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Predicting viscous-range velocity gradient
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Perry L. Johnson1,‡ and Charles Meneveau1

1Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics,
Johns Hopkins University, Baltimore, MD 21218, USA

(Received 19 June 2017; revised 23 September 2017; accepted 14 November 2017;
first published online 20 December 2017)

The detailed dynamics of small-scale turbulence are not directly accessible in large-
eddy simulations (LES), posing a modelling challenge, because many micro-physical
processes such as deformation of aggregates, drops, bubbles and polymers dynamics
depend strongly on the velocity gradient tensor, which is dominated by the turbulence
structure in the viscous range. In this paper, we introduce a method for coupling
existing stochastic models for the Lagrangian evolution of the velocity gradient tensor
with coarse-grained fluid simulations to recover small-scale physics without resorting
to direct numerical simulations (DNS). The proposed approach is implemented in LES
of turbulent channel flow and detailed comparisons with DNS are carried out. An
application to modelling the fate of deformable, small (sub-Kolmogorov) droplets at
negligible Stokes number and low volume fraction with one-way coupling is carried
out and results are again compared to DNS results. Results illustrate the ability of the
proposed model to predict the influence of small-scale turbulence on droplet micro-
physics in the context of LES.
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1. Introduction
The goal of large-eddy simulations (LES) is to accurately capture the coarse-grained

dynamics of high-Reynolds-number turbulent flows (Sagaut 2006). In doing so, a large
majority of the turbulent kinetic energy may be resolved at a small fraction of the
cost of direct numerical simulations (DNS) by replacing the fine-scale details of the
flow with a subgrid scale (SGS) model for their effect on the resolved dynamics (Lilly
1967; Meneveau & Katz 2000). While such an approach has, in many cases, proven
successful for simulating high-Reynolds-number turbulence, many applications require
a more detailed representation of the fine-scale properties of the flow. Examples
include particle dispersion (Sawford 2001), preferential concentration of inertial
particles (Maxey 1987; Eaton & Fessler 1994), rotation and orientation dynamics of
rigid particles and fibres (Pumir & Wilkinson 2011; Chevillard & Meneveau 2013;
Voth & Soldati 2017), breakup and coalescence of aggregates, drops and bubbles
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Viscous-range velocity gradient dynamics in LES 81

(Maniero et al. 2012; Biferale, Meneveau & Verzicco 2014; Babler et al. 2015;
Marchioli & Soldati 2015; Spandan, Verzicco & Lohse 2016), micro-organism motility
and nutrient uptake (Batchelor 1980; Karp-Boss, Boss & Jumars 1996; Guasto,
Rusconi & Stocker 2012), flow-induced haemolysis (Behbahani et al. 2009; De
Tullio et al. 2012; Vitale et al. 2014; De Vita, de Tullio & Verzicco 2016), polymer
stretching–relaxation dynamics (Balkovsky, Fouxon & Lebedev 2000; Chertkov 2000;
Procaccia, L’Vov & Benzi 2008; White & Mungal 2008), and strain-rate quenching
of turbulent premixed flames (Meneveau & Poinsot 1991; Dopazo et al. 2015).

While improvements for SGS modelling of LES have been an important topic
of research for the past three decades, some focus is now shifting towards how
micro-physical processes such as those mentioned above might be accurately
dealt with in the context of LES, where the relevant small-scale turbulence
dynamics are simply not resolved. For instance, there has been work on modelling
unresolved velocity fluctuations for studying dispersion and other particle statistics
such as inertial particle clustering (Kuerten & Vreman 2005; Fede, Simonin &
Villedieu 2006; Mazzitelli, Toschi & Lanotte 2014; Minier, Chibbaro & Pope 2014;
Ray & Collins 2014; Park et al. 2017). However, many of the aforementioned
micro-physical applications are strongly affected by the gradient of the velocity field
(or coarse-grained gradient depending on the scale of the physics involved), which has
not received much attention in LES modelling contexts. A notable exception is the
work of Chen, Jin & Zhang (2016), which coupled the tensorial Ornstein–Uhlenbeck
(OU) model of Pumir & Wilkinson (2011) to an LES of isotropic turbulence. In that
case, the limitations of the OU model in faithfully representing turbulent velocity
gradient dynamics severely limited the resulting accuracy. The dynamics of velocity
gradients in turbulence are highly non-Gaussian (Li & Meneveau 2005; Wilczek &
Friedrich 2009) with significant spatio-temporal complexity. These highly non-trivial
dynamics can have important consequences for a wide range of micro-physical
applications where turbulence can play a role. The dynamics of velocity gradients
provide not only a rich description of the local flow conditions (Meneveau 2011) but
are also of theoretical interest to better understand phenomena such as intermittency
(Nelkin 1990; Schumacher et al. 2014) and Lagrangian chaos (Ottino 1989; Ott
1993).

For sufficiently small objects and features in a turbulent environment, the flow in the
immediate vicinity of a point x0 can be well approximated by a linearized description,
ui(x, t) ≈ ui(x0, t) + (xj − x0,j)Aij(x0, t), where Aij = ∂ui/∂xj is the velocity gradient
tensor having nine components. In an incompressible flow, the trace of A vanishes
due to the solenoidal constraint on the velocity field, leaving eight independent
quantities of interest. The velocity gradient tensor describes both the local straining
and rotating behaviour of the fluid, given by the strain-rate tensor Sij = (Aij + Aji)/2
and rotation-rate tensor Ωij= (Aij− Aji)/2, respectively (the rotation-rate tensor, being
anti-symmetric, can be more compactly expressed by the vorticity ωi =−εijkΩjk).

In terms of statistical descriptions of the small-scale structure of turbulence and
gradients, the hypothesis of local isotropy for small-scale turbulence, which can be
traced back to Kolmogorov (1941), i.e. ‘K41’, is very prominent and has garnered
considerable empirical support (see, for example, Saddoughi & Veeravalli 1994;
Sreenivasan & Antonia 1997; Johnson et al. 2017). This hypothesis also provides
a rationale for modelling the dynamics of small-scale quantities such as velocity
gradients in the canonical flow of isotropic turbulence. The velocity gradient in
isotropic turbulence, particularly from a Lagrangian perspective, has generated
much interest since the work of Vieillefosse (1982, 1984) and Cantwell (1992)
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82 P. L. Johnson and C. Meneveau

on the restricted Euler system. The restricted Euler system shares a number of
qualitative features with fully developed turbulence (not captured by an OU process)
but succumbs to a finite-time singularity because important viscous and pressure
effects are ignored. A simple linear damping model prevents this singularity for some
but not all initial conditions (Martin, Dopazo & Valino 1998). Girimaji & Pope
(1990) introduced a stochastic model with an expression for the viscous and pressure
terms which by design produced a lognormal probability density function (PDF)
for pseudo-dissipation. Further efforts by Jeong & Girimaji (2003), Chevillard &
Meneveau (2006) and Chevillard et al. (2008) borrowed a technique from tetrad
modelling (Chertkov, Pumir & Shraiman 1999) to build a more physics-based
closure using Lagrangian deformation history. Meanwhile, Wilczek & Meneveau
(2014) computed a stochastic closure for the pressure and viscous terms in the
Lagrangian velocity gradient evolution equation using Gaussian field statistics. Johnson
& Meneveau (2016) further showed that detailed analytical calculations assuming
Gaussian statistics, when combined with a Lagrangian deformation map, provides a
quite robust and accurate closure to model Lagrangian velocity gradients in isotropic
turbulence.

