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SUMMARY

From the available electrophoretic data, it is clear that haplodiploid
insects have a much lower level of genetic variability than diploid insects,
a difference that is only partially explained by the social structure of some
haplodiploid species. The data comparing X-linked genes and autosomal
genes in the same species is much more sparse and little can be inferred
from it. This data is compared with theoretical analyses of X-linked genes
and genes in haplodiploids. (The theoretical population genetics of
X-linked genes and genes in haplodiploids are identical.) X-linked genes
under directional selection will be lost or fixed more quickly than
autosomal genes as selection acts more directly on X-linked genes and
the effective population size is smaller. However, deleterious disease
genes, maintained by mutation pressure, will give higher disease incidences
at X-linked loci and hence rare mutants are easier to detect at X-linked
loci. Considering the forces which can maintain balanced polymorphisms,
there are much stronger restrictions on the fitness parameters at X-linked
loci than at autosomal loci if genetic variability is to be maintained, and
thus fewer polymorphic loci are to be expected on the X-chromosome and
in haplodiploids. However, the mutation-random drift hypothesis also
leads to the expectation of lower heterozygosity due to the decrease in
effective population size. Thus the theoretical results fit in with the data
but it is still subject to argument whether selection or mutation-random
drift are maintaining most of the genetic variability at X-linked genes
and genes in haplodiploids.

1. INTRODUCTION
The study of X-linked genes and genes in haplodiploid insects has been a

neglected area until relatively recently. However, much more data is now being
collected, particularly on haplodiploids, on levels of genetic variability as measured
by electrophoresis (Berkelhammer (1983); Lester & Selander (1979); Cooper et al.
(1979)). Haplodiploid insects are of particular interest due to the occurrence of a
complex social system in certain species and the sex-ratio distortion that can also
occur in them. (Virtually all haplodiploid insects are hymenoptera, e.g. bees, wasps
and ants.) Further, in dioecious diploid species with a chromosomal sex-determining
mechanism, the X-chromosome can form a substantial part of the genome (e.g.
in Drosophila robusta, 38 % of the euchromatin is on the X-chromosome, Carson
(1955)) and thus many genes may be on the X-chromosome. Thus it is of
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importance to look at X-linked genes and genes in haplodiploids and to characterise
the similarities and differences from autosomal genes in diploids.

In this paper, I shall first discuss the experimental results and then look at
various theoretical results to see how the two fit together. However, it is first
necessary to define the system under consideration. The crucial property about
X-linked genes and genes in haplodiploids is that one sex, usually the males, has
only one copy of the gene (received from the female parent if males) whereas the
other sex has two copies, one from each parent. In haplodiploids, this is achieved
because the males develop from unfertilized eggs. Most species with an X- Y sex
determining system have XY males, but certain species (e.g. birds and moths) have
XY females whose single copy of the JC-chromosome comes from their paternal
parent. For simplicity, I shall assume the males to be the heterogametic sex and
thus for a gene with two alleles, Ax and A2, we shall have the following genotypes:

Females Males

l^^l -^\ 2 -^2 2 1 2

Jf-linked genes and genes in haplodiploids have the same method of transmission.
The Y-chromosome generally does not have genes in common with the X-
chromosome and there is generally no crossing over between the X and Y. Thus
similar results should apply to both X-linked genes and genes in haplodiploids.

2. EXPERIMENTAL RESULTS

Most of the data on genetic variability at X-linked genes and in haplo-diploids
have been obtained from looking at the electrophoretic analysis of protein
variability. The simplest summary measure of genetic variability to use is H, the
average proportion of heterozygous loci per female within a population. In most
of the data between 15 and 20 loci have been studied for each individual. Some
authors have also looked at the proportion of polymorphic loci in a population.
However, this is more affected by small sample sizes or small population sizes than
H and different authors have used different definitions as to what constitutes a
polymorphic locus, (e.g. frequency of common allele = P < 095 or < O99). Thus
this measure is a more difficult one to use when comparing different authors' work
and I shall concentrate on H.

Some average values for H from haplodiploid insects and other species is given
in Table 1 along with between species variation in H. The figures for diploid
organisms are calculated from various loci, a proportion of which will be X-linked.
I t is clear from the table that haplodiploid insects have much lower mean
heterozygosities than other insects. However, the difference may not necessarily
be completely due to the haplodiploidy but to other differences between haplodiploid
hymenoptera and diploid insects, as the mean heterozygosity for haplodiploids is
only marginally less than the mean heterozygosity in mammals. Berkelhammer
(1983) investigated whether the social nature of hymenoptera was a cause of the
difference. 90% of hymenopteran species are actually solitary. However, the social
species have been investigated much more so that 70 % of the available data is from
these species. Berkelhammer (1983) found that primitive eusocial species (i.e. those
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Table 1. Summary of heterozygosity values (H)

323

Category

Haplodiploids
(all hymenoptera)t
Solitary")"
Primitively eusocialt
Advanced eusocialf

DrosophilaJ
Other diploid inseotsj
Non-insect invertebrates ||
Vertebrates ||

No. of
species

51

18
9

24
40
17
13
71

Mean
heterozygosity (S.E.)

