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In nature, science and engineering, we often come across helicoidal surfaces. A curve on a heli-
coidal surface in Euclidean 3-space is called a loxodrome if the curve intersects all meridians at
a constant azimuth angle. Thus loxodromes are important in navigation. In this paper, we find
the differential equation of the loxodrome on a helicoidal surface in Euclidean 3-space. Also
we give some examples and draw the corresponding pictures via the Mathematica computer
program to aid understanding of the mathematics of navigation.
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1. INTRODUCTION. We can define many well known objects with respect to
making a constant angle with a distinct direction. Our first example is helices that
are special curves that lie on helicoids (minimal surfaces), see Figure 4. These are char-
acterised by the property that tangent lines make a constant angle with a fixed direc-
tion. Helices are geodesics or length minimizing curves on the helicoids (Papst, 2011).
A generalisation of geodesics is magnetic curves. In Physics, a magnetic curve repre-
sents a trajectory of a charged particle moving on the manifold under the action of
a magnetic field. Thus helices in Euclidean Space (or E3) are also characterised by
the following property: they are magnetic trajectories related to magnetic fields parallel
to their axis (Munteanu, 2013). There are many interesting applications of helices such
as α-helices, K-helices, Deoxyribonucleic Acid (DNA) double helix, collagen triple
helix, nanosprings, carbon nanotubes, etc. (Ilarslan and Boyacioglu, 2008). A
further example is logarithmic spirals or spira mirabilis, extensively investigated by
JacobBernoulli, whichmake a constant anglewith the radial direction.One of their inter-
esting properties is the fact that they are self-similar. Thus we can see them in some
phenomena and on different objects around us, for example; the approach of a hawk to
its prey, the approach of an insect to a light source, the arms of a spiral galaxy, the
nerves of the cornea, some spiral roses, sunflower heads, shells, horns, cosmology,
fractal structures, architectures and so on (Boyadzhiev, 1999, 2007; Munteanu, 2010).

THE JOURNAL OF NAVIGATION (2015), 68, 962–970. © The Royal Institute of Navigation 2015
doi:10.1017/S0373463315000181

https://doi.org/10.1017/S0373463315000181 Published online by Cambridge University Press

mailto:murat.babaarslan@bozok.edu.tr
https://doi.org/10.1017/S0373463315000181


The third famous example is loxodromes or rhumb lineswhich intersect themeridians at a
constant angle on the Earth’s surface. Generally loxodromes are not great circles (geode-
sics), see Tseng and Chang (2014). Hence they do not measure the shortest distance
between two points on the Earth’s surface. However loxodromes are primarily used in
navigation since they do not require a change of course, i.e., course=θ=constant (Kos
et al., 2009). In 1569, a major development for navigation was the Mercator map. The
Mercator projection was used for centuries, but unfortunately has navigational errors
(Alexander, 2004; Babaarslan andMunteanu, 2013). It iswell known that by using stereo-
graphic projection, loxodromes on a sphere are projected as logarithmic spirals on the
plane of the equator (Noble, 1905), see Figure 1. Also, if they are plotted on the
Mercator grid, then they have the form of straight lines. For example; a voyager can
head at a constant bearing 73° East of North to travel from New York to London
(Alexander, 2004). Mercator used a conformal map in order for loxodromes on a
sphere to be drawn as straight lines on a plane (Babaarslan and Munteanu, 2013).
Noble (1905) found the equations of loxodromes on the rotational surfaces and also

gave some particular examples of them such as sphere and spheroid. Kos et al. (1999,
2009) computed the arc-length of the loxodrome on a sphere. Also Petrovic (2007) de-
termined the arc-length of the loxodrome on a spheroid. Babaarslan and Munteanu
(2013) computed all time-like loxodromes on the rotational surfaces which have
time-like meridians or space-like meridians, respectively in Minkowski 3-space.
Similarly, Babaarslan and Yayli (2014) found all space-like loxodromes on the
rotational surfaces in Minkowski 3-space and gave some examples using the
Mathematica computer programme.
We know that helicoidal surfaces are the natural generalisations of rotational sur-

faces. Furthermore we often come across helicoidal structures and objects that are
related to navigation in nature, science and engineering. For instance; creeper plants,
helicoidal staircases, helicoidal conveyors, parking garage ramps, helicoidal railways,
moving walkways and footbridges, helicoidal towers and (nowadays) skyscrapers