In this paper, we extend the stochastic model of Johnson & Meneveau (2016) to
predict velocity gradients in inhomogeneous turbulence by coupling the model to an
LES solution of the large-scale flow. The resulting model is compared with velocity
gradients from DNS of a turbulent channel flow. We also demonstrate its capability to
predict morphology deformation features of small droplets embedded in the channel
flow. This modelling approach opens up the possibility for simulating velocity gradient
effects across the wide range of natural and man-made turbulent flows for which
inhomogeneity is an important feature. The structure of the paper is as follows. The
relevant background is given in § 2, where the theory for the model is summarized.
The details of the various numerical simulations are provided in § 3 and results are
shown in § 4. A summary of results and conclusions are drawn in § 5.

2. Background and model development

This section provides background theory and modelling details for the paper. The
status of energy dissipation and velocity gradients in the context of LES is reviewed
in § 2.1, particularly emphasizing what small-scale information is and is not present
in an LES representation of the flow. Then, § 2.2 reviews stochastic models for the
velocity gradient tensor and develops the method for (one-way) coupling to LES.
This coupling requires tracking the particle trajectories in LES, which is done using
a modelling framework reviewed in § 2.3 along with a theoretical derivation for
one of the model coefficients. Finally, to facilitate a demonstration of micro-physics
which are strongly influenced by the velocity gradient, a simple model for droplet
deformation and relaxation dynamics is presented in § 2.4.

In this paper, we consider the incompressible Navier–Stokes (INS) equations,

∂tui + uj∂jui =−∂ip+ ν∇2ui, ∂juj = 0, (2.1a,b)

for a Newtonian fluid with kinematic viscosity ν, where ui(x, t) is the velocity field
and p(x, t) is the pressure field (divided by density). The INS equations form the basis
for the modelling and analysis of velocity gradients discussed below.
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Viscous-range velocity gradient dynamics in LES 83

2.1. Energy dissipation and gradients in large-eddy simulations (LES)
Large-eddy simulations (LES) represent an attempt to simulate the evolution of a
filtered velocity field (Germano 1992),

ũi(x)=
∫∫∫

G(r;∆)ui(x+ r) d3r, (2.2)

defined using a filter kernel G(r;∆) with width ∆. The LES equations are derived by
applying the filtering operation, (2.2), to the INS equations, (2.1),

∂tũi + ũj∂jũi =−∂ip̃+ ν∇2ũi − ∂jσij, (2.3)

where σij = ũiuj − ũiũj is the subgrid stress (SGS) tensor which requires a closure
model (Sagaut 2006). In this paper, we consider the popular, broad class of
Smagorinsky models based on the eddy viscosity approximation for the deviatoric

stress σ d
ij , with length scale ∆ and inverse time scale |S̃| =

√
2S̃ijS̃ij (Smagorinsky

1963),
σ d

ij =−2(Cs∆)
2
|S̃|S̃ij, (2.4)

where Cs is the Smagorinsky coefficient. This coefficient may be specified as a
prescribed model parameter (Lilly 1967), or determined dynamically using information
from the resolved flow field (Germano et al. 1991). When considering the large-scale
kinetic energy equation derived from (2.3), energy is dissipated from the filtered field
in two ways: (i) resolved molecular dissipation, ν|S̃|2, and (ii) transfer of energy to
unresolved scales, Π =−σijS̃ij. When using a Smagorinsky model, this so-called SGS
production becomes Π = (Cs∆)

2
|S̃|3, and is positive (no backscatter) as long as C2

s
remains positive.

The goal of LES is to resolve the most energetic motions of the flow. In fact, some
consider the defining quality of an LES to be the resolution of a certain percentage
(e.g. 80 %) of the flow’s turbulent kinetic energy (Pope 2000). Away from walls, this
goal can often be achieved with cost relatively independent of Reynolds number since
most of the energy resides in the largest decade (or so) of length scales. However,
when velocity gradients are important to the application at hand, the situation becomes
more difficult.

Consider a turbulent flow with Hölder exponents h(x, t), that is, the velocity
increments at length ` locally scale as δu(`) ∼ `h (this scaling can also be done in
a global sense for Lp norms using Besov exponents (Eyink & Aluie 2009)). The
fully resolved velocity gradient scales as |A| ∼ δu(η)/η∼ ηh−1, where η= ν3/4

〈ε〉−1/4

is the Kolmogorov length scale. Further, the filtered velocity gradient scales as
|Ã| ∼ δu(∆)/∆ ∼ ∆h−1. Thus, the percentage of resolved velocity gradient can be
estimated roughly as

|Ã|

|A|
∼

( η
∆

)1−h
, (2.5)

which becomes very small for ∆� η when h< 1 (h≈ 1/3 is the K41 approximation).
According to (2.5), to resolve a certain fraction of the velocity gradient as the
Reynolds number is increased, the grid resolution (∼∆) must increase proportional
to η, which leads to DNS-like scaling of the computation cost. At high Reynolds
numbers, direct resolution of velocity gradients becomes prohibitively expensive
and further modelling effort is needed. Therefore, while the average value of the
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84 P. L. Johnson and C. Meneveau

magnitude of velocity gradients in a turbulent flow can be approximated from LES
according to |A| ∼

√
Π/ν, the velocity gradient’s tensorial structure, dynamical

evolution, and increasing intermittency at smaller scales cannot easily be predicted in
LES.

2.2. Lagrangian velocity gradients
The evolution of velocity gradients along Lagrangian paths is given by the gradient
of (2.1),

d
dt

Aij =−AikAkj − ∂i∂jp+ ν∇2Aij, (2.6)

where d/(dt)= ∂t + uj∂j is the Lagrangian time derivative. We can consider (2.6) as a
nine-component ordinary differential equation (ODE) for the velocity gradient tensor.
In this view, the nonlinear A2 term and the isotropic part of the pressure Hessian
∇

2p = −trA2 are represented exactly, but the deviatoric part of the pressure Hessian
and the viscous Laplacian terms require closure models. A class of Lagrangian
velocity gradient models have been built using the Langevin equation associated with
(2.6),

dAij =
[
−AikAkj − P ij + V ij

]
dt+ bijk` dW k`, (2.7)

where the stochastic forcing uses a tensorial Wiener process, 〈dW ij〉 = 0 and
〈dW ij dW k`〉 = δikδj` dt. Here, P ij and V ij represent a model for the deterministic
effect of the pressure and viscous terms in (2.6), respectively. The form of (2.7)
was derived by Wilczek & Meneveau (2014) for stochastically forced isotropic
turbulence from the evolution equation for the (single-time) velocity gradient PDF,
with an alternate modelling interpretation relevant to unforced turbulence discussed
by Johnson & Meneveau (2016), whereby the stochastic forcing enters as part of
the model for the pressure and viscous terms accounting for interactions with nearby
particle trajectories. The deterministic part of the modelled terms in (2.7), Pij and
Vij, can then be constructed from conditional averages using assumptions about the
statistical structure of turbulent velocity fields. The fact that the terms in (2.6) which
do not require modelling (i.e. the nonlinear −A2 term and the isotropic part of the
pressure Hessian ∇

2p) give rise to a significant portion of the unique signatures of
turbulent velocity gradient dynamics makes such a modelling approach quite fruitful.