0037 (0-004)

0039 (0006)
0011 (0006)
0045 (0005)
0137 (0-008)
0112(0022)
0102 (0-021)
0-050 (0004)

S.D. otH*

0027

0026
0018
0025
0053
0089
0076
0035

* Standard deviation of H between species.
f Berkelhammer (1983).
% Ward (1980).
|| Powell (1975).

social species with little morphological difference between queens and workers and
relatively little behavioural domination of queens over workers) had significantly
smaller mean heterozygosity than the solitary species or advanced eusocial species
(e.g. ants). He argued that the primitive eusocial species are likely to have evolved
a social system relatively recently and that a high level of inbreeding considerably
helps the evolution of eusociality. However, the solitary species still have much
lower mean heterozygosity than other diploid insects, suggesting that the haplo-
diploid system is causing a difference separately from the social structure. Table 1
also shows that the between species variation in heterozygosity seems to increase
with the mean value and hence is lower in haplodiploids.

The available data on X-linked genes are much more limited. A summary was
given by Cooper et al. (1979). In man, they found little evidence of any difference
in genetic variability between X-linked genes and autosomal genes but the amount
of data was small and the loci studied were not necessarily randomly chosen over
the genome. In McKusick's (1975) list of 1124 human gene loci, 93 (81 %) are on
the X-chromosome, whereas the X-chromosome forms only about 5% of the
genome. Cooper et al. (1979) suggested that this excess of loci on the X-chromosome
was because an .X-linked gene is easier to detect than an autosomal recessive.
Cooper et al. (1979) also discussed Drosophila data from Prakash, Lewontin &
Hubby (1969) and Prakash (1973, 1977a, b). They found proportionally less
polymorphic loci on the X-chromosome (23%) than you would expect from the
relative size of the X-chromosome to the whole genome (38%) but again the
selection of loci was probably far from random. The mean proportion of hetero-
zygotes at polymorphic loci for 3 Drosophila species were also given by Cooper et al.
(1979) (see Table 2). These showed little evidence of a difference between
X-linked and autosomal loci.

Finally, Cooper et al. (1979) gave some data from ten species of Kangaroos and
wallabies. Kangaroos and wallabies are of special interest due to their method of
dosage compensation. Various methods of dosage compensation exist to try to
equalize the effect of hemizygotes in the males with the equivalent homozygotes
in the females. In most mammals, this is done by random X-inactivation in cells
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Table 2. Mean proportion of heterozygotes at polymorphic ^.-linked and autosomal
loci in three species of Drosophila (from Cooper et al. (1979) using data from Prakash
et al. (1969) and Prakash (1973, 1977a and b))

Species Jf-linked Autosomal

D. pseudoobscura 0216 (0106)* 0-184 (0033)
D. persimilis 0-350(0-094) 0-220(0061)
D.robusta 0157(0066) 0-211(0044)

* Standard errors given in parentheses.

in females whereas in female kangaroos and wallabies the paternal Jf-chromosome
is invariably inactivated (this is discussed in detail in Cooper et al. (1977)). Cooper
et al. (1979) took 11 loci known to be autosomal in humans and 4 loci known to
be X-linked in humans. They then used Ohno's law of conservation of the
Jf-chromosome (Ohno, 1967) to assume that these loci would be similarly sited in
these ten species of kangaroos and wallabies. All loci which showed any variability,
and whose position (i.e. on the X-chromosome or on the autosomes) could thus
be checked, complied with Ohno's Law. The average proportion of polymorphic
loci per species was very similar in Jf-linked loci (0-182, s.E. = 0-067) and autosomal
loci (0167, s.E. = 0038). Similarly the mean heterozygosity at autosomal loci
(0-040, S.E. = 0015) was very similar to that for X-linked loci (0042, S.E. = 0-019).
(The latter was calculated assuming Hardy—Weinberg Law as heterozygotes
cannot be detected.)

Thus, in summary, haplodiploid hymenoptera seem to show less genetic
variability than diploid insects whereas the data are far less conclusive when
comparing X-linked and autosomal genes in the same species. However, there is
far less usable data on the latter and so on balance, we should expect to find
mechanisms that might lead to less genetic variability in haplodiploids and at
Jf-linked genes than at autosomal genes. In the following sections, I shall discuss
various theoretical results on X-linked genes and see how they fit in with the
available data.

3. THEORETICAL RESULTS FOR LARGE POPULATIONS

(i) No selection

The one well-known result on X-linked genes is that if you consider a very large
random-mating population and assume that the effects of selection, mutation and
migration are negligible, then the difference in gene frequency between males and
females is reduced by a half each generation. This was first discussed by Jennings
(1916). If you consider two alleles, A1 and A2, at an X-linked gene and letpmt and
pft be the gene frequencies of A1 at generation t in males and females respectively,
then under this simple model,

Pmt = P+UPmo-P/o) (-IY (31)

and Pft=P-UPmo~Pfo)(-k)^ (3-2)

where p = lpf0 + \pm0 = \pft + \pmt.
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Thus the gene frequencies in the two sexes converge to the average gene frequency
and the difference between them gets small quite rapidly.