Figure 1. Stereographic projection of a loxodrome on a sphere (Babaarslan and Munteanu, 2013).
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(Capanna et al., 2012), helicoidal fractures in geology (Pollard and Fletcher, 2005), heli-
coidal paths, tropical cyclones (Levina and Montgomery, 2010), electronic states on the
helicoidal surfaces (Jensen, 2009) and helical channels (Morales and Rosa, 2007).
According to the authors’ knowledge, there is no article related to equation of loxo-

drome on a helicoidal surface in Euclidean 3-space. The main goal of this paper is to
find the differential equation of the loxodrome on a helicoidal surface in Euclidean 3-
space. Also we give some examples and draw the corresponding pictures by using the
Mathematica computer program to understand loxodromes better. We hope to inspire
more people to research the relations between loxodromes on different structures and
other branches of science.

2. PRELIMINARIES. In this section, we recall some important notions and also
give some properties of curves and surfaces in Euclidean 3-space E3. For more details,
we refer to Babaarslan andMunteanu (2013), Babaarslan and Yayli (2014), Guler et al.
(2010), Ikawa (2000), O’Neill (1966) and Do Carmo (1976).
The inner product of two vectors x = (x1, x2, x3) and y= (y1, y2, y3) in E3 is given by:

〈x; y〉 ¼ x1y1 þ x2y2 þ x3y3 ð1Þ

The norm (length) of a vector x∈ E3 is jjxjj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
〈x; x〉

p
and it is called a unit vector if

||x||=1. The angle θ between x and y is given by

cos θ ¼ 〈x; y〉
jjxjjjjyjj ð2Þ

where 0 < θ < π. In particular, if θ= π/2, then 〈x, y〉 = 0. Thus we can define vectors to
be orthogonal provided their inner product is zero.
Let β : I ⊂ R ! E3 be a regular curve in E3 (i.e., _β ≠ 0 for all t∈ I). The arc-length

of β between t0 and t is given by

sðtÞ ¼∫
t
t0 jj _βðtÞjjdt ð3Þ

Then the parameter s ∈ J ⊂ R is determined such as ||β′(s)|| = 1. Thus β is called a unit
speed curve if ||β′(s)|| = 1.
Now we give the definitions of rotational surfaces and helicoidal surfaces and also

some important formulas in E3.
Let β : I ⊂ R ! P be a regular curve in a plane P ⊂ E3 and l be a straight line in P. If

this profile curve β is rotated about the axis l, then it sweeps out a rotational surface in
E3. Similarly, we assume that when the profile β rotates about the axis l, it simul-
taneously displaces parallel to l so that the speed of displacement is proportional to
the speed of rotation. As a result it sweeps out a helicoidal surface in E3.
Let us assume that l = span{(0, 0, 1)}. Then the rotation which leaves the axis l in-

variant is given by the following rotational matrix

cos v � sin v 0
sin v cos v 0
0 0 1

2
4

3
5; v ∈ I ⊂ R ð4Þ

If the rotation axis is l, then there is a Euclidean transformation where the axis l is
transformed to the x3-axis of E3. Rotation leaves the planes that are orthogonal to
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the rotation axis l invariant. Thus we can choose the profile curve in a plane containing
the rotation axis l. As a result we can take the profile curve β in the (x1x3)-plane that
can be parameterised by β(u) = (f(u), 0, g(u)), u ∈ I ⊂ R; where f(u)≠ 0.
A helicoidal surface with the rotation axis l and the pitch λ ∈ Rnf0g can be para-

meterised as follows

Hðu; vÞ ¼
cos v � sin v 0
sin v cos v 0
0 0 1

2
4

3
5 f ðuÞ

0
gðuÞ

2
4

3
5þ λv

0
0
1

2
4

3
5;