In this paper, we use the Recent Deformation of Gaussian Fields (RDGF) model of
Johnson & Meneveau (2016) to prescribe the diffusion tensor bijk` and the conditional
averages in (2.7). In short, this closure approach applies a short-time deformation
map D−1

ij = exp(−Aτ)ij with deformation time τ ∼ τη to conditional averages computed
by assuming velocity fields with all n-point PDFs being joint-Gaussian. While the
Gaussian assumption makes the calculation of conditional averages tractable, the
short-time deformation map introduces non-Gaussianity which is essential for the
description of turbulence at small scales.

The RDGF model for the Lagrangian velocity gradients in homogeneous isotropic
turbulence is

dAij =

[
−

(
AikAkj −

C−1
ij

C−1
kk

tr
(
A2
))
−

(
Gij −

C−1
ij

C−1
kk

tr (G)

)
+ V ij

]
dt+ bijk` dW ij, (2.8)

where the Gaussian calculations specify,
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Viscous-range velocity gradient dynamics in LES 85

Gij = D−1
mi

[
−

2
7

(
SmkSkn −

1
3 Sk`S`kδmn

)
−

2
5

(
ΩmkΩkn −

1
3Ωk`Ω`kδmn

)
+

86
1365 (SmkΩkn −ΩmkSkn)

]
D−1

nj , (2.9)

V ij =−
7Ckk

30
√

15τη

(
T ijC

−1
kk + 2T ikB

−1
kj −

4
21

B−1
ik Skj −

2
21

B−1
k` Sk`δij

)
, (2.10)

where T ij = 23/105Aij + 2/105Aji is a mixture of strain rate and rotation rate. The
short-time deformation map is described by the inverse of the left and right Cauchy–
Green tensors, C−1

ij = D−1
ki D−1

kj and B−1
ij = D−1

ik D−1
jk , and the diffusion coefficient tensor

of the stochastic forcing term is

bijk` =−
1
3

√
Ds

5
δijδk` +

1
2

(√
Ds

5
+

√
Da

3

)
δikδj` +

1
2

(√
Ds

5
−

√
Da

3

)
δi`δjk. (2.11)

As derived, the RDGF model has three parameters (τ , Ds, Da), which are prescribed
by three constraints. First, a consistency condition for the magnitude of the strain-rate
tensor, 〈|S|2〉 = τ−2

η , is required for constant energy dissipation rate. Additionally, the
Betchov relations 〈Q〉=−〈tr[A2

]〉/2= 0 and 〈R〉=−〈tr[A3
]〉/3= 0 (Betchov 1956) are

required for homogeneous turbulence. These three constraints fix the model parameters
to τ =0.1302τη, Ds=0.1014τ−3

η and Da=0.0505τ−3
η , thus completing the specification

of the RDGF model. More details concerning the development and assumptions of this
model can be found in Johnson & Meneveau (2016).

The above RDGF model was developed in the context of homogeneous isotropic
turbulence. In high-Reynolds-number turbulence, the behaviour small-scale quantities
such as the velocity gradient can be approximated by an assumption of local isotropy.
In the present context, this means that the RDGF model for isotropic turbulence can
serve as a general model for velocity gradients in inhomogeneous turbulent flows
(provided we are not too close to the wall). For inhomogeneous turbulent flows, the
essential information needed for using the local isotropy approximation is a local
dissipation rate, which we will call ε̂(x, t), or equivalently, the dissipation time scale
τη =

√
ν/ε̂ for a given fluid viscosity. In theory, we can think of ε̂(x, t) as the mean

dissipation rate at a point in the flow given the entire space–time field of filtered
velocity, ε̂(x, t)= 〈2νSijSij(x, t)|ũ〉. That is, if we simulated an ensemble of particles
in the filtered flow field all at a given point x and time t, their expected dissipation
rate would be ε̂.

To construct a simple model for ε̂ when LES flow information is available, it
is quite natural to balance the dissipation rate from LES (Π ) with this expected
dissipation ε̂ for the small scales. In order to build in a cascade time delay (Meneveau
& Lund 1994; Wan et al. 2010) between production and dissipation of energy, we
propose the following model,

dε̂
dt
=
Π − ε̂

τε
, (2.12)

with τ−1
ε = Cε ε̂

1/3∆−2/3 being the energy cascade time lag and Cε = 1.5 is seen to
provide good results in § 4. At small Reynolds numbers, one can use Π + ν|S̃|2

instead of just Π in (2.12) to include the resolved dissipation rate from LES as well,
though this correction will be negligible at high Reynolds numbers. For this paper,
given that the DNS cases used are at relatively low Reynolds numbers, we implement
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86 P. L. Johnson and C. Meneveau

this correction. A model similar to (2.12) for the turbulence frequency ε/k was used
by Sheikhi, Givi & Pope (2009) in a filtered density function (FDF) approach to LES.

When the dissipation time scale τη is constant in time, the RDGF model has the
form,

d
dt

Aij = fij(A), (2.13)

where
fij(A)=−AikAkj + hij(A)+ dF ij/dt, (2.14)

and the corresponding dimensionless form,

d
dt∗

A∗ij = f ∗ij (A
∗), where A∗ij = Aijτη, dt∗ = dt/τη, f ∗ij = fijτ

2
η . (2.15)

Here, hij represents the pressure Hessian and viscous Laplacian closures in (2.8)–
(2.10). This dimensionless system is constrained to satisfy 〈|S∗|2〉 = 1, as explained
above for constant τη.

When τη(t) fluctuates in time, an added constraint term must be added to the model.
This can be seen by considering the product rule to expand the dimensionless time
derivative:

d
dt∗
(A∗ij)= τη

d
dt
(Aijτη)= τ

2
η

d
dt

Aij + Aijτη
dτη
dt
. (2.16)

Further, substituting for the time derivative of A, it is straightforward to obtain

f (A, τη)=
1
τ 2
η

f ∗(A∗)−
1
τη

dτη
dt

Aij. (2.17)

In this way, the RDGF model originally designed for constant-in-time dissipation rate
can be constrained to follow any τη(t) signal from the LES via (2.12) by adding
−1/τη(dτη/dt)A dt to the stochastic differential equation (2.8).