Under this model the genotypic frequencies at generation t +1 are given by

Females Males

1* ^~*-\ "̂ 1̂ *^^2 *^^2 *^^2 **^1

A l ) + ( l ) ^ ) ^ ) Pft

and so the Hardy-Weinberg Law in females only holds asymptotically when
Pm ~ Pf- ^n general authors have found little evidence of differences in gene
frequencies between sexes or departures from Hardy—Weinberg Law (e.g. Ward,
1980).

(ii) Directional selection

Let us assume the following

1 - s

fitness model:

Females

1 2 -""2 2

1-As 1

Males

• ^ 1 ^ 2

1-s 1

For simplicity, I have assumed there to be dosage compensation in fitness which
seems to be a reasonable assumption given the available data.

Haldane (1926) and Nagylaki (1979) have considered models such as this.
Nagylaki (1979) has shown that, for small s, the gene frequencies in the two sexes
converge quickly, whatever the value of A, as they do in the absence of selection.
Thus assuming that pmt az pft = pt, it can easily be shown that the change in the
average gene frequency is approximately given by

= (2Pfit+1/3+pmtl+1/3)-(2pfl/3+Pmt/3) ^ ~

(3.3)

if pft ~ pmt = pt and s is reasonably small. The gene frequency of A1 in the males
changes slightly quicker than in the females as selection acts more directly in the
males.

The equivalent expression for autosomal genes is

Apt~-sptqt[h+(l-2h)pl]. (3.4)
Since

$[{l + 2h) + (l-2h)2Pt]>h + (l-2h)pt f o r a l l O^h^l a n d O ^ p ^ l ,

the rate of change in gene frequency, at a particular gene frequency, will be greater
in the X-linked case. Thus disadvantageous genes will decline in frequency more
quickly, and advantageous genes increase in frequency more quickly, at X-linked
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genes than at autosomal genes as one would intuitively expect because the selection
acts more directly in the hemizygous males. A similar remark without proof was
made by Li (1955).

In section 2,1 discussed kangaroos where paternal X-inactivation occurs. In this
case, fitnesses are merely determined by the maternal gene and so for the case of
directional selection, equal in the two sexes, we have:

Females Males

A A Af Am Am Af A A A A
^ 1 l ' " l ' •"1J"2 • " ! •"2> -"2^2 -™1 n 2

r^s i i^s T
where the superscripts, m and/, give the sex of the parent from which that gene
was derived.

Again the two gene frequencies converge quickly and

— 2s
&Pt - —%-Vft{\-Pft) f o r s m a 1 1 «•

Comparing this with the expression for autosomal genes with dominance (3.4), the
decline in frequency of a deleterious gene (or the increase in an advantageous gene)
is less for an X-linked gene than an autosomal gene only if the degree of dominance,
h, of the autosomal gene is greater than two-thirds and the gene frequency of the
disadvantageous gene, pt, is small ( < {(h — §)/(2A— 1)}) or if pt is greater than
two-thirds and h is small ( < {(pt — §)/(2pt — 1)}). Thus again gene frequencies
will generally change more quickly at X-linked genes.

Many disadvantageous genes (e.g. those causing diseases) may well be maintained
in populations by directional selection being balanced by mutation. Let us consider
the case of a Jf-linked deleterious recessive gene being maintained by recurrent
mutation.

In this case, we can easily show that

Pm.t+i = (u+Pft(1~s-u))/(l-spft) (3.5)
a n d Pf,t+i = (u+#pmt+Pft)(l-u)-spmtpft)/(l-sPmtpft), (3.6)

where u is the mutation rate from A2 to Ax per generation in both sexes and
mutation is assumed to occur after selection. If we assume that at equilibrium pm

and Pf are small (effectively assuming that u is small) so that quadratic and higher
order terms can be neglected then

Pm =

and Pf = \(P

i - i i i w(3—u)

which leads to «, = i (3 7)
Pf s + u(3-u-s) K '

<3-8)

which are approximated by pf = 3u/s a n d p m = u{3 — 2s)/s ifu is small and u ̂  s.
These expressions were first produced by Haldane (1935). For small s,
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Pm — Pf= 3U/S and as s increases, the difference between the equilibrium gene
frequencies increases until for recessive lethals pf = 3w and pm = u. Nagylaki
(1977) has also considered this problem. His answers are equivalent but look
different as he has calculated the gene frequencies in each sex at birth (i.e. before
selection and mutation have acted) whereas Haldane and I have calculated the
gene frequencies in gametes produced by each sex (i.e. after selection and mutation
have acted).