or

Hðu; vÞ ¼ f ðuÞ cos v; f ðuÞ sin v; gðuÞ þ λvð Þ ð5Þ
When g is a constant function, the helicoidal surface is called the right helicoidal
surface. Also, when λ= 0, the helicoidal surfaces reduce to rotational surfaces.
For a surface X(u, v), the first fundamental form or line-element in the base {Xu, Xv}

is given by

ds2 ¼ Edu2 þ 2Fdudvþ Gdv2 ð6Þ
where E = 〈Xu, Xu〉, F= 〈Xu, Xv〉 and G = 〈Xv, Xv〉 are the coefficients of the first fun-
damental form.
The angle θ between two regular curves β : I ⊂ R ! X and γ : I ⊂ R ! X which

intersect at t= t0 is given by

cos θ ¼ 〈 _βðt0Þ; _γðt0Þ〉
jj _βðt0Þjjjj _γðt0Þjj

ð7Þ

In particular, the angle φ between the constant parameter curves of X(u, v) is given by

cos φ ¼ 〈Xu;Xv〉
jjXujjjjXvjj ¼

Fffiffiffiffiffiffiffi
EG

p ð8Þ

Thus the constant parameter curves are orthogonal if and only if F(u, v) = 0 for all
(u, v).

3. DIFFERENTIAL EQUATION OF THE LOXODROME. Let us consider the
helicoidal surface H that is given by Equation (5). To simplify the calculations, we
assume that f ′2(u) + g′2(u) = 1 for all u ∈ J ⊂ R; that is, the profile curve β is parame-
terised by arc-length parameter. The coefficients of first fundamental form of the heli-
coidal surface are

E ¼ 〈Hu;Hu〉 ¼ 1;F ¼ 〈Hu;Hv〉 ¼ λg0ðuÞ and G ¼ 〈Hv;Hv〉 ¼ f 2ðuÞ þ λ2 ð9Þ
Obviously, the constant parameter curves of H(u, v) are orthogonal if and only if
H(u, v) is either a right helicoidal surface or a rotational surface. Substituting
Equation (9) into (6), the first fundamental form of the helicoidal surface is determined
by the following equation

ds2 ¼ du2 þ 2λg0ðuÞdudvþ ð f 2ðuÞ þ λ2Þdv2 ð10Þ
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Also the arc-length of any curve on the helicoidal surface between u1 and u2 is given by

s ¼∫
u2
u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λg0ðuÞ dv

du
þ ð f 2ðuÞ þ λ2Þðdv

du
Þ2

r
du ð11Þ

We may assume that the loxodrome α(t) is the image of a curve (u(t), v(t)) in the (uv)-
plane byH. Since in the basis {Hu,Hv}, the vector α′(t) has the coordinates (u′, v′) and
the vector Hu has the coordinates (1, 0). At the point H(u, v) where the loxodrome
intersects the meridian at a constant azimuth θ, we have

cos θ ¼ 〈α0ðtÞ;Hu〉
jjα0ðtÞjjjjHujj ¼ Eduþ Fdvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2du2 þ 2EFdudvþ EGdv2
p

¼ duþ λg0ðuÞdvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2 þ 2λg0ðuÞdudvþ ð f 2ðuÞ þ λ2Þdv2

q ð12Þ

From Equation (12), we obtain the following differential equation of the loxodrome on
the helicoidal surface:

cos2 θð f 2ðuÞ þ λ2Þ � λ2g02ðuÞ� �ðdv
du

Þ2 � 2λ sin2 θg0ðuÞ dv
du

¼ sin2 θ ð13Þ

Thus the general solution of the differential equation of the loxodrome on the heli-
coidal surface is

v ¼∫
u
u0

2λ sin2 θg0ðuÞ þ ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 2θ f 2ðuÞ � λ2ðg02ðuÞ � 1Þ� �q

2 cos2 θð f 2ðuÞ þ λ2Þ � 2λ2g02ðuÞ du ð14Þ

where ε= ±1.
For the loxodrome on the right helicoidal surface, Equation (13) reduces to