2.3. Lagrangian trajectories
Lagrangian trajectories are computed by using the fluid velocity at the particle
location,

dXi

dt
= ui(Xi(t), t)= ũ(X, t)+ u′i. (2.18)

In LES, however, the velocity is not fully resolved, and advancing particles using the
resolved component of velocity ũi leads to an underprediction of dispersion. While
other approaches have been developed (Ray & Collins 2014; Park et al. 2017), in this
paper we consider a stochastic model for the unresolved velocity component, u′i =
ui− ũi, by Fede et al. (2006), which is based on the simplified Langevin model (SLM)
of Pope (1985, 1994),

du′i =
∂σij

∂xj
dt− u′j

∂ ũi

∂xj
dt−

(
1
2
+

3
4

C0

)
Π

kr
u′i dt+

√
C0Π dWi. (2.19)

Here, dWi is a vector Wiener process with 〈dWi〉 = 0 and 〈dWi dWj〉 = δij dt. The first
term is the subscale force acting equally and opposite to its role in (2.3). The second
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Viscous-range velocity gradient dynamics in LES 87

term is a ‘production’ term for subgrid kinetic energy resulting from the subgrid
velocity acting on the resolved velocity gradient. The third and fourth terms represent
the SLM using Π = (Cs∆)

2
|S̃|3 from the LES model as the dissipation rate. The basic

form leading to (2.19) was first proposed by Gicquel et al. (2002) (therein called
‘VFDF2’) for the instantaneous velocity, whereas Fede et al. (2006) rephrased it for
the unresolved velocity and coupled it with an LES using a Smagorinksy–Yoshizawa
subgrid model. It is worth pointing out that while we assume tracer particles for
this work, generalizations for stochastic modelling of inertial particles have been
considered in detail by, for example, Minier (2015) and reviewed by Marchioli
(2017).

The third term depends on the residual (or unresolved) kinetic energy kr. To specify
kr, we follow Fede et al. (2006) and use the Yoshizawa model (Yoshizawa 1982),

kr = 2Cy∆
2
|S̃|2, (2.20)

where Cy is the Yoshizawa constant, which results in

Π

kr
=C′|S̃|, (2.21)

where C′=C2
s/(2Cy). While Cs can be computed from a dynamic procedure, for this

paper we compute Cy by considering a constant ratio,

C′ =
C2

s

2Cy
=

1
Ss

(
2

3Ck

)3/2

, (2.22)

where Ss = 〈|S̃|
3
〉/〈|S̃|

2
〉

3/2
is the skewness of the resolved strain-rate magnitude and

Ck is the Kolmogorov constant for the energy spectrum of isotropic turbulence, E(k)=
Ck〈ε〉

2/3k−5/3. This result, with detailed derivation given in appendix A, is computed
similarly to Lilly (1967) using a spectral cutoff filter, where Lilly (1967) assumed
Ss = 1.0. However, we find from the LES in this paper that Ss ≈ 1.3, and so we use
that value with (2.22) to obtain kr. The commonly accepted value of the Kolmogorov
constant Ck = 1.6 is used, resulting in C′ ≈ 0.21. Also, the value C0 = 2.1 from Pope
(1994) is used. The results of this model for dispersion in the channel flow LES are
shown later, in § 4.1.

It is worthwhile mentioning that, while the RDGF stochastic model for velocity
gradient is designed to describe dynamics on the viscous timescale τη, the SLM-based
model (2.19) has infinite acceleration and thus does not provide an accurate
description of viscous-scale behaviour. As was pointed out in § 2.1, accurate depiction
of viscous-scale behaviour is vital for the velocity gradient (or any other ‘small-scale
quantity’), but this is not necessarily true for ‘large-scale quantities’ such as the
velocity. For the present purposes, we consider the details of the viscous-scale velocity
dynamics fairly unimportant for reproducing single-particle dispersion statistics.
However, a modelling approach considering dynamics down to the viscous scale for
the Lagrangian velocity could consider, for example, an acceleration-based stochastic
model for the particle trajectories (Pope 2002; Lamorgese et al. 2007). Further, it
should be noted that the Smagorinsky SGS model (2.4) and the SLM particle model
are based on fundamentally different representations of the subgrid velocity field. An
SGS model consistent with the SLM particle model would require solving the relevant
transport equation for σij (Minier 2016), which we presently avoid by following Fede
et al. (2006) and reverting to a Smagorinsky model for convenience.
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2.4. Sub-Kolmogorov droplet model
As a sample application of the model to describing small-scale physics, we consider
sub-Kolmogorov scale, deformable droplets sparsely distributed in a turbulent flow.
Further, for our purposes here, the inertia of the droplets is neglected, assuming small
Stokes number. Also, only one-way coupling is considered. Maffettone & Minale
(1998) introduced a simple ellipsoidal model which describes the droplet with a
symmetric morphology tensor, M ij. The eigenvectors of M indicate the direction of
the three semi-axes and (the square root of) their associated eigenvalues indicate the
semi-axis lengths. The evolution of the morphology tensor includes rotation by the
vorticity, deformation by the strain rate, and relaxation towards a spherical shape
(M ij = δij),

dM ij

dt
=ΩikMkj −M ikΩkj + f2(µ̂)(SikMkj −M ikSkj)−

f1(µ̂)

τd

(
M ij −

3III
II
δij

)
, (2.23)

where II and III are the second and third invariants of the morphology tensor, f1
and f2 are modelled functions of the viscosity ratio µ̂= µd/µ0 between droplet and
surrounding fluid, and τd = µ0R/σ is the relaxation time scale for a droplet with
(undeformed) radius R and interfacial tension σ .

For this paper, we note that (2.23) can be rewritten in terms of a deformation tensor
Dij, which is related to the morphology tensor by M =DDT,

dDij

dt
=ΩikDkj + f2(µ̂)SikDkj −

f1(µ̂)

2τd

(
Dij −

3III
II

D−1
ji

)
, (2.24)

where II and III are the invariants of M as in (2.23). It is straightforward to show the
equivalence of (2.23) and (2.24) by substituting M ij = DikDjk. The same information
about the semi-axes can be extracted from the deformation using a singular value
decomposition, D = UΣVT, where U is a unitary matrix comprised of the singular
vectors indicating the semi-axis directions and Σ is a diagonal matrix whose elements
are the associate singular values σ1 >σ2 >σ3, i.e., the length of the semi-axes (Greene
& Kim 1987). The total extent of deformation away from a spherical droplet is
commonly measured using a deformation parameter, D= (σ1 − σ3)/(σ1 + σ3).

The viscosity ratio functions are given by (Maffettone & Minale 1998),

f1(µ̂)=
40(µ̂+ 1)

(2µ̂+ 3)(19µ̂+ 16)
, f2(µ̂)=

5
2µ̂+ 3

. (2.25a,b)

Note that in the case of zero surface tension with unity viscosity ratio, f2 = 1 and
the fluid material deformation tensor evolution equation (Johnson & Meneveau 2015),
dDij/dt = AikDkj, is recovered from (2.24), where Dij = ∂Xi/∂X0,j, is the sensitivity
of final Lagrangian position X to initial condition X0. The model of Maffettone &
Minale (1998), i.e. (2.23), has been successfully implemented with one-way coupling
in DNS for both isotropic (Biferale et al. 2014) and Taylor–Couette flows (Spandan
et al. 2016). Here, we implement the same model in LES, but using the formulation
given by (2.24).