For autosomal recessives the equivalent expression to (3.5) and (3.6) is

pt+1=
Pt+u[l:^~sp!- 0.9)

At equilibrium when pt+1 = pt= p, this leads to

p = 1 or V («/*)> (3.10)

the latter being the stable equilibrium point if u < s.
The incidence of the disease at equilibrium is approximately pft/2 = (3u)/(2s)

for X-linked recessive genes, all affected being male, and p2 = u/s for autosomal
recessive genes. Thus similar selective disadvantage and mutation pressure will
lead to a 50% larger disease incidence in X-linked recessives than in autosomal
recessives whatever value is the reduction in fitness. However, the frequency of
heterozygote (carrier) females will be much less for X-linked diseases than for
equivalent autosomal diseases (being approximately (6u — 2s)/s and 2\/(u/s)
respectively). If the disease is dominant in the females (h = 1) or if there is paternal
X-inactivation, there is a stable equilibrium atpj- ^ 3u/(2s) a,ndpm c~ u(3 — s)/(2s)
giving approximate disease incidences of 9M/(4S) and 3w/(2s) respectively. While
for an autosomal dominant disease gene the disease incidence is approximately
2u/s. Thus for dominant disease genes, the disease incidence is again higher for
X-linked genes than for autosomal genes.

(iii) Fitness models leading to balanced polymorphisms

This is that part of the analysis of X-linked genes which has received most
attention (e.g. Bennett (1958); Haldane & Jayakar (1964); Cannings (1967);
Pamilo (1979)). There are essentially two fitness models that can produce a
balanced polymorphism, one involves overdominance in the females and the other
has selection acting in opposite directions in the two sexes. True overdominance
has generally not been found at autosomal loci but effective overdominance can
be produced by variation in fitness over time or space or by the effect of closely
linked loci. Thus it seems valid to consider effective overdominance as a possible
force for maintaining variability when comparing X-linked and autosomal loci. If,
for simplicity, we again assume dosage compensation so that homozygous females
have the same fitness as the equivalent hemizygous males then we have the
following fitness model for X-linked genes,

Females Males

Y~ (A)A^An AnAn 1

l - S j 1 1 - S 2 1-S1 l - 5 2
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For autosomal genes, any degree of overdominance i.e. 1 > s1,s2 > 0, will lead to
a balanced polymorphism while at X-linked genes two further conditions need to
be satisfied, s2 < 3SJ — 2s\ and s1 < Ss2 — 2s\ (Pamilo, 1979), which imply that sl

and s2 must not differ too much (see Fig. 1). This need for symmetry is similar to
the results of Robertson (1962), who showed that for autosomal genes in finite
populations, very asymmetric overdominance can in fact increase the rate of
fixation of alleles relative to neutral alleles rather than decrease it as symmetric
overdominance does.

1-0
1 \J

0-5

JrA

(6)

BJ

I
= O-63W

i

1

A

+ 2?,

^ *
*^

+ B2)

10 0 0-5 10 0

Fig. 1. Regions for the parameter values which lead to a balanced polymorphism; A
for X-linked genes and A+Bi-\-B2 for autosomal genes, (a) Holds for overdominant
selection (model A), (b) for selection without dominance in opposite directions in the
two sexes (model B) and (c) for completely recessive selection in opposite directions
in the two sexes (model C).

If selection acts in opposite directions in the two sexes then a balanced
polymorphism can be produced at X-linked genes but the restrictions on the
parameter values are stricter than for autosomal genes. Figure 1 (b) gives the
allowable values for selection without dominance at X-linked genes, i.e.

Females Males
(B)

LA
l

4 4 A A,
1

The conditions for a balanced polymorphism with no dominance selection are
0 < s1 < s2/(l—s2) and 0 < s2 < s1/(l—s1) for autosomal genes and
0 < sx < 2s2/(2 — s2) and 0 < s2 < 2sJ{2 — s1) for Z-linked genes (Pamilo, 1979).
Figure 1 (c) gives the allowable values when recessive selection in the females is
balanced by selection in the opposite direction in the males, i.e.

Females Males
(C)

A1A2

— sl 1 —
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The conditions for a balanced polymorphism with completely recessive selection
are 0 < sv s2 < 1 for autosomal genes and 0 < s2 < Min (2«1,1) and 0 < sx < 1 for
X-linked genes (Pamilo, 1979). The figures given in figure 1 on the relative sizes
of the parameter spaces necessary for balanced polymorphisms must be treated
carefully as there is no reason why any particular pair of parameter values should
be equally likely.

Thus there are fitness models which can maintain genetic variability at X-linked
loci but the conditions on the fitnesses are more restrictive than for autosomal
genes. Therefore if similar selective forces act at X-linked and autosomal loci
proportionally fewer X-linked loci should be polymorphic. The discussion of
selection acting in opposite directions in the two sexes may be rather misleading
as I am unaware of a proven case of a gene being maintained by differential selection
in the two sexes. One attempt to look for evidence of this was reported by
Curtsinger (1980) using data from Kerr & Kerr (1952) and Wilton (1979). They
used balancer chromosomes in Drosophila where females homozygous for the
balancer chromosome are inviable but the balancer males are nearly normal.
Curtsinger (1980) thus assumed the following fitness model:

Females Males

\. & x*-a •&- E

l + z 1-z 0 l + y l-y

He then estimated z, y and y/z for a total of 121 wild-type X-chromosomes. The
average value for y/z was 187 (S.E. = 094) for Kerr & Kerr's (1952) data and 1-98
(S.E. = 1-42) for Wilton's (1979) data. Thus selection seems to act in the same
direction in both males and females. Only 1 of the 121 chromosomes gave strong
evidence of selection in opposite directions in the two sexes (y/z = —6-14).
However, as the estimated values of y/z for each chromosome have quite large
standard errors (at least 2-5 for this particular chromosome), it is quite possible
that this value has occurred by chance when selection is acting in the same
direction in both sexes. The balancer chromosomes are however unusual in causing
inviability in homozygous females and so we should not put too much weight on
this data.

