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Abstract

Climate models are primary tools for investigating processes in the climate system, projecting future changes, and
informing decision makers. The latest generation of models provides increasingly complex and realistic repre-
sentations of the real climate system, while there is also growing awareness that not all models produce equally
plausible or independent simulations. Therefore, many recent studies have investigated how models differ from
observed climate and how model dependence affects model output similarity, typically drawing on climatological
averages over several decades. Here, we show that temperature maps of individual days drawn from datasets never
used in training can be robustly identified as “model” or “observation” using the CMIP6 model archive and four
observational products. An important exception is a prototype storm-resolving simulation from ICON-Sapphire
which cannot be unambiguously assigned to either category. These results highlight that persistent differences
between simulated and observed climate emerge at short timescales already, but very high-resolution modeling
efforts may be able to overcome some of these shortcomings. Moreover, temporally out-of-sample test days can be
assigned their dataset namewith up to 83% accuracy.Misclassifications occurmostly betweenmodels developed at
the same institution, suggesting that effects of shared code, previously documented only for climatological
timescales, already emerge at the level of individual days. Our results thus demonstrate that the use of machine
learning classifiers, once trained, can overcome the need for several decades of data to evaluate a givenmodel. This
opens up new avenues to test model performance and independence on much shorter timescales.

Impact Statement

Climate models are used to study changes in the climate system and to inform decisionmakers.While models are
getting better and better at representing the observed climate, some differences compared to observations remain.
To isolate them from the influence of weather, such differences are typically investigated in climatological
averages over several decades. Here, we show that maps from individual days are sufficient to robustly identify
models using statistical and machine learning classifiers that have first been trained on different models and/or in
a different time period. These results provide new ways of evaluating and interpreting model–observation and
model–model differences, on short timescales.
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1. Introduction

Multi-model ensembles, such as the latest sixth CoupledModel Intercomparison Project (CMIP6; Eyring
et al., 2016), are widely used to investigate physical climate mechanisms, attribute past and project future
changes, and inform political decisions. However, there is a growing awareness in the climate community
that not all models included in CMIP provide equally plausible and independent simulations of the climate
system (Tebaldi and Knutti, 2007; Knutti, 2010; Bishop and Abramowitz, 2013; Annan and Hargreaves,
2017; Eyring et al., 2019). Model evaluation methods, typically based on multi-decadal climatological
averages to minimize the effect of internal variability on short timescales, have identified persistent biases
across models compared to observations and highlighted the impact of model dependence on the
similarity of model outputs (Masson and Knutti, 2011; Knutti et al., 2013; Boé, 2018; Bock et al.,
2020; Brunner et al., 2020). Both model bias and similarities are ultimately due to the parametrizations
used to represent processes that cannot be explicitly resolved and, to a lesser degree, due to the
discretizations and numerical methods used to solve the fundamental model equations.

Work is ongoing to further reduce these parametrizations in new generations of kilometer-scale, storm-
resolving global models with the ultimate aim of creating a digital twin of Earth (Bauer et al., 2021;
Rackow et al., 2021; Hohenegger et al., 2022). These developments continue to blur the boundaries
between weather prediction, climate prediction, and climate projection (Meehl et al., 2021) and call for
new, innovative evaluation methods that allow models to be compared with observations and with each
other on weather timescales. For example, biases in climate models can emerge over relatively short
timescales when a model is initialized with an observed state, and pinpointing these biases may help
model development (Palmer, 2016). This includes investigating the extent to which model biases and
dependencies can be identified on such short timescales and how this can be interpreted.

A range of recent studies have demonstrated the potential of statistical and machine learning in climate
science. These include approaches for seasonal prediction (Gibson et al., 2021), to identify forced signals
from spatial patterns of temperature, precipitation, and humidity (Barnes et al., 2019; Sippel et al., 2020;
de Vries et al., 2023), to explore the role of single forcing agents (Labe and Barnes, 2021), to predict
modes of atmosphere–ocean variability (Gordon et al., 2021), and, most recently, to contrast models and
observations (Labe and Barnes, 2022). Here, we investigate the potential of such statistical and machine
learning classifiers to separate models from observations and from each other on the basis of daily data,
and thus in the presence of considerable noise arising from the internal variability on weather timescales.
We argue that the typically applied temporal aggregation over several years or even decades can be
overcome and that future model evaluation methods might be able to be based on considerably shorter
time periods, at least once classifiers have been trained. This can allow the investigation of new or updated
models for which decades of data are not yet available, as showcased by the inclusion of 1 year of
experimental storm-resolving simulations provided by the NextGEMS project.1

The work is guided by two main questions which are detailed and discussed in Sections 3 and 4: based
on daily temperature output (a) can out-of-sample test datasets (i.e., datasets never used in training) of
models and observations reliably be identified as different from each other and (b) can temporally out-of-
sample test data be identified by their name, even if they come from a different climate regime? The
datasets and methods are presented in Section 2, and the results are summarized and interpreted in
Section 5.