The magnitudes of Ω and S being set by the dissipation time scale, the dynamics
described by (2.24) are influenced by two dimensionless parameters: the viscosity ratio
already introduced and the capillary number Ca,

Ca=
µ0R
στη,bulk

, (2.26)
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Lx × Ly × Lz Lt ν uτ Reτ
8π× 2× 3π 26 5× 10−5 5× 10−2 1× 103

TABLE 1. Parameters for the turbulent channel flow case considered in this paper.

where τη,bulk is a single characteristic (or ‘bulk’) dissipation time scale of the flow,
defined in the next section for a channel flow. For Ca=O(1), the deforming force of
the turbulent velocity gradients fluctuates around the same magnitude as the restorative
force of surface tension. The surface tension dominates when Ca� 1 and the particles
remain very close to spherical, while for Ca� 1 the droplet deformation begins to be
unbounded and other physical mechanisms (e.g. droplet breakup) become important.
The simple ellipsoidal model used here is less accurate for highly deformed droplets
near breakup (Maffettone & Minale 1998). In this paper, we do not use this model
to perform a detailed study of droplet behaviour in turbulence, but rather as a simple
model to demonstrate the effectiveness of the velocity gradient model introduced
above for evaluating the impact of turbulence on micro-physics within the flow.

3. Computational set-up
3.1. Problem statement

Lagrangian particles in a turbulent channel flow at Reτ = uτh/ν= 1000 are considered
as a test case for the proposed modelling technique for inhomogeneous turbulent flows.
The friction velocity, uτ , is prescribed by the imposed pressure drop, while h= Ly/2
is the channel half-height and ν is the molecular viscosity. The parameters for the
particular turbulent channel flow considered here are given in table 1. The channel
has unit half-height and the bulk velocity is near unity, so the unit time scale is
the time to traverse a half-channel height travelling according to the mean flow rate.
Under statistically stationary conditions, we consider an ensemble of particles released
from random positions along the centreline of the channel (y+ = 1000) at t= 0. The
particles disperse from the centreline according to (2.18) until t=Lt while the velocity
and pressure fields evolve according to (2.1). The duration of the flow, Lt = 26, is
approximately one flow-through time in the periodic domain. The notation 〈·〉E is used
to denote Eulerian averaging (in time and homogeneous space directions x and z)
while 〈·〉L is used to denote averaging over the ensemble of Lagrangian trajectories
which sample the flow in a biased, time-dependent manner after being released from
the centreline at t = 0. As the particles disperse away from the centreline of the
channel, where there is minimum dissipation rate on average, the particles tend to
experience more intense velocity gradients.

In addition to velocity gradient statistics, we consider the deformation of sub-
Kolmogorov scale droplets according to the simple ellipsoidal model (Maffettone &
Minale 1998) described in § 2.4. The droplets are initialized as spherical at t = 0
and are deformed by the velocity gradient tensor according to (2.24). The ‘bulk’
dissipation time scale used here to define Ca for the channel flow (Johnson et al.
2017),

τη,bulk =

√
ν

〈ε〉space
=

√
νh

u2
τUbulk

, (3.1)

is constructed from the kinematic viscosity and the pumping power required to drive
the flow at a volumetric rate of UbulkA⊥ through a cross-sectional area of A⊥. This time
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Case Abbr. Xi(t) Π(x, t) Aij(t)

Baseline DNS DNS (N/A) DNS
a priori fDNS-RDGF DNS fDNS/Smagorinsky RDGF
a posteriori LES-RDGF LES+SLM LES RDGF
No model LES-NM LES+SLM (N/A) LES

TABLE 2. Methods used for calculating trajectories X, subgrid production Π , and
velocity gradients A for the four cases considered in this paper.

scale gives a single, convenient value for the average velocity gradient magnitude
across the channel, although as will be shown, velocity gradient magnitudes vary
significantly with distance from the wall.

Table 2 summarizes the four cases considered in this paper. A DNS dataset of
turbulent channel flow from the Johns Hopkins Turbulence Databases (JHTDB)
(Graham et al. 2016), with details given in § 3.2, is used as the baseline for judging
the performance of the model. The particle trajectories and velocity gradients were
calculated from the DNS data using built-in database functions (Yu et al. 2012; Kanov
& Burns 2015; Johnson et al. 2017). In order to provide insight into the accuracy
of the RDGF velocity gradient model isolated from LES SGS modelling accuracy
concerns, an a priori case is constructed by filtering the DNS dataset (fDNS), which
can be treated as a ‘perfect’ LES result. The next case consists of actually running
an a posteriori LES with no input from the DNS, which can be argued to provide
the most relevant results on the performance of the model in simulations. For this
reason, the comparison of the a posteriori case with DNS results will be explored
in the most detail. Finally, in order to highlight clearly the contribution provided by
the velocity gradient modelling, it is sometimes useful to compare results with a ‘no
model’ case in which the velocity gradients from the LES are used, i.e. neglecting
entirely the SGS range of scales that are known to dominate the velocity gradient
statistics. It should be kept in mind that the relative performance of LES velocity
gradients in mimicking DNS results is sensitive to the resolution of the LES and the
Reynolds number of the flow, i.e., given by the scaling arguments in § 2.1.

Figure 1 presents a visualization of the streamwise velocity along the centreline of
the channel for the DNS, fDNS, and LES datasets. Note that the DNS and fDNS
are from the same time step, so the corresponding regions of high and low velocity
can be seen. The LES, of course, is from a completely different realization, so the
correspondence is only qualitative with the other two. Also, as will be seen later in
a more quantitative sense, the LES corresponds to a slightly smaller filter scale as
compared to the fDNS. Because the mean velocity along the centreline is higher for
the LES compared with DNS and fDNS, the colour scale in figure 1 has been adjusted
to facilitate a qualitative visual comparison focusing on the fluctuations.

3.2. Direct numerical simulations
The baseline DNS data is taken from the publicly available JHTDB (Li et al. 2008).
The channel flow dataset from Graham et al. (2016) stores velocity and pressure at
each grid location every five simulation time steps for one flow-through time, which
amounts to 24 GB per snapshot and requires nearly 100 TB for the 4000 snapshots
saved (not including overhead). This dataset was produced using the simulation code
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FIGURE 1. (Colour online) Snapshots of streamwise velocity on a plane parallel to the
wall at the centre of the channel from the DNS (a), fDNS (b), LES (c). Note that the
colour scale for the LES is different from the DNS and fDNS, due to the higher centreline
mean velocity (see figure 3).

of Lee, Malaya & Moser (2013), which uses pseudo-spectral discretization with 2/3-
rule dealiasing (Orszag 1971) in the streamwise (x) and spanwise (z) directions. In
the wall-normal (y) direction, a collocation method using seventh-order B-splines is
employed. The Navier–Stokes equations, (2.1), were solved in wall-normal velocity–
vorticity form, and the pressure Poisson equation was solved only when needed for
storage on the database, i.e., every 5 time steps. Time advancement was done with
a third-order low-storage Runge–Kutta scheme. The parameters for the simulation are
given in table 1 and the details of the numerical discretization are given in table 3.
The numerical resolution in terms of effective Kolmogorov scale η(y) =

√
ν/〈ε|y〉E

remains near kmaxη ∼ 1 which, while typical for isotropic simulations, may not be
sufficiently fine for capturing the most extreme velocity gradient events in the flow
(Donzis, Yeung & Sreenivasan 2008).