When there is paternal X-inactivation, overdominance is not possible and only
balancing selection in the two sexes will produce a balanced polymorphism, i.e.
if the fitnesses are defined as:

Females Males

A Y A, j A j A 2 A•* -L*-O j J-*-2 -^*-2 1

T
2

The conditions for maintaining a stable polymorphism are as for an autosomal
gene with selection without dominance (see Fig. 1 (6)), i.e. 0 < sx < «2/(l — s2) and
0 < s2 < 51/(1 — sx) (Cooper, 1976). Thus with paternal X-inactivation it seems to
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be even more difficult for selection to maintain genetic variability. Crozier & Pamilo
(1979) have considered two rather specific frequency-dependent selection models
at paternal X-inactivated loci and have shown that, under certain conditions, a
balanced polymorphism is possible. More general frequency dependent selection
models may also allow balanced polymorphisms to occur at X-linked loci with or
without paternal Jf-inactivation. However, it is difficult to judge how important
frequency dependence may be at maintaining genetic variability.

4. THEORETICAL RESULTS FOR FINITE POPULATIONS

(i) Neutral models

An exact analysis of Jf-linked genes in finite populations is quite complex
because of the necessity to consider the gene frequencies in the two sexes
separately. Hence relatively little work has been published in this area. Wright
(1933) considered the case of a random mating finite population of M males and
F females with no selection, mutation and migration. He used path coefficients to
find equations for the rate of decrease of heterozygosity and hence developed
a measure of effective population size. A slightly more straightforward and
informative approach is to use sampling theory.

Given the frequencies at generation t— 1, the gene frequencies of an allele, Alt

at generation t are pmt = RJM where R1 is a Binomially distributed random
variable, sample size Mand probability of'success'pf t - 1 andpft = (R2 + R3)/(2F)
where R2 is Binomially distributed, sample size F and probability pf ( - 1 and R3

is Binomially distributed, sample size F and probability y m H . Similarly, the
numbers of each genotype in the females have a trinomial distribution conditional
on the frequencies in generation t — 1.

It follows very easily from sampling theory that

E(Pmt-Pft) = -&iPm.t-i-Pf,t-i) = (-*)' (Pmo-Pfo) (4-1)

and E(2Pft/3+Pmt/3) = E(pt) = Efc^) = p0, (4.2)

i.e. the deterministic results hold on average. As fixation of one gene must
eventually occur and E(pt) = p0 for all t, p(pmt = pft = 1) = p0 and
P(Pmt = Pft = 0) = (1—JJO) as<-MX>. Thus probabilities of ultimate fixation depend
for X-linked genes on the initial average gene frequencies.

If Ht+1 is the frequency of heterozygotes in the F females at generation, t +1,

E(Ht+1) = E(pml(l-pft)+pft(l-pmt)), (4.3)

and it is then straightforward to show that

\ E(2pft(l-Pft))
\E(2pnt{l-pml))
L E{Ht+1) .

f
= | (l-l/M) 0

h 02

t

E(Ht)
(4-4)

Explicit expressions for these three quantities (E(Ht+1), E(2pft(l—pft)) and
E(2pmt(\ — pmt))) can be produced in terms of the eigenvalues of the above matrix.
As the eigenvalues are all less than one in modulus, these quantities tend to zero
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as t->ao, and the asymptotic rate of decline of each is given by the largest
eigenvalue of the matrix. From the above matrix, you can show that the
eigenvalues, A, satisfy the equation,

A3-A2(l-2c1)-A(c1 + 2c2) + c2 = 0 (4.5)

where c, = (l + l / ^ ) / 8 and c2 = (£) (l-l/M) (l-l/F). If you replace A by
(1+x) the resultant equation is identical to that of Wright (1933). For reasonably
large values for M and F, this quantity, x, becomes small and is approximately
given by —(2/F+l/M)/9. A definition of inbreeding effective population size
(Nex) can then be obtained by equating this expression to — l/(2Nex). This gives

= 9MF
ex~2(2M+F) ( ' )

(as obtained by Nagylaki (1981) using a different method) as compared with
4MF/(M+F) for autosomal loci. When M = F = N/2, Nex = 32V/4 for X-linked
loci and N for autosomal loci. Thus the effective population size for X-linked loci
is less than for autosomal loci unless the number of females is much larger than
the number of males (F > 1M). Also from the above calculations, it is straight-
forward to show that

Var (2pft/3+pmt/3) = Var (pt)
= po(l -p0) - (2E(2pft(l-pft )) + E(2pmt(l -pmt ))/2 + 2E(Hl+1 ))/9 (4.7)

and

Var (pmt-pft) = -(-k)t(pmo-pn

-\E(2pft(l-pft))-E(2pmt(l-pmt)), (4.8)

i.e. are related to the three quantities used before and thus asymptotically change
at the same rate as the expected frequency of heterozygotes. Var (pt) -+po( 1 — p0)
and Var (pmt — P/t)^-0 as <->oo. An alternative definition of effective population
size can be obtained from the variance of the change in gene frequency per
generation, i.e. by equating Var (Apt\pmt,pft) to pt(l-pt)/(2NeX).