2. Data and Methods

2.1. Model and observational data

We use all available CMIP6 models which provide daily data for 2 m surface air temperature in the
historical period. In total, this amounts to 43 models, which can be broadly grouped into 22 families by
developing institutions (see Supplementary Table S3 for a full list). To represent the observations, we use

1 https://nextgems-h2020.eu
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four datasets selected to cover some of the diversity in observational products: (a) the fifth generation of
the European Centre for Medium-Range Weather Forecasts (ECMWF) Retrospective Analysis (ERA5;
Hersbach et al., 2020); (b) the Modern-Era Retrospective analysis for Research and Applications version
2 (MERRA2; GMAO, 2015; Gelaro et al., 2017); (c) the Twentieth Century Reanalysis version 3 (20CR;
Slivinski et al., 2021), which assimilates only surface pressure observations and, hence, relies consider-
ably more on modeling for its output; (d) the Daily Optimum Interpolation Sea Surface Temperature
dataset version 2 (DOISST; Huang et al., 2021), which could be considered as more direct observations
compared to the other datasets. The first three observational datasets provide 2 m surface air temperature
also over the oceans equivalent to the models, while DOISST is based on interpolated in situ and remote
sensingmeasurements of sea surface temperature, which is a slightly different but closely related measure
of temperature.

The time period from 1982 to 2014 is used to match the first availability of all observational datasets
and the end of the historical forcing period in CMIP6, respectively, and all daily temperature fields
(including the high-resolution simulations) are regridded to 2.5° × 2.5° resulting in a total of 10,368 grid
cells (72 latitudes × 144 longitudes). Since DOISST does not provide data on land, we apply a common
land-sea mask to all datasets, using only the 6,888 ocean grid cells. Sensitivity analysis (omitting
DOISST) shows that results are similar if the analysis is based on all grid cells.

In addition, we use temperature projections for the end of the century (2091–2100) driven by the high
emission scenario SSP5-8.5 (Meinshausen et al., 2020), where available, to test the robustness of our
approach under severe warming (see Supplementary Table S3). Finally, we also draw on 1 year (February
2020 to January 2021) of prototype data from cycle one of the NextGEMS project and use global
temperature fields from an ICON-Sapphire run with an atmospheric resolution of 5 km (experiment ID:
dpp066; Hohenegger et al., 2022).

2.2. Statistical and machine learning classifiers

We use two different statistical and machine learning methods to separate models from observations and
from each other. First, logistic regression, which allows insights into the learned coefficients but has the
limitation of being a linear method. Second, a convolutional neural network (CNN) which represents
rather the other end of the complexity spectrum, being able to learn nonlinear spatial relations between
features but lacking the easy interpretability of logistic regression.

Logistic regression is linear in its parameters and takes anM×N matrix as input, whereN is the number
of samples (days) andM is the number of features (ocean grid cells). For training an additional vector of
length N is provided containing the true labels yn (i.e., 0 for “model” and 1 for “observation”) for each
sample. A continuous predicted probabilitybpn is then assigned to each sampleXn based on its features xn,m
and the regression parameters wm via the logistic function:

bpn = 1

1+ exp � w0+
PM

m= 1wmxn,m
� �� �

The outcome is in 0,1½ �with 1 indicating the highest chance that a given day belongs to the “observation”
category and at the same time the lowest chance that belongs to the “model” category since the categories
are complementary: bp yn = 0jXnð Þ= 1�bp yn = 1jXnð Þ
The predicted category byn is based on this probability bpn with a decision threshold of 0.5. The logistic
regression classifier is constrained by a L2 regularization (i.e., a penalty on the squared sum of regression
coefficients wm) to avoid overfitting and to ensure smooth coefficients in space. Overall coefficients wm

are searched to minimize the expression:

minw �C
XN
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Note that in the implementation based on scikit-learn2 used in this paper, the regularization parameterC is
multiplied with the residuals rather than with the coefficients, meaning that smaller values of C lead to
stronger regularization. C is optimized using 5-fold cross-validation. More general details on regularized
logistic regression can be found, for instance, in Hastie et al. (2009).

To complement the logistic regression classifier, we use a CNN as a second method. Deep neural
networks, such as CNNs, can have considerably more trainable parameters (often organized in
multiple layers) and can be less interpretable than traditional methods. This means that they can be,
on the one hand, more prone to overfitting but, one the other hand, can also learn more complex,
nonlinear relationships in the data. Therefore, their use in different scientific disciplines, not least in
climate sciences, has been rapidly increasing in recent years (Kashinath et al., 2021; Hsieh, 2022). Due
to their complexity, many different design choices in the exact layout of the network are possible; here,
we use an out-of-the-box setup for image classification without hyperparameter tuning but adjusted to
the resolution of the daily temperature maps used in the input layer. Overall, the CNN consists of an
input layer, eight hidden layers, and an output layer. See Supplementary Table S2 for details about the
layout.

The 2-dimensional temperature fields from each day can directly be interpreted by the CNN equivalent
to a image classification task; therefore, the input layer takes a K×L×N×1matrix where N is, again, the
number of days,K is the number of latitudes, L is the number of longitudes, and 1 is a single color channel
representing the temperature values. Note that for this case land grid cells are included but set to a constant
fill value. The convolutional layers use the rectified linear unit as activation function, while the output
layer uses the softmax operator to assign probabilities to each of classification categories zn:

bpn = eznPN
n e

zn

This means that, in contrast to the logistic regression, the CNN is set up to separate also between multiple
output categories (multi-class case) and a given input is identified as belonging to the class with the
highest probability. For the binary case with only the “model” and “observation” classes, discussed in the
first part of this paper, this means that the probabilities are complementary and the threshold for
assignment is 0.5 as for the logistic regression. To avoid overfitting for the CNN, part of the training
data is used for validation during the training process and an early stopping criterion is applied on the
validation loss. The evolution of loss and accuracy during the training epochs are shown in Supplementary
Figures S2 and S3. All classifiers are mostly well-calibrated with the CNN showing a tendency for
overconfidence, in particular, for the multi-class cases (Supplementary Figures S4–S6).