The DNS particle trajectories for the baseline and a priori cases were tracked
through the database using the built-in getPosition function. This function solves
(2.18) using a second-order predictor–corrector method with sixth-order Lagrange
interpolation for the velocity at the particle location (fourth- and eighth-order
interpolation is also available). For more details on the parallel implementation
of the particle tracking in the database, see Kanov & Burns (2015), Johnson et al.
(2017). Similarly, the velocity gradients at the particle locations were computed from
the database using the built-in getVelocityGradient function with fourth-order finite
differencing and fourth-order Lagrange interpolation.

For the a priori test case, every sixteenth snapshot was downloaded and filtered
using a non-isotropic box filter. The box filter was implemented by averaging over 32
grid points with trapezoidal rule integration in each direction and storing the value
on a new grid point at the centroid of the averaged region. The filtered DNS (fDNS)
dataset is computed for every sixteenth grid point, so that there is a factor of two
overlap between neighbouring points on the filtered grid. In this way, the grid for the
fDNS is also non-uniform in the wall-normal direction with y+ ≈ 8 for the first grid
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FIGURE 2. (Colour online) Mean velocity (a) and Reynolds stress tensor components
(b) profiles for DNS (continuous lines) and filtered DNS (symbols). In (a), the
well-established linear, 〈u+〉= y+ (dotted line), and log-law, 〈u+〉= ln y+/0.41+5.2 (dashed
line), profiles are also shown for reference. For the Reynolds stress components in (b):
〈u′2〉E (©), 〈v′2〉E (C), 〈w′2〉E (A), and 〈u′v′〉E (@).

Case ∆x/dx=∆z/dz Nx ×Ny ×Nz dx+, dy+c , dz+ Nt dtsim dtDB Ubulk τη,bulk

DNS 1 2048× 512× 1536 12.3, 6.2, 6.1 4000 0.0013 0.0065 1.00 0.141
fDNS 32 128× 32× 96 196, 98.5, 98.2 250 (N/A) 0.104 1.00 (N/A)
LES 16 128× 32× 96 196, 98.5, 98.2 250 0.0104 0.104 1.04 0.139

TABLE 3. Parameters for the DNS, filtered DNS, and LES databases used in this paper.

point away from the wall. It should be noted that such a grid would not be optimal
for an actual LES simulation since the boundary conditions would be difficult to set,
but is unproblematic for present purposes. The numerical details of the fDNS dataset
are given in table 3.

The results for Eulerian-averaged velocity profile and Reynolds stress components
for the DNS and fDNS datasets are shown in figure 2. The mean velocity profile
displays the expected log-law behaviour 〈u〉+ ≈ (1/κ) ln

(
y+
)
+ B with κ ≈ 0.41 and

B ≈ 5.2. The filtered dataset matches this mean velocity profile well except for the
first two grid points in the buffer region, where spatial smoothing in the wall-normal
direction causes the mismatch. The velocity variances, however, are significantly
impacted by the filtering procedure, and roughly half of the turbulent kinetic energy
is unresolved.

In the first fDNS tests, trajectories computed from the fully resolved DNS dataset
are used for the a priori test so as to avoid introducing errors from the subgrid
dispersion model of § 2.3. Care is also taken in establishing dissipation rates from
the fDNS so as to match DNS dissipation rates in the sense of the mean profile
〈ε|y〉E. The details of the fDNS dissipation rate are given in appendix B. Using DNS
information to carefully construct the fDNS data allows the a priori case to focus
on the particular errors of the RDGF model without introducing other modelling
errors involved in coarse-grained simulations. The LES simulation described next
then provides an a posteriori view on the model’s effectiveness in the context of
other modelling errors such as particle trajectory errors and LES SGS model errors.
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3.3. Large-eddy simulation
A wall-modelled large-eddy simulation of the same turbulent channel flow provides
the main (a posteriori) test case for the velocity gradient model. As with the
DNS simulation, the parameters of the LES are given in table 1. The in-house
LESGO code (LESGO: A parallel pseudo-spectral large-eddy simulation code.
https://lesgo-jhu.github.io/lesgo (2017)) was used to generate a dataset with a
time sequence of snapshots mimicking those from the fDNS. This code uses
pseudo-spectral treatment with 2/3 dealiasing in the wall-parallel directions and
second-order finite differencing on a staggered grid in the wall-normal direction.
The wall-normal grid spacing is constrained to be uniform. With 32 grid points
across the channel, ∆y+ = 62.5, and the first grid point for wall-parallel velocity
components resides at y+ = 31.25, at the inner edge of the log-law region. The
equilibrium specification of Moeng (1984) is used to set the boundary condition at
the wall along with a no-penetration condition. Time is advanced with a second-order
Adams–Bashforth method and the pressure Poisson equation is used to maintain a
solenoidal velocity field to within machine precision. The scale-dependent Lagrangian
dynamic Smagorinsky model (Bou-Zeid, Meneveau & Parlange 2005) is used for
the subgrid stresses. This model is also used to compute Π = (Cs∆)

2
|S̃|3 for input

to (2.12) to determine the dissipation rate for the velocity gradient model. While
the LES resides on a grid having the same dimensions as the fDNS in wall-normal
planes, the wall-normal spacing is different (uniform versus non-uniform) and the
filter width is chosen using the grid spacing (rather than twice the grid spacing as in
the fDNS case). The result is that the LES results are more finely resolved than the
fDNS, as is apparent in figure 1. The numerical details of the LES dataset are given
in table 3.

The LES results provide quite accurate mean velocity and Reynolds stress profiles,
as shown in figure 3. The first few grid points show excellent agreement with the
DNS log-law. The wake region correction, however, appears to be overpredicted,
which leads to the overprediction of bulk velocity (flow rate) seen in table 3, i.e.,
an underprediction of the friction coefficient. The overprediction of bulk velocity at
a prescribed pressure drop leads to an overprediction of volume-averaged dissipation
rate (pumping power), and hence a slight underprediction of τη,bulk. The majority of
the turbulent kinetic energy is resolved by the LES, in keeping with general heuristics
for LES resolution (Pope 2000), which highlights the smaller effective filter width in
the LES results compared with fDNS in § 3.2.