Using sampling theory,

Var (Aft, =

^ Pmt — Pft = Pt which as we have seen from deterministic and stochastic results
is generally true. Thus l/(2Nex) = (2/F+l/M)/9 and the same value of NeX is
obtained as before.

In principle, sex-linked genes can be studied by modelling the problem as a
Markov chain as suggested by Yang, Lee & Chee (1966). However, the number of
possible states is (M+ 1) x (2^+1) and thus it is only a feasible approach when
M and F are small. Its advantage is that it can be adapted to include the effects
of selection as we shall see later.

Assuming an infinite allele model, i.e. each new mutation produces a novel allele,
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Nagylaki (1981) showed that for X-linked genes the expected frequency of
heterozygotes in females was, for weak mutation and large population size,
approximately given by

where u is the mutation rate per generation and NeX is the effective population
size as defined by equation (4.6). This is the same expression as produced for
autosomal loci (Kimura & Crow, 1964) except that there is a different definition
for effective population size. When M = F = N/2, E(H) for sex linked
genes = 3Nu/(l + 3Nu) (Mayo(1976))andtheexpected proportion ofheterozygotes
in females at ;2L-linked loci, Hx, satisfies \Ha < Hx < Ha where Ha is the expected
proportion of heterozygotes at autosomal loci. Thus, even ignoring the effect of
selective forces, you would expect to get a lower proportion of heterozygotes at
X-linked loci than at autosomal loci due to having effectively fewer copies of each
gene.

Stewart (1976), using the infinite allele model, showed that the between
population variance in heterozygosity at a single neutral autosomal locus was given

Var H ~ -

Following Nagylaki (1981), an approximation for the variance at a single
sex-linked locus should be given, for reasonably large NeX and small u, by

(1 + 4NeX tt)» (2 + 4NeX u) (3 + 4NeX u)'
To compare theoretical values with those given in table 1, we need to calculate

the variation in mean heterozygosity over loci. If we assume the species in the
various groups have approximately similar effective population sizes and the loci
chosen are unlinked (a reasonable assumption generally as the number of loci
studied is not large relative to the number of chromosomes) then the between
species variation in heterozygosity should be approximately given by

Var (H) =* 4 Var H.

where n is the harmonic mean of the number of loci studied for each species in the
species group

Equating the observed H to E(H) as done by Nei, Fuerst & Chakraborty (1976)
for autosomal data, we can estimate 4NeXu and hence predict Var(/T). The
observed and predicted values are given in Table 3. Given the assumptions made,
the agreement is surprisingly good and suggests that a lot of the variability might
be due to mutation and random genetic drift. Though some selection models may
lead to similar predictions. A similar approach for the diploid data does not
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Table 3. Observed and predicted values for the between species standard deviation
(S.D.) in mean heterozygosity for three haplodiploid groups

Standard deviation
Overall mean

Category Observed Predicted heterozygosity n*

Solitary 0026 0030 0039 131
Primitively eusocial 0018 0017 0011 128
Advanced eusocial 0025 0033 0-045 12-4

* n = harmonic mean of number of loci studied.

produce a very good agreement between observed and predicted values. This is
probably due to the great diversity of effective population sizes within the diploid
groups.

(ii) Models including selection

Exact analyses for X-linked genes are complex. However, as we discussed earlier
when looking at selection effects in large populations or at neutral models in finite
populations, the gene frequencies in the two sexes generally converge quickly and
do not tend to differ greatly due to the finiteness of the population. If we assume
that pm a: pj then we can use a univariate diffusion approximation.

If we consider directional selection with dosage compensation and no dominance,
i.e.

Females Males

1 * ^ 1 " ^ 1 " ^ 2 ' " • 2 2 • ^ l

i+s 1+5/2 i TTs T

then using equation (3.3),

EWt+i-Pt) = E(Apt) *
 2spt{l~ft) (\{pmt~pft~pt) (4.11)

for small s and from equation (4.9),

«fifca), (4.12)
Ziv

where NeX is as given in equation (4.6), if we assume that l/NeX is of the same
order as s. From Kimura (1964) the probability of ultimate fixation of A1 is then
given by

«(Po) = f P° °iPt) dpj VG(pt) dpt,Jo Jo

(where G(pt) = exp{-J [2E(Apt)/V&r (Apt)]dpt},)

