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The matrix group recognition project is a worldwide effort to produce efficient
algorithms for working with arbitrary matrix groups over finite fields (see [3, 6]). Such
groups are potentially very large in comparison to the input length, and dealing with
them using deterministic methods is impractical.

When a generating set for a group is input into a computer, a constructive
recognition algorithm names the group and finds an efficient mapping between the
input generators and a set of ‘standard generators’. This allows various important
questions to be answered quickly. Constructive recognition is a major natural goal in
computational group theory.

To recognise an arbitrary group, there are two tasks to perform. The first is to
decompose the group into smaller components if possible, and work recursively. The
second is to deal with irreducible cases, which in this case are the finite simple groups.

This paper addresses constructive recognition of matrix groups from ‘both ends’:
on the one hand, we give an improved analysis of the Norton irreducibility test, part of
the MEAT-AXE algorithm (see [1]), by providing a lower bound of the form a1 − a2q−bc

for the proportion of primary cyclic matrices in M(c, qb), where a1, a2 are constants
depending only on q, b. To achieve this, we generalise the Kung–Stong cycle index
(see [2, 7]) to compute a generating function for the proportion.

On the other hand, we solve a particular family of base cases for the constructive
recognition recursion, by extending the work of Magaard et al. [4] to provide a
Las Vegas algorithm for constructive recognition of classical groups in irreducible
representations of moderate degree. When the degree of the representation is large,
existing black-box methods are effective. On the other hand, when the degree is equal
to the natural degree, there are specific methods to address the problem.
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The algorithms presented in this paper address the middle ground: working
algorithms dealing with the case d < n ≤ d2, where d is the natural degree, are
presented, analysed and implemented in GAP.

We present a Las Vegas algorithm to rewrite elements of a classical group over Fq,
represented as an irreducible subgroup of GL(n, q) (with exceptions in some small
cases), as elements of GL(d, q), as follows.

(i) The procedure Initialise, which must be run once to set up a data structure,
is a Las Vegas algorithm with complexity

O(ξHd2 log2 q log ε−1

+ ρq(d9 log d log log d log q + d8 log d log log d log3 q log ε−1)),

where ξH is the cost of choosing a random element of H, ρq is the cost of a field
operation in Fq and ε is an acceptable probability of failure supplied by the user.

(ii) The procedure FindImage, which computes the image of g in a representation
of natural degree d, is a Las Vegas algorithm with complexity

O((ξH + ρqd8 log d log log d log q) log ε−1).

Since n = O(d2), the efficiency of these algorithms in terms of the input length
N = n2 log q is of the order O(N9/2) and O(N4), respectively. To analyse these
algorithms, we use the Quokka theory of Niemeyer and Praeger [5], which we also
extend to deal with sets of matrices which may be singular, and apply this new theory
to a second count of primary cyclic matrices.
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