The performance of the classifiers is, on the one hand, assessed using the overall accuracy which is
defined as the number of correct predictions divided by the number of total predictions. On the other hand,
also the confidence in the predictions is assessed based on the probabilities assigned to each test sample
from each dataset individually.

2.3. Out-of-sample frameworks and preprocessing

We use daily, land-masked temperature fields as samples, resulting in 6,888 grid cells being used as
features for the classification. The 2-dimensional daily fields are either used directly in the case of the
CNN classifier or flattened to a 1-dimensional feature array in the case of logistic regression. Note that the
changing grid cell area with latitude due to longitude convergence is not explicitly accounted for in this
study but may be implicitly learned by the classifiers.

Training and validation days are drawn from the 20-year period 1982–2001, as test data all days from
the two temporally out-of-sample 10-year periods 2005–2014 and 2091–2100 are used. Therefore, all
results are based on test samples that were never seen in training.

2 https://scikit-learn.org
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For the separation of “model” versus “observation” in Section 3, we use an additional dataset out-of-
sample framework to explore whether the learned parameters can be generalized to unseen datasets: a
separate classifier is trained for each dataset, where all samples from the dataset in question are withheld
from training. To be even stricter, for climatemodels not only themodel in question is withheld in training,
but also all closely related models (see Supplementary Table S3 for a list of the model groups). We chose
this approach because it has been shown that closely related models (i.e., models developed at the same
institution) can have very similar output (Brunner et al., 2020). The only exceptions to this are the
regression coefficients shown in Figure 1 and the bootstrap tests for which all datasets were used in
training.

In both machine learning and climate modeling, there are different preprocessing and bias-correction
options and corresponding terminologies. These include more general approaches such as feature
normalization and more domain-specific approaches such as bias correction. The latter are based on
physical system understanding, such as the insight that the mean temperature bias is not a relevant
predictor of a model’s ability to simulate changes in the climate system (Giorgi and Coppola, 2010). Here,
we opt for two domain-specific bias-correction approaches from climate sciences: (a) from each daily
temperature field, the global mean over that field is removed and (b) from each daily temperature field, the
seasonal mean field is removed in addition to (a).

For (b), the seasonal mean temperature field is calculated individually for each dataset and only based
on the training data. For each day-of-the-year and grid cell, it is calculated as the average over ±15 days
around that day-of-the-year and over all training years (i.e., a mean over 31 days× 20 years = 620 values).
For the ICON-Sapphire model, the seasonal cycle is estimated based on only 1 year (i.e., 31 values
centered around each day of the year).

Finally, each sample is associated with one of two label types to be predicted by the machine learning
classifiers: either “model”/“observation” (binary case) or the name of the dataset (multi-class case; see the
dataset ID column in Supplementary Table S3). A summary of all classifiers, bias corrections, and out-of-
sample strategies employed in this work can be found in Supplementary Table S1. The living code that
implements the general method is available on GitHub (https://github.com/lukasbrunner/model_learn
ing) and from Brunner and Sippel (2023). Supplementary Figures S7 and S8 show an example test day
from each of the datasets and for the two preprocessing cases, respectively. While, in the first case,
latitudinal temperature gradients due to differing solar insolation clearly dominate the temperature
pattern, in the second case patches of regionally cooler or warmer temperatures emerge, related to the
synoptic atmospheric conditions on that day. Note that on a given day (March 21st 2010 in Supplementary
Figures S7 and S8) models are not expected to simulate identical weather patterns compared to the
observations. The models are free-running and, therefore, simulate different synoptic situations and
related temperature patterns while the four observation-based datasets assimilate measurements from the
same day leading to very similar surface temperature patterns.

Figure 1. (a) Logistic regression coefficients learned from 17,200 randomly drawn daily samples in the
period 1982–2001 to separate models and observations. (b) Climatological mean, multi-model mean
temperature difference to the mean over the four observational datasets in the period 2005–2014. See
Supplementary Figure S7 for corresponding maps of the individual models. Coefficients and
climatologies are calculated from daily data with the global mean removed.
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3. Separating Models and Observations

3.1. Regression coefficient maps to separate models and observations

First, we train a single logistic regression classifier on all available datasets to establish the regularization
parameter and examine the learned coefficients. For this case, we use data with only the global mean
removed.We use 200 different, randomly drawn training days from each of the 43models resulting in 8,600
training samples labeled “model” which are matched by 8,600 random days labeled “observation” (2,150
fromeachof the four observational datasets). The classifiermanages to correctly identify the vastmajority of
test samples for this setup so that the number of training samples was limited to this amount to save
computational resources. It can be assumed that increasing the number of training samples would slowly
improve the classification skill even further. The results are also robust to using different random training
samples (see Section S3 in the Supplementary material for results from a 100-member bootstrap test).

Since temperatures between neighboring grid cells, used as features, are not independent, the 5-fold
cross-validation yields a strong L2 regularization parameter of about C = 0:002, which is used for all
logistic regression classifiers in this section. The spatial patterns in the features that are important for
separatingmodels and observations are reflected in the regression coefficients learned by the classifier and
are shown in Figure 1a. The distribution of the coefficients identifies areas important for the separation of
climatemodels and observations on a daily scale. In addition, the sign of the coefficients can be interpreted
physically, with positive values indicating regions where models tend to be warmer than the observations
and vice-versa.