Of even more relevance to the modelling effort at hand is the prediction of
wall-normal dependence of dissipation rates. For the LES, we do not allow for any
use of information from the DNS. The dissipation rate in the LES is determined
by adding the resolved dissipation rate ν|S̃|2 to the subgrid production rate Π . The
resulting Kolmogorov scale as a function wall distance is shown in figure 4(a)
compared with DNS. Overall, the prediction is quite acceptable, although there
is a noticeable overprediction of dissipation rate throughout most of the channel
(the equilibrium model underpredicts the dissipation in the near-wall region, but as
shown in table 3, the volume-averaged dissipation is overpredicted). To provide some
perspective to the level of differences between LES and DNS, figure 4(a) shows
the Kolmogorov scale using only the resolved dissipation rate (i.e. if no model for
unresolved velocity gradients is used). A significant error is committed in this case
because velocity gradients are dominated by the smallest scales, which are unresolved
in the LES even when most of the velocity fluctuations are resolved. This error in
velocity gradient magnitude will only increase with increasing Reynolds number, as
discussed in § 2.1. In figure 4(b), the average Smagorinsky coefficient determined in
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FIGURE 3. (Colour online) Mean velocity (a) and Reynolds stress tensor components (b)
profiles for DNS (continuous lines) and LES (symbols). In (a), the well-established linear,
〈u+〉 = y+ (dotted line), and log-law, 〈u+〉 = ln y+/0.41 + 5.2 (dashed line), profiles are
also shown for reference. For the Reynolds stress components in (b): 〈u′2〉 (©), 〈v′2〉 (C),
〈w′2〉 (A), and 〈u′v′〉 (@).
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FIGURE 4. (Colour online) (a) Kolmogorov time scales τη =
√
ν/〈ε|y〉E from DNS

(——), LES-RDGF (©), and LES-NM (A). (b) Smagorinsky coefficient prescribed
for fDNS-RDGF (——), i.e. (B 1), and 〈Cs|y〉E as computed by the LES with the
scale-dependent Lagrangian dynamic formulation (©).

the LES is shown against the assumed Smagorinsky coefficient used for the fDNS in
§ 3.2. While the turbulence is more finely resolved in the LES compared to the fDNS,
the Smagorinsky coefficient is also quite different between the two cases, since Cs

can also depend on resolution, type of filtering, etc.

3.4. Stochastic differential equations
For each case enumerated in table 2, an ensemble of 172 800 particles is initialized
on the centreline of the channel with location in x and z determined in the following
way. The domain in x and z is split into 24 × 9 square regions of size π/3 × π/3
and the particles are divided evenly into 800 per subdomain. Each particle is given
a random x and z location within its subdomain from a uniform distribution. While
the baseline and a priori cases use the built-in interpolation, differentiation, and
particle advancement from the JHTDB database, the a posteriori and no-model
cases use second-order finite differencing, trilinear interpolation, and a second-order
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predictor–corrector time advancement. The particles are advanced in the LES using
the resolved velocity plus the stochastic model for the unresolved velocity, (2.19),
which itself is updated with a second-order predictor–corrector method for stochastic
differential equations (Honeycutt 1992). The same predictor–corrector method is used
to update (2.8) for the velocity gradients and (2.24) for the droplet morphologies.
Note that the diffusion coefficients in the stochastic differential equations (2.8) and
(2.19) do not depend on any of the stochastic variables, so the remarks of Minier, Cao
& Pope (2003) do not apply concerning the consistency of the predictor–corrector
scheme.

The stochastic differential equations (SDE) for velocity and velocity gradient are
initialized by starting with a random Gaussian condition and running the stochastic
model for each particle frozen at its initial location for a start-up time until transients
subside. Then that result is used to initialize the velocity and velocity gradient in the
particle dispersion simulation. The droplet morphology tensors are initialized to the
identity tensor (indicating a spherical droplet). When the particles travel below the
first grid point in the LES (y+< 31.25) the velocity gradient model is turned off and
arbitrarily set to Aij = 0 because the LES flow is no longer resolved below this point
and an equilibrium wall model is used. Accordingly, when statistics are taken over
the ensemble of particles, those closer to the wall than y+ = 100 are not included in
the ensemble, since particles below this threshold will experience velocity gradient
stretching statistics which differ significantly from isotropic turbulence (Johnson
et al. 2017). This approach focuses the comparisons on the region of the channel
flow displaying isotropic turbulence-like velocity gradient statistics, i.e., where the
model assumptions are expected to hold. The discrepancy between the model cutoff at
y+=31.25 and the post-processing observation cutoff at y+=100 provides a safeguard
against the propagation of modelling errors from y+< 31.25 into the observed results
as particles move towards and away from the wall in time. It is also worthwhile to
note that the SLM particle model used here also would require modification to be
accurate in the near-wall region, such as those introduced by Dreeben & Pope (1998),
Waclawczyk, Pozorski & Minier (2004).

Finally, for the droplet deformation, it is possible for regions of strong velocity
gradient for high-Ca droplet to undergo unbounded deformation. In that case,
numerical round-off errors become more significant when the disparity between
singular values (ellipsoid semi-axes) becomes large. To prevent this, droplets with
D> 0.9999 at any time step are removed from the ensemble at the time step and are
not replaced.

4. Results
In this section, the results for particle trajectories (§ 4.1), velocity gradients (§ 4.2),

and droplet deformation (§ 4.3) are shown. We primarily focus on the comparison
of the LES-RDGF results with DNS, although the other cases in table 2 are used
at times to shed further light on the accuracy of the various models used. Figure 5
shows sample time histories for wall-normal location, transverse velocity gradient, and
droplet deformation for six trajectories chosen at random. As the particles approach
closer to the boundaries of the channel at y=−1 and y= 1, they tend to experience
higher velocity gradient magnitudes which fluctuate at higher frequencies.

4.1. Particle dispersion statistics
It is important to first validate the dispersion of particles in LES away from the
centreline by the combination of resolved velocity and the stochastic model for
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FIGURE 5. (Colour online) Sample time histories of particle locations in three dimensions
(a), the wall-normal location (b,c), the transverse velocity gradient (d,e) and deformation
magnitude parameter D ( f,g) from the DNS (b,d, f ) and LES-RDGF (c,e,g) results for 6
independent Lagrangian trajectories. The droplets shown are have Ca= 1.0 and µ̂= 1.0.

subgrid velocity contributions, § 2.3. Such a validation is presented in figure 6 by
comparing particle location PDFs as a function of time from the LES and DNS cases.
The distributions of particles at eight different times are shown, four early times in
panel (a) (0.266 t 6 2.34) and four later times in panel (b) (2.66 t 6 23.4). The LES
with the stochastic model provides excellent agreement with the dispersion seen in
the DNS, with some small differences arising at later times. The first particles begin
to interact with the wall around t ≈ 10. After that, there is a small but noticeable
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FIGURE 6. (Colour online) Distribution of particles at different times after being released
from the centreline at t = 0. Continuous lines show the distributions from DNS while
symbols show the results from LES with stochastic model for subgrid velocity. (a) t=0.26
(@), t = 0.78 (©), t = 1.56 (A), t = 2.34 (C). (b) t = 2.6 (@), t = 7.8 (©), t = 15.6 (A),
t= 23.4 (C).

underprediction of the uniformity of the particle location PDF given by the LES
results. The overall results are, however, quite good.

4.2. Velocity gradient statistics
We now compare the results of the LES-RDGF model with DNS results in terms of
the magnitude and tensorial structure of the velocity gradient along particle paths. The
magnitude of velocity gradient determines the dissipation rate and thus establishes
the ability of turbulence to rotate, deform, and otherwise affect small objects in a
flow. Meanwhile, the statistical topology of velocity gradients are also important
for accurately capturing how various micro-physical parameters, such as the aspect
ratio of rigid particles in Jeffery’s equation (Jeffery 1922; Junk & Illner 2007) or
the capillary number of small droplets in (2.24), impact the efficiency of velocity
gradients in imposing their effects. Following a presentation of results for general
velocity gradient statistics, we pursue further validation for the particular case of
small droplets in § 4.3.