= exp(-8NeXspt/3)dpt/\ exv(-8NeXspt/3)dpt,
Jo Jo

= (1-exp (-8NeXsp0/3))/(l-exp (~8NeXs/3)), (4.13)

as compared to u(p0) = (1 — e~2iV«8P»)/(l — e~2jv«")
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for autosomal genes with selection without dominance. A similar approach for a
rather more specific problem was taken by Hedrick (1980). When the numbers of
each sex are equal, NeX = 3i^/4, and Ne = N for autosomal genes. On substituting
in (4.13), we find that u(p0) = (1 -e~2Nspo)/(l -e~iNs), i.e. is identical to the result
for autosomal genes given the same initial average gene frequency. If however you
consider the probability of fixation of a single advantageous mutant gene then as
p0 = 2/(3N) for X-linked genes and p0 = l/(2N) for autosomal genes, the prob-
ability of ultimate fixation for large N and small s is approximately 4s/3 for .X-linked
genes and s for autosomal genes i.e. an X-linked advantageous mutant is more
likely to be fixed due to its higher initial gene frequency. Some similar general
statements were made without proof by Lester & Selander (1979). Equivalent
expressions to (4.13) can be derived for other selection models.

To check some of the assumptions in the above analysis, I used the Markov chain
approach mentioned previously for very small populations. For M males and F
females, there are (M +1) x (2F+1) possible values for the gene frequencies of a
particular allele,^41. If qt = (q°'°,qt

li0,qt
2'0,- • •, qt

M'2F) where q^^ is the probability
of having i copies of Ax in the males &ndj copies in the females at time t then using
sampling theory we can derive the elements of the matrix P such that q( = qt_j P.
If u = (tt1'0,^2'0,.. .,uM'2F~1) is a column vector of the probabilities of
ultimate fixation of Ax from all the states excluding (0, 0) and (M, 2F) then

u = P*u + K

where P* is the matrix P with the first and last rows and columns removed and
K is a column vector derived from the last column of P with the first and last
element removed. Then

u = ( I -P*)" 1 K (4.14)

where I is the identity matrix.
Table 4 gives approximate expressions for u(p0) from equation (4.13) and exact

expressions from (4.14) for various values of M, F and s. Three starting conditions
were considered: a single mutant gene in the males, a single mutant gene in the
females and an initial average gene frequency of 05. The approximation is
surprisingly good even for small values of NeX. From table 4 or by using Kimura's
(1964) approximate expression for autosomal genes, we can see that

for small s.
Using the approximate expressions for the mean change and variance in change

of the gene frequency, (4.11) and (4.12), under directional selection at X-linked loci,
we can also compare the mean times to fixation given fixation occurs, tf, and the
mean time to extinction given extinction occurs, te, between X-linked and
autosomal loci. These can be calculated using the equations of Kimura & Ohta
(1969a, b), i.e.
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and

o
where

t) = 2 fX

J o

G(ft) = exp{

fp« f1

and «(ft) = G(z)dz/ <?(*) dx
Jo Jo

is the probability of ultimate fixation given initial frequency ft, ~te and ~tf can only
be calculated using numerical integration except for the case of s = 0. Results for
some particular parameter values are given in Tables 5 and 6. For equal numbers
of each sex, both mean times are reduced by a quarter for X-linked genes for any
value of N, s orp0 due to the fact that NeX/Ne = 075 when M = F. For unequal
numbers of each sex, the mean times are reduced in proportion to NeX/Ne for small
s and by more than that for larger s. Comparing the mean times when NeX = Ne

(e.g. teX and tfX for M = 8, F = 20 with te and tf for M = F = 10) shows that the
values for X-linked genes are slightly lower than for the autosomal genes due to
selection acting more directly. Thus as we found when looking at deterministic
rates of change of gene frequency, X-linked genes are lost or fixed more quickly
than autosomal genes starting from the same initial frequency. This confirms the
suggestion of Lester & Selander (1979).

Other selection models, such as those which maintain polymorphisms in large
populations, can similarly be studied for small populations. An interesting problem
to look at is to find those models which considerably reduce the rate of loss of
genetic variability. Robertson (1962) considered the rate of fixation and loss of
genes for the case of overdominance at autosomal loci (i.e. relative fitnesses of 1 — Sj,
1, 1 — Sj for A1 Ax, A1A2 and A2 A2 respectively where s[, s'2 > 0) and showed that,
if 5J/(SJ + «2) > 0*8 or < 0-2, overdominance could actually increase the rate of
fixation compared with a neutral model depending on the actual value of Ne and
that only when 8^ and s'2 were reasonably similar was fixation and loss considerably
slowed. The models considered earlier for maintaining variability at X-linked genes
can be approximated such that Robertson's results can be used for X-linked genes.