The most prominent region of negative coefficients is found in the North Atlantic, near the so-called
North Atlantic warming hole (Chemke et al., 2020; Keil et al., 2020). Here models appear to systemat-
ically underestimate temperatures on a daily basis compared with observations and relative to the global
mean. In contrast, there are regions of high coefficients at the eastern edges of the Pacific and Atlantic
ocean basins. These regions correspond to persistent model biases in the representation of clouds and their
radiative effects which are known to occur on all timescales from daily to decadal (Williams et al., 2013;
Hsi YenMa et al., 2014; Brient et al., 2019; Bock et al., 2020; Chen et al., 2022). In the equatorial Pacific,
known as a region with notorious climate model biases that typically show too cold and too narrow
equatorial cold tongues, negative coefficients are also found by the logistic regression classifier. This is
accompanied bywarm biases to the north and south (shown as positive regression coefficients) associated
with the models’ representation of the intertropical convergence zone (Hirota et al., 2011; Li and Xie,
2014; Tian and Dong, 2020). Overall, there are notable consistencies in several of the large-scale patterns
between the logistic regression coefficients and the climatological mean, multi-model mean biases
(Figure 1a,b).

However, there are also several regions where the two do not match, such as high northern latitudes,
parts of the southern ocean, and the Antarctic coast. This can be an indication that the corresponding
features are not shared across all (or at least most) potential days drawn from different models and from
across the seasonal cycle. The high northern latitudes are briefly discussed here as one example for such a
case with the clear climatological cold bias in the multi-model mean (Figure 1b) not being reflected in
corresponding patterns in the regression coefficients (Figure 1a). This is probably caused by a combin-
ation of reasons as this region is known for its large (climatological) model spread (see, e.g., Notz and
Community, 2020 and Supplementary Figure S9), its seasonally varying biases with cold biases mainly
coming from the winter season (Davy and Outten, 2020), and large internal variability which reduces the
size of the regression coefficients there (Barnes et al., 2019; Sippel et al., 2020). In general, it is, therefore,
not a priori clear if patterns important for the classification of individual days and long-term climatological
biases (averaged over multiple models) would match at all, but our findings show that for several regions
this is the case.

3.2. Logistic regression classification of out-of-sample datasets

In the rest of this section, we use the dataset out-of-sample approach described in Section 2.3 to show
whether the classifiers can be generalized to datasets unseen in training. The probabilities assigned to the
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test samples by each corresponding classifier are aggregated in Figure 2a. For the vast majority of cases,
the logistic regression classifiers assign the correct category with close to 100% probability leading to an
overall accuracy of 99.4% (excluding ICON-Sapphire discussed below). Some of this skill may be due to
remaining dependencies across families, which were quite loosely defined based on institutions in this
study. However, it could also be an indication for the existence of persistent distinguishing features that
can be transferred between models even in presence of the large internal variability on daily timescales.

For several models, a fraction of test samples is predicted with less certainty (boxes and whiskers
emerging from the zero-line in Figure 2a and reliability diagram in Supplementary Figure S4). The model
familiesmost prone to get confusedwith observations areCMCC,CNRM,EC-Earth3,GFDL, and INM.An
intuitive interpretation of this behaviormight be that thesemodels provide the “best” representation of “true”
temperatures on a daily basis as they are most similar to the observations (at least viewed through the lens of
logistic regression). However, this is not conclusive and would require additional evidence. First, there are
only very few samples with a nonzero probability of belonging into the observation category for any given
model, so the confusion could be due to chance (i.e., a model sample could be classified as observations, but
for the wrong reasons so that no conclusion should be drawn about the overall performance of themodel). A
second important consideration is possible codebase overlap also between models and the observational
datasets, which could bepickedupby the classifier as discussed inmore detail in Section4.Nevertheless, the
approach of intentionally exploitingmisclassifications ofmodels as observations is still a promising avenue
for future research as recently also highlighted by work from Labe and Barnes (2022), who find that for the
Arctic test samples observations are most prone to get confused for certain models.

Focusing on model families that provide high and low resolution variants of the same model (AWI,
CMCC, CNRM,HadGEM,MPI, andNorESM2), one can speculate about some resolution dependence in
the probability to be misclassified. Several finer-resolution model variants appear to have a higher chance
to be misclassified compared to their coarser-resolution siblings (model names including HR, MR/MM,
or LR/LL indicating relatively higher to lower resolution in Figure 2a). Such a behavior would be

Figure 2.Distribution of predicted probabilities for the dataset out-of-sample test days: for each dataset,
the probabilities are estimated by a classifier which has not been trained on this dataset. The vertical
dotted line at 0.5 marks the decision threshold between the two categories. ICON-Sapphire is never used
in training and has only 1 year of data available. (a) Results for logistic regression classifiers using data
with the daily global mean removed. (b) Same as (a) but for the convolutional neural network. (c) Same as
(b) but using data with the seasonal cycle removed in addition.

Environmental Data Science e22-7

https://doi.org/10.1017/eds.2023.23 Published online by Cambridge University Press

http://doi.org/10.1017/eds.2023.23
https://doi.org/10.1017/eds.2023.23


consistent with studies based on climatological timescales such as the findings of Bock et al. (2020), who
note that long-standing regional model biases are smaller in higher resolution versions of the samemodel.