Equation (15):

cos2 θð f 2ðuÞ þ λ2Þðdv
du

Þ2 ¼ sin2 θ ð15Þ

With the solution of this differential equation, we find the general solution of the dif-
ferential equation of the loxodrome on the right helicoidal surface as

v ¼ ε tan θ ∫
u
u0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðuÞ þ λ2

q ð16Þ

where ε= ± 1.
Noble (1905) and Kos et al. (2009) found the differential equation of the loxodrome

on a rotational surface. If we take λ= 0 in Equation (16), we find the general solution
of the differential equation of the loxodrome on rotational surface as follows

v ¼ ε tan θ ∫
u
u0

du
f ðuÞ ð17Þ

where ε= ± 1. This equation coincides with the equation in (Noble, 1905; Kos et al.,
2009).
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Next, we give the arc-length of the loxodrome on the right helicoidal surface. The
arc-length of any curve on the right helicoidal surface between u1 and u2 is given by

s ¼ ∫
u2
u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð f 2ðuÞ þ λ2Þðdv

du
Þ2

r
du ð18Þ

By using Equation (15), the arc-length of the loxodrome is defined as follows

s ¼ u2 � u1
cos θ

ð19Þ

Similarly, the arc-length of the loxodrome on the rotational surface coincides with
Equation (19).
Now we give three examples of loxodromes that lie on the helicoidal surfaces to

strengthen our main results.

Example 1. Let us take f(u) = 2, g(u) = u+ 1, u∈ (−5, 5), λ= 3, θ= π/3, ε= 1 and v(0)
= 0. By the straightforward calculation, we have v ∈ (−2·70959, 2·70959). Also the arc-
length of the loxodrome is equal to 7·50903. We can draw the helicoidal surface H(u,
v), the meridian (v= constant) and the loxodrome H(u, v(u)) in Figure 2.

Figure 2. The helicoidal surface; loxodrome (blue), meridian (green).
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Example 2. Let us take f(u) = sin u, g(u) = cos u, u∈ (0·01, 3·14), λ= 2, θ = π/2, ε=
− 1 and u0 = 1·5708. By the straightforward calculation, we have v ∈ (−2·64916,
3·56775). The arc-length of the loxodrome is equal to 11·5391. We can draw the heli-
coidal surface H(u, v), the meridian (v= constant) and the loxodrome H(u, v(u)) in
Figure 3.

Due to the energy minimisation principle, minimal surfaces are omnipresent
in nature and science. Thus their study has been a fascinating notion for centuries.
One of the non-trivial examples of minimal surfaces is the helicoid found by
Meusnier (Bates et al., 2008). We can construct it by using Equation (5). The parallel
(u= constant) on the helicoid is a helix and it is perpendicular to the meridians (v=
constant). Thus a helix on the helicoid is also a loxodrome. This is an important prop-
erty since helices are strongly related to navigation. Thus we can give the following
example:

Figure 3. The helicoidal surface; loxodrome (blue), meridian (green).
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Example 3. Let us take f(u) = u, g(u) = 1, u∈ (−4, 4), λ= 1, θ= π/4, ε= 1 and v(0) = 0.
By the straightforward calculation, we have v∈ (−2·09, 2·09). Also the arc-length of
the loxodrome is equal to 8

ffiffiffi
2

p
: We can draw the right helicoidal surface (helicoid)

H(u, v), the meridian (v= constant), the parallel (u = constant) and the loxodrome H
(u, v(u)) in Figure 4.

4. CONCLUSION. Loxodromes correspond to curves that intersect all meridians
at a constant angle on a helicoidal surface. Thus, they are very important in navigation.
In general, the previous loxodrome studies were associated with rotational surfaces.
But in nature, science and engineering, we can find surfaces other than rotational sur-
faces on which navigation is possible, for example; creeper plants, fractures in geology,
parking garage ramps, helicoidal staircases, railways, moving walkways and foot-
bridges, helical channels and so on. For this reason, in the present paper, we investigate
the differential equations of loxodromes on the helicoidal surfaces in Euclidean 3-
space, hoping that many other researchers work on loxodromes on different structures.
In future work, we will investigate the differential equations of loxodromes on the heli-
coidal surfaces in Minkowski 3-space since loxodromes in this space have important
meaning in relativity theory and they are interesting from the points of view of geo-
metric and mathematical cosmology (Babaarslan and Yayli, 2014).
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