis of this theorem 

£z2 = (ki + («< — l)at)ni = mtnu £;-
2 = m, «,, 

and 
£i £j = cnt nj = mt n^ = mj nt 

by virtue of the lemma. Consequently, we have by our hypothesis, 
V 

(3.24) ] £ (svi — svj)
2 = WtWj + mj n^ — min^ — mjnt 

y = l 

= (m< — mf){ni — nf) < 0. 

https://doi.org/10.4153/CJM-1966-003-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-003-7


16 KULENDRA N. MAJINDAR 

This relation implies that nt = n, say, and svi = sv, say (i = 1, 2, . . . , r). 
Furthermore, no sv can be zero; otherwise we can derive a contradiction from 
(v) of our hypothesis exactly as in the proof of Theorem 1 of paper I. 

Next, by (iv) of the hypothesis, 
n n n 

(3.25) ^ aXv
2 + X a2v

2 + . . . + ] £ a J = ki ni = h n < v. 
v=l v=l v—\ 

Now none of the v sums on the left can be zero. For if, say, the first one vanishes, 
then 

n n 

(3.26) 0 = E '&u = L <*i> = ^1. 

and this cannot be true. Consequently, (3.25) holds with the equality sign 
and each sum on the left is one. This implies that each row of A\ contains 
precisely one non-zero element. This element can be 1 or — 1 . Suppose in 
the ith row of A i it is — 1. Then all the row sums of the ith rows of A2l Az, 
. . . , Ar are also —1 by what we have already proved. Consequently, the ith 
row sum of A is negative. Multiplying all the rows of A, whose sums are 
negative, by — 1 , we can make all the row sums of A non-negative and simul­
taneously make all the non-zero elements of A\ equal to 1. If initially some 
of the row sums of A were negative, this modification will be necessary; 
otherwise not. We show that A thus modified is an incidence matrix of an 
affine resolvable b.i.b. design. Clearly the modified matrix satisfies all the 
conditions of the theorem. Without changing notation we shall henceforth 
suppose that A itself is the modified matrix. 

We now readily obtain sv = 1 (v = 1 ,2 , . . . , ? / ) . Also ai = 0, Wj = kt = kt 

say, and then by the lemma, c = k/n. Considering the scalar product of any 
column vector of Ai (i = 2, 3, 4, . . . , r) with the sum of column vectors 
of A i, we conclude that the sum of the elements of each column vector of A 
is equal to en = k. Further, by the lemma, kt + (n — l)at = ra* = mi = k 
(i = 1, 2, . . . , r). But by our hypothesis and what we have just shown, we 
have 

V V 

(3.27) *, = £ e , / > £ o»> = *. Nt-1<j<Nt (i = 1,2 r). 

As ki — k > 0, we must have at < 0 (i = 1, 2, 3, 4, . . . , r). But this, in 
conjunction with (iii) of the hypothesis, implies that at = 0 for all i, and 
thus ki = dt = k for i = 1, 2, . . . , r. This in its turn implies that the elements 
of each column vector of A are not different from 0 and 1. Consequently, 
A is a 0-1 matrix. I t now follows that each row sum of A is r. That the scalar 
product of any two of its rows is a non-zero constant follows from the relations 
(3.11) and (3.10) in the proof of the preceding theorem, when we use the facts 
proved above that dt = k and 

r 

X) stj = r (i = 1,2, . . . ,v). 
3=1 
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These make the xt's equal in (3.10), and then (3.11) gives the constancy of 
the scalar product. Hence the (modified) v X (v + r — 1) matrix A is the 
incidence matrix of an affine resolvable b.i.b. design. 

Acknowledgment. The three papers in this series form part of a Ph.D. 
dissertation (submitted to Purdue University). 
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