3.3. Classifying samples from the kilometer-scale ICON-Sapphire model

To investigate this further and to highlight a potential application of our approach, we include preliminary
results from the NextGEMS project and predict samples from 1 year of data from a global, storm-
resolving (atmospheric resolution 5 km) simulation using ICON-Sapphire (Hohenegger et al., 2022). Due
to the high resolution, processes that need to be parameterized in CMIP6-type models can be explicitly
resolved in ICON-Sapphire, which can be expected to have considerable impacts also on the daily
temperature fields. However, they do not obviously show in the climatological mean difference to the
observations which is comparable to coarser resolved models and shows similar patterns, although we
note that this could be a coincidence given that only a single year is used (see Supplementary Figure S10).
This means that based on the comparison of climatologies alone, one might assume that the logistic
regression classifier should be able to unambiguously identify ICON-Sapphire as a model.

To investigate this, we classify test samples from ICON-Sapphire using the logistic regression
classifier trained on all other datasets. However, despite the similar climatologies, the classifier is
unable to clearly identify ICON-Sapphire as either model or observation with about half of the samples
predicted to be in either category. This indicates that the classification is (at least partly) based on more
complex relationships in the high-dimensional feature space than can be easily assessed by the
comparison shown in Figure 1. The explicit resolution of processes which are parameterized in coarser
models seems to lead to differences in the daily temperature fields in ICON-Sapphire that prevent a
correct classification, even though they do not clearly emerge in the climatological mean. This points to
a potentially highly encouraging emergent behavior of the ICON-Sapphire simulations, but in principle
some effect of compensating errors cannot be excluded, and hence wewarrant a careful interpretation of
this result, which will be verified as soon as a longer simulation with this model is available. Should
such a relationship hold in future research, it will enable innovative, new ways of model evaluation
based on much shorter timescales than the 20+ years typically used.

To test whether the results for the ICON-Sapphire model are merely an artifact of the logistic
regression, we also use a more complex, but less interpretable CNN. The CNN classifiers achieve a
similar overall accuracy of 99.7% for the same dataset out-of-sample framework and samples with the
global mean removed. In general, the pattern of models with samples that get misclassified is quite
consistent between the logistic regression and the CNN (Figure 2a,b).While ICON-Sapphire still stands
out as the model most likely to be confused for an observation, confirming the results from the logistic
regression classifier, the CNN is able to correctly identify the majority (75.1%) of test samples,
suggesting that it learns some more fundamental model properties that persist also at high resolution.
Compared to the rather simple “model fingerprint” shown for the logistic regression in Figure 1a, the
classifications from the CNN are, thus, likely to be based on more complex relationships. We plan to
investigate these relationships and the importance of different grid cells for the skill of the CNN in
future work, drawing on techniques that, for example, aim to reveal regions of higher and lower
importance in the temperature maps used as input (Bach et al., 2015).

3.4. CNN classification of out-of-sample datasets without climatological bias

Based on these results, we, next, test if models and observations can still be separated in the absence of any
climatological biases. To do this, we now also remove the mean seasonal cycle from each sample (see
Section 2.3 for methodological details, Supplementary Figure S11 for the resulting multi-model mean
bias equivalent to Figure 1b, and Supplementary Figure S12 for a breakdown by individual models). This
means that any dataset-specific persistent regional biases that might have served as a basis for separation
so far are now removed, along with any biases in the equator-pole gradient or between the hemispheres.
Therefore, the classifiers can now only train on the spatial relationships of the remaining internal

e22-8 Lukas Brunner and Sebastian Sippel

https://doi.org/10.1017/eds.2023.23 Published online by Cambridge University Press

http://doi.org/10.1017/eds.2023.23
http://doi.org/10.1017/eds.2023.23
http://doi.org/10.1017/eds.2023.23
https://doi.org/10.1017/eds.2023.23


variability (which could be interpreted as daily weather), making the classification task considerably
harder.

For this case, logistic regression no longer has any skill as the only remaining sources of information
are nonlinear relations between the spatial structures of daily global weather and the test samples are all
centered around the decision threshold (not shown). In contrast, the CNN achieves an overall accuracy of
about 94.2% demonstrating the power of this nonlinear method. Figure 2c shows the corresponding
breakdown of predicted probabilities revealing that now almost all models get confused for observations a
number of times but still all are classified correctly for the vast majority of test samples, with the sole
exception being the ICON-Sapphire model.

For ICON-Sapphire, the seasonal cycle has been estimated using only the 31-day running window as
only 1 year is available. This differs from the other datasets where the seasonal cycle has been calculated
over the full 20 years of the training period (Section 2.3). Therefore, the results for ICON-Sapphire need to
be interpretedwith care and should be revisited oncemore data are available. Nevertheless, we show these
preliminary findings here, to highlight that, based on these results the structure of the remaining internal
variability in ICON-Sapphire is recognized as more closely resembling observations than CMIP6
generation models. In fact, ICON-Sapphire is more frequently classified as observation than three of
the four observational datasets (ERA5,MERRA2, and 20CR) by the respective classifiers trained with the
tested dataset withheld. While this result is preliminary and not conclusive due to the limited amount of
data available, it, again, points toward very encouraging properties of kilometer-scale models that warrant
closer investigation as more data become available.