For overdominance with dosage compensation (model A),

and for selection in opposite directions in the two sexes, completely recessive in
the females (model C),

E(Apt) ~

assuming in both equations that sx and s2 are reasonably small and pmt ^ pfl ^ pt.
For overdominance at an autosomal locus,

E{Apt) =* pt qt(s'2 - (s[ + s2) ft)

12 ORH 44
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for reasonably small s'x and s'2. Thus model A is equivalent to autosomal
overdominance with s[ = 3s1—s2 and s'2 = 3s 2 — sv For a balanced polymorphism,
we need s'lt s'2 > 0, i.e. Sj < 3s2 and s2 < 3slt which is what we obtained
earlier, ignoring quadratic terms. If we further restrict values such that
0-2 < a'Jis'i + s'2) < 0-8 following Robertson (1962), we need s1 < ^ s2 and s2<

i?81

in order to slow the rate of fixation of genes relative to the neutral model. Similarly
for model C, s\ = \ s2 and s'2 = § s1—% s2 and the restrictions on the parameters
reduce from 0 < s2 < 2«j for a balanced polymorphism to s2 < 8s1/5 and sx < 5s2/2
to reduce the rate of fixation. In both cases the reduction in the allowable
parameter space is similar to that for autosomal genes but slightly larger. Thus
the range of possible parameter values which can lead to maintenance of genetic
variability has been further reduced.

5. DISCUSSION

In this paper we have found that, if directional selection acts on an X-linked
gene or a gene in haplodiploids, disadvantageous alleles are lost more quickly and
advantageous alleles are fixed more quickly than at autosomal loci because
selection acts more directly in the males and the effective number of copies of each
gene is less for X-linked genes. This may partially explain why differences between
some closely-related species, which can still interbreed, have been found to be
mainly on the X-chromosome (e.g. Grula & Taylor (1980)) even when the X-
chromosome forms a relatively small part of the genome.

We have also shown that rare deleterious genes maintained by mutation will
have a higher incidence of the deleterious form than at equivalent autosomal loci
making detection of such mutants somewhat easier. Further in finite populations,
e.g. laboratory stocks, James (1979) has shown that any recessive mutation that
occurs at X-linked loci will either be detected very quickly (i.e. within 3
generations) or not be detected at all due to the hemizygous state in the males.
In contrast, at autosomal loci, many generations may pass before a recessive
mutant is detected (Robertson, 1978). These points plus the fact that the initial
frequency of a mutant will be higher at X-linked loci due to the reduced number
of copies leads us to expect proportionally more loci to be detected on the
X-chromosome than on the autosomes as McKusick (1975) found in humans.

Electrophoretic data obtained from haplodiploids suggests quite strongly that
haplodiploids have a lower level of heterozygosity than similar diploid insects.
There is, however, little data yet comparing X-linked and autosomal loci in the
same species. What is available is somewhat inconclusive but does not show any
marked differences. When looking at theoretical selection models which can
maintain genetic variability, it is clear that there are many more restrictions on
the allowable parameter values for X-linked loci than autosomal loci and so, if
similar selective forces occur at X-linked and autosomal loci, we would expect fewer
loci to remain polymorphic due to such forces and therefore a lower level of
heterozygosity is to be expected. Neutral models where variability is maintained
by mutation also lead us to expect reduced heterozygosity due to the reduced
effective population size. This may not however be relevant when comparing across
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species whose effective population size may be different anyway. Thus theory leads
us to expect the lower level of genetic variability reported but, as with autosomal
loci, it is still somewhat debatable whether selection or mutation and random drift
are the important forces in maintaining the variability which does occur. However,
in marsupials, where there is paternal X-inactivation and the range of selection
models that can maintain a polymorphism is very limited, the fact that a similar
level of variability has been observed at both autosomal and X-linked loci suggests
that a lot of this variability (at both autosomal and X-linked loci) is probably being
maintained by the joint action of mutation and random genetic drift. Further, as
the between species variation in heterozygosity seems to fit with what we would
expect from the neutral theory, this also suggests that mutation and drift may
be more important than selective forces in maintaining variability at X-linked
genes and genes in haplodiploids.

In this paper, only single locus results have been considered. Very little data
on linkage disequilibrium in haplodiploids or between X-linked genes is available
and very little theoretical work has been done. The main result (Bennett, 1963)
so far obtained is that the effective recombination fraction is § of the recombination
fraction in females as no crossing over occurs in males.

In conclusion, it seems sensible to consider the question as to why haplodiploidy
and X-linkage occur as they allow the effect of selection to act more directly
reducing individuals' (usually males') fitnesses. The X-chromosome is, for higher
organisms at least, only a small part of the genome and so such deleterious effects
will generally be small and may be outweighed by the advantages of such a
chromosomal sex-determining mechanism. Haplodiploids however clearly have a
larger selective load on them. Bull (1981) has considered the evolution of
haplodiploidy and has shown that haplodiploidy can evolve as long as the fitness
of the haploid males is greater than half the fitness of diploid males. This is likely
to be true in relatively inbred populations where the occurrence of deleterious
recessives will be low. However, a crucial condition for the evolution of haplo-
diploidy is that individuals must be able to develop from unfertilized eggs which
seems to be very rare in higher organisms.

I would like to thank Professor R. N. Curnow for encouragement during work on this paper
and for comments on early drafts, and O. Mayo and the referee for their helpful comments on
the first version of the paper.
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