In turn, the DOISST dataset is identified correctly with perfect accuracy in all three cases shown in
Figure 2 with only individual misclassifications appearing even when bootstrapping the training data
(Supplementary Figure S1). Optimistically interpreted, this could mean that the classifiers are picking up
on the fact that DOISST is the dataset with the least amount of model included (see Section 2.1) and that
they have indeed learned some fundamental distinguishing features. This interpretation is supported by
the fact that 20CR is most prone to get confused for a model, while also being the observational dataset
that relies most heavily on a model for its output.

The overall skill of this binary classification of out-of-sample datasets is notable, in particular, when
considering that bias correcting each model by subtracting the mean seasonal cycle and the daily global
mean effectively removes the entire time-persistent regional bias as well as any global mean offset
between the datasets. This means that the only remaining sources of information to learn from are
amplitude and spatial dependencies of the remaining daily temperature variability. One remaining source
of model-observation differences for this case could arise from the coupling of atmosphere and ocean and
the resulting surface energy balance in the models.

In a planned follow-up study, wewill build on the results presented here and analyze the origin of this skill
inmore detail, using explainablemachine learning techniques (e.g.,Bach et al., 2015) aswell asmore specific
approaches drawing on domain knowledge from climate sciences. The latter will include, for example,
targeted masking of certain regions where climate models are known to perform particularly well/poorly to
systematically investigate which areas of the globe are essential for skill and how this might depend on the
models used. Such a combination of general and domain-specific approaches to classification skill is
important to account for special properties of the temperature maps used compared to more general image
classification. These include fundamental properties of the climate system such as the imprint of topography,
temperature gradients, and circulation patterns, which are to some extent common to all datasets.

4. Identifying Models by Name

In the first part of this paper, we showed that there are common features across models and observations,
respectively, that enable us to reliably identify even datasets unseen in training. In this section, we
investigate whether there are also separating features that allow us to distinguish models from each
other. Previous research, based on climatological timescales, has shown that models can be separated as
well as clustered into families based only on their output (e.g., Masson and Knutti, 2011; Knutti et al.,
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2013; Boé, 2018; Brunner et al., 2020; Merrifield et al., 2020, 2023). Here, we investigate whether
models (and observations) still have unique features that allow them to be identified even on daily
timescales.

We use the CNN on the data with the seasonal cycle and global mean removed and train it to recognize
each of the 43 models as well as the four observational datasets. We increase the number of training
samples to 2,000 per dataset for this casewherewe only train a single classifier. In the previous section, the
tested dataset was withheld from training, this is obviously no longer possible for this case where we aim
to identify each model by name. Therefore, we only use temporally out-of-sample test samples (see
Section 2.3 for details).

Assigning the correct label to each of the 47 datasets yields an overall accuracy of 83.4%. To put this
into context, note that compared to the binary classification in the last section, we are now aiming to
separate 47 categories, which considerably increases the difficulty of the classification. The CNN is thus
able to pick up patterns unique to each dataset in order to separate it from all other datasets.

Figure 3 shows a breakdown of accuracy by dataset in a confusion matrix of true sample names versus
the predicted sample names. Correct predictions (predicted name equals true name) are located on the
main diagonal of the matrix and use green shading. As expected from the overall accuracy, the majority of
samples are assigned correctly with misclassifications exceeding 10% almost exclusively only found
within model families. Suchmisclassifications betweenmodels from the same family are shown in purple
shading and aremostly located in the secondary diagonals, as most relatedmodels have similar names and
the models are ordered alphabetically.

Overall, the model with the highest number of correctly identified samples is MIROC-ES2L (99.9%),
indicating that it is very different from all other models. This is consistent with studies using time averages
over several decades to investigate model dependence in CMIP5 (Knutti et al., 2013) and CMIP6
(Brunner et al., 2020). In turn, the models with the lowest number of correct predictions all belong to
larger model families (models with less than 80% accuracy in Figure 3). These results highlight that
models can be separated by name on the basis of their pattern of daily internal variability and that overlaps
in themodels’ source code lead to similarities in their daily internal variability, resulting in a higher chance
for misclassification within families.

On closer inspection, even some of the misclassifications outside of model families (red shading in
Figure 3) follow (more distant) model relationships. For example, about 10% of samples from the UK’s
HadGEM3-GC31-LL aremisclassified as theAustralian ACCESS-CM2model (middle of first column in
Figure 3), which is probably due to the fact that ACCESS-CM2 reuses many of the UK models’
components (Bi et al., 2020). Similarly, about 7% of samples from ACCESS-CM2 are misclassified as
the Korean KACE-1-0-G model (middle of first row in Figure 3), which is also related to the HadGEM
family (Lee et al., 2020). Similar considerations apply to other related model groups (see, e.g., Brunner
et al., 2020 for a discussion of broader model families), although there also remain a number of
misclassifications that cannot be explained.

Similar to the binary case discussed in the first part, resolution (and related changes in the parame-
trizations) emerges as a property that is important for classification skill. For example, in the CMCC
family theCM2-SR5 andESM2variants are confusedwith each other in about a third of the sampleswhile
the HR4 variant with a higher resolved ocean (Cherchi et al., 2019) is hardly confused with either of the
former two, suggesting that the higher resolution sets the model apart. A somewhat similar pattern can be
observed for the other three families with three or more members: EC-Earth (Veg-LR is less often
confused with family members and has a lower atmospheric resolution; Döscher et al., 2022), HadGEM
(GC31-MM with higher atmospheric and ocean resolution; Andrews et al., 2019), and MPI (HR with
higher atmospheric and ocean resolution; Mauritsen et al., 2019).

Concerning observations, a notable feature of Figure 3 is that misclassifications between models and
observations are not symmetric. Hardly any models are being misclassified for observations, while the
observational datasets ERA5 and MERRA2 get confused as models for 20 and 30% of samples,
respectively. This is consistent with the dataset out-of-sample results shown in Figure 2c, where we
found that observations are mistaken for models more often than vice-versa. A possible interpretation of
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this behavior is that models produce more homogeneous patterns persistent across days (samples), while
the two reanalyses in question produce more diverse output due to the assimilation of observations. This
will be further investigated in future work, including the identification of possible patterns in the
misclassifications, for example, a seasonality.

Similar to confusions between models, observational misclassifications may reflect potential (remote)
dependencies in the source code even between models and reanalyses. For example, ERA5, for which
about 10 % of test samples are predicted to be from the EC-Earth family, which has documented
dependencies on the ECMWF atmosphere which is also used in ERA5. (Döscher et al., 2022). MERRA2
is predicted to be the GFDL-ESM4model for about 12% of cases, whichmight be attributable to common
heritage as the atmospheric models used in GFDL-ESM4 (AM4.0; Dunne et al., 2020) and MERRA2
(GEOS-5; Rienecker et al., 2008; Molod et al., 2015) are based on the same dynamical core (Lin, 2004).

Figure 3. Confusion matrix showing the frequency of predicted versus true labels. The main diagonal
shows correct predictions using green shading, purple shading indicates misclassifications within a
model family (see Supplementary Table S3), and red shading indicates other misclassifications. Values
are in % relative to the total number of samples in each category. The number in each box gives the value
rounded to the last shown digit with rows not adding up to 100% only due to rounding.
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The third observational dataset, DOISST, is never misclassified which is consistent with the results
from the binary case presented in Figure 2. The combination of these two results suggests that DOISST
has very clear observational properties but is still a very distinct dataset. For 20CR, we find a slightly
different behavior to the binary case, with the number of misclassifications being considerably reduced in
Figure 4. This could mean that 20CR has properties of both model and observation, making it easier to
identify it as an individual dataset rather than as belonging into the broader observational category.

Finally, we investigate how the daily differences betweenmodels relate to the differences due to global
warming and check whether the classification remains robust in a changing climate by drawing test
samples from the period 2091–2100 rather than from 2005 to 2014. There is no absolute warming present
in either training or test samples due to the removal of the daily global mean, but daily weather patterns are
expected to change significantly in a warming world (e.g., Sippel et al., 2020). This is particularly true as
we use data from the high-emission pathway SSP5-8.5 which leads to an additional global mean warming
of about 4 K compared to today depending on the model (IPCC, 2021). For this case, only 33 models and
no observations are available. Figure 4 shows the patterns learned by the CNN in the historical period still
persist even after severe climate change and allow the correct identification of about 69.9% of the test
samples from the end of the century. For this case, several models have more than 10% of their samples

Figure 4. Same as Figure 3 but with test data from the end of the century (2091–2100). Labels from
datasets which do not cover this period are omitted in the true category.
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misclassified as another, not closely related model. Still, many of the characteristics discussed above
persist for this case. For example, MIROC-ES2L remains the model with the highest accuracy and
EC-Earth3-Veg remains the model with the most misclassified samples.

Ultimately, classifiers similar to the one used here, once trained, could be used, for example, in model
development to investigate the impact of changes in parametrizations, resolution, or model components
on themodel output without the need to run the testedmodel for several decades. Conversely, if a model is
no longer recognized by name in a future run, this might also be an indication for a very different behavior
and spatial patterns, thus warranting a closer investigation.

5. Summary, Conclusions, and Outlook

We have shown that machine learning classifiers, once trained, can distinguish CMIP6 generation climate
models from observations based on only the temperaturemap of a single day even for entirely newmodels
never used in training. Both investigated approaches (logistic regression andCNN)were found to perform
very well in separating 2 m surface air temperature fields where only the global mean has been removed,
both achieving an accuracy of over 99%.When the mean seasonal cycle was removed from each grid cell
and dataset in addition, the logistic regression no longer showed any skill while the CNN still achieved an
accuracy of over 90%.

The performance for the latter case is quite remarkable, given that the removal of the mean seasonal
cycle means that the classifiers could not learn from regions of dataset-specific, time-persistent biases,
and thus had to rely only on the spatial dependence structures and the amplitudes of variations of daily
global weather. The properties of the CNN as a highly nonlinear, deep learning method, however, did
not allow a straightforward extraction of the features used to separate the two categories, but a planned
detailed investigation will be able to reveal more details in future work. This will be based, for example,
on layer-wise relevance propagation, a technique that can reveal the “grid cell relevance” of the
temperature maps used as input for the output probabilities of a trained neural network (Bach et al.,
2015; Toms et al., 2020; Labe and Barnes, 2022). For a comprehensive overview of such an approach
applied to a related problem, including a review of the current literature, see, for example, Labe and
Barnes (2022). These techniques investigating the classifiers themselves will be combined with
background knowledge about climate models to provide integrated and interpretable insights into
the origins of the classification skill.

In addition to the CMIP6 models, we also tested the classifiers on 1 year of prototype data from a
global, storm-resolving simulation run with ICON-Sapphire at a resolution of 5 km. The logistic
regression classifiers were unable to clearly assign the samples from ICON-Sapphire into either
category, indicating that this high-resolution case has different and potentially reduced daily biases or
more realistic covariance structure compared to the other, lower-resolution CMIP6 models. The
CNN, in turn, managed to correctly predict that the samples from ICON-Sapphire with only the global
mean removed belong to the model category for slightly more than 75% of samples, which is still a
much lower value than for all other models. In the case where the seasonal cycle (estimated from only
1 year of data) was removed as well, the CNN misclassified the vast majority of samples as clearly
belonging to the observation category.

This case raises a number of interesting questions that we will follow up upon once more data become
available, for example: does the emerging higher similarity between ICON-Sapphire and observations
truly reflect improvedmodeled characteristics of the daily temperature field covariance structure, or could
it be due to some compensating error phenomena? If the former, is the higher similarity to observations
due to reduced biases overall, or due to improved daily covariance structure of temperature fields?Which
resolution or other improvements would it take to truly pass the “climate model Turing test” (Palmer,
2016) of inseparability of output fields of observations and climatemodels? The result for ICON-Sapphire
is potentially highly encouraging, but we warrant that a cautious interpretation is needed, as only a short
ICON-Sapphire simulation period was available at the writing of this study, and thus some effects of
compensating errors cannot be definitely excluded.
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In the second part of the study, we investigated the ability of the CNN to identify each of the 43 models
and the four observational datasets included in the study by their name. Again, we used daily temperature
fields with the mean seasonal cycle and the daily global mean removed. We found an overall accuracy of
83%,which is about 40 times better than the baseline of a random choice. These results show that the CNN
is clearly able to pick up relations between features that reliably separate models, including very similar
variants from the same model families. At the same time, most of the misclassifications occur within
model families or can be traced back to more distant “relations” such as common “ancestors.” There is
evidence that this behavior even holds for two of the reanalyses, ERA5 and MERRA2, which are
misclassified as models from the EC-Earth and GFDL families, respectively, for more than 10% of cases
and have documented common ancestry. Although more in-depth research is needed to confirm these
results, they provide an interesting finding about the imprint of shared code even on short timescales and
between development streams that have diverged many years ago.

Finally, we showed that the CNN is able to correctly identify about 70%of test samples evenwhen they
are drawn from the period 2091–2100 under the high-emission scenario SSP5-8.5, which is separated
from the training period by about 100 years and features about 4 K warmer climate in the global average.
Although this mean warming itself is not included in the samples, weather patterns are expected to change
considerably due to climate change (Sippel et al., 2020). This means that the features used to identify
climate models are—to a certain extent—state-invariant and thus remain robust even under a warming
exceeding several degrees centigrade.

Future applications could build on the approaches illustrated here in several ways:

• They could add to the model evaluation toolbox (Eyring et al., 2019) and could target, for example,
the classification of individual model components (e.g., atmospheric or ocean component), model
generations (e.g., CMIP6 versus the roughly 10 years older CMIP5), perturbed parameter ensem-
bles, or strains of model development in general. Following recent work from Labe and Barnes
(2022), misclassifications could also be used systematically to draw conclusions about model
performance.

• The classification approaches could be used to pinpoint model–model or model–observation
differences and similarities. This could be done by analyzing the spatial scales of separability, that
is, whether models on regional domains are less separable than globally, and/or whether this may
depend on specific regions. Additionally, illustrating and understanding the patterns of separability,
by using explainable neural network techniques (e.g., Toms et al., 2020), revealing how the neural
network has learnt to distinguish models and observations, could provide additional insights.

• Related approaches could also be applied to infer model performance directly (e.g., predicting an
estimate of climatological model error from short timescales) and possibly directly incorporating
physical or dynamical processes (such as changes between two consecutive days) (Kashinath et al.,
2021). This may be particularly relevant for high-resolution simulations such as the storm-resolving
simulations currently in development, for which only short periods of simulation are available. In
addition, recent efforts to merge climate predictions initialized from an observed state seamlessly
with climate projections (Befort et al., 2022) may be interesting to analyze with our method, as it
allows to diagnose from short timescales at which point the climatological model biases start to
emerge, which may provide an opportunity for model development (Palmer, 2016).

• Here, we have focused on spatial patterns of mean temperature but other variables, such as
precipitation, or other dimensions, such as the temporal distribution (potentially in a regional
domain as discussed above) could also be considered to investigate their behavior.

• Our approach tests to which degree transferring patterns and relationships between models and
observations is justified (Meinshausen, 2018). This assumption of distributional robustness is
frequently made in the literature when classifiers are trained on simulated data and then applied
to observed data (Gibson et al., 2021; Gordon et al., 2021; Kadow et al., 2020; Labe and Barnes,
2021; Sippel et al., 2021). From this perspective, our results can be seen as adversarial validation,
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which can be used to check whether the generalization from training to test sets is justified on
different timescales (Shen et al., 2021).

• Lastly, and most speculatively, recent advances in machine learning towards image-to-image
translation, using, for instance, techniques such as generative adversarial networks (Stengel et al.,
2020), could provide an avenue to iteratively bias-correct model output in relation to observations,
until a hypothetical “bias-corrected” spatial pattern would indistinguishable from observations. The
idea in such generative adversarial approaches is precisely that a classifier cannot tell the difference
between a simulated, “bias-corrected” output field, and an observed one.
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