Figure 7 considers the distribution of dissipation and enstrophy (χ = (1/2)ωiωi),
characterizing the fluctuations in velocity gradient magnitudes in the flow. These
distributions are computed by averaging over the particle ensembles and averaging
in time. As a result, these PDFs contain both internal fluctuations of the RDGF
velocity gradient model, as well as fluctuations due to the spatial–temporal behaviour
of Π from LES. In this figure, the results of the a posteriori case compare quite
favourably with the DNS results, indicating the accuracy of the fluctuations within
the RDGF model which generate stretched-exponential tails in the dissipation and
enstrophy PDFs. The dotted lines in this figure indicate the distribution of resolved
dissipation rate in the LES (i.e., the ‘no model’ case), which severely underpredicts the
intermittency of dissipation and enstrophy – in addition to significantly underpredicting
the mean dissipation. Thus, figure 7 highlights the importance of the subgrid velocity
gradient model in generating accurate intermittency levels for extreme fluctuations in
the velocity gradient magnitude.

Turbulence dynamics is known to generate a non-trivial signature in the structure
of the velocity gradient tensor. For instance, the vorticity vector tends to align most
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FIGURE 7. (Colour online) Probability distribution functions for dissipation (a) and
enstrophy (b) using an ensemble of all particle locations at each time for 0 < t < Lt,
excluding y+< 100. The continuous black line indicates LES-RDGF results compared with
DNS (red dashed line) and LES-NM results (black dotted line).

prevalently with the strain-rate eigenvector associated with its intermediate eigenvalue,
Λ2, while noticeably avoiding alignment with the compressive eigenvector with
eigenvalue Λ3< 0 (Ashurst et al. 1987). The RDGF model, by faithfully capturing the
nonlinear self-stretching term in the governing equations, has been shown to capture
this tendency well (Johnson & Meneveau 2016). Indeed, the results for this alignment
tendency are quite accurate in LES-RDGF, as shown in figure 8(a). Without using
any model for unresolved velocity gradients, the LES particularly underpredicts the
tendency of vorticity to align perpendicularly with the Λ3 eigenvector. Additionally,
the s∗ parameter, introduced by Lund & Rogers (1994) for quantifying the tendency
of the strain-rate tensor to deform spherical material elements towards prolate (s∗< 0)
or oblate (s∗ > 0) ellipsoids, has its own unique signature in turbulence. Shown in
figure 8(b), the PDF of s∗ is also predicted quite successfully by the LES-RDGF
model, while the LES-NM results underpredict the bias towards oblate topologies.
The coarse-grained velocity gradient evolution equations share the same self-stretching
term with the fully resolved equation; therefore, the results in figure 8 for LES-NM
are qualitatively the same as DNS.

Finally, in figure 9, the joint-PDF of invariants Q = −trA2/2 and R = −tr(A3)/3
are considered from the DNS and the LES-RDGF results. It is well known that
turbulence dynamics generates a signature feature in this joint-PDF, namely, the
increased probability for rare fluctuations along the right-hand side of the so-called
Vieillefosse tail in the fourth quadrant. This feature is intimately connected with the
nonlinear dynamics of the A2 term in (2.6), and hence is naturally captured in the
RDGF and other similar models (Chevillard et al. 2008; Wilczek & Meneveau 2014;
Johnson & Meneveau 2016). Figure 9 highlights the accuracy of the RDGF model in
reproducing the key features of the PDF in QR invariant space.

The discussion of velocity gradient accuracy in this section so far has centred on
the benefits of the stochastic model, namely, the tensorial structure and intermittent
fluctuations of the velocity gradient. We now turn our attention to predictions of
the mean dissipation rates (velocity gradient magnitudes). As will be seen, inherent
difficulties exist for providing accurate inputs to the RDGF model (i.e. accurate
trajectory-specific dissipation rates) from the LES. The ensemble of Lagrangian
particles is initialized at the centre of the channel, where there is a minimum of
dissipation rate from an Eulerian perspective. However, as illustrated by the DNS
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FIGURE 8. (Colour online) Probability distribution functions for alignment cosine between
vorticity and strain-rate eigenvectors (a) and topology indicator s∗=−3

√
6Λ1Λ2Λ3/(Λ

2
1+

Λ2
2 + Λ

2
3)

3/2 (b) using an ensemble of all particle locations at each time for 0 < t < Lt,
excluding y+ < 100. The continuous lines indicate LES-RDGF results compared with
DNS (dashed lines) and LES-NM results (dotted lines). In (a), colours indicate the
eigenvectors associated with largest eigenvalue (blue), intermediate eigenvalue (green),
smallest eigenvalue (red).
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FIGURE 9. (Colour online) Logarithmically spaced contours of the joint probability
density function for the second and third invariants of the velocity gradient tensor along
the particle trajectories, excluding y+ < 100. The results of DNS (a) are compared with
LES-RDGF model results (b).

results in figure 10, the average dissipation rate over the whole ensemble initially
decreases (i.e., the dissipation time scale increases), even as the particles spread
to locations nearer the wall where there is more dissipation in terms of Eulerian
averages. Furthermore, in figure 11, it can be seen from DNS by comparing the red
and grey continuous lines (or from the model comparing black and grey circles), that
Lagrangian particles which begin in the centreline tend to sample regions with lower
dissipation than given by Eulerian averaging.

This effect can be understood as follows. While it is true that Eulerian-averaged
dissipation is minimum at the centre of the channel, a more extreme minimum at
the centreline is found in the SGS production results (see figure 18). In fact, from
a Reynolds-averaged Navier–Stokes (RANS) perspective, the production of turbulent
kinetic energy from mean flow energy is exactly zero (by symmetry) at the centreline.
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FIGURE 10. (Colour online) Kolmogorov time scale τη =
√
ν/〈ε〉L with averaging over

the particle ensemble as a function of time after release from the centreline. The DNS
results (dashed red) are compared with fDNS-RDGF (continuous grey) and LES-RDGF
(continuous black).
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FIGURE 11. (Colour online) Kolmogorov time scales as a function of wall distance
for Eulerian averaging (grey) and particle ensemble averaging at time t = 23.4 (black).
Continuous lines indicate DNS results and symbols (©) indicate RDGF results. (a)
fDNS-RDGF (a priori) compared with DNS. (b) LES-RDGF (a posteriori) compared with
DNS.

The following picture emerges as a simplification of the physics. While no kinetic
energy is produced at the centreline, as the energy cascade proceeds to small scales,
turbulent diffusion tends to move turbulent energy from high-production regions nearer
to the wall towards the centreline, resulting in a more uniform profile for large-scale
energy dissipation as the filter width is decreased. Still, even at the smallest scales
(i.e. viscous dissipation in unfiltered equations), the profile of dissipation rate is not
perfectly uniform.

Some evidence has been shown in isotropic turbulence that the energy cascade has a
distinct Lagrangian characteristic (Meneveau & Lund 1994; Wan et al. 2010), and that
fluctuations in SGS production are correlated with molecular dissipation fluctuations
with a time lag along Lagrangian trajectories, an effect which motivates the use of
(2.12). This suggests that while particles starting on the centreline tend to have the
least dissipation rate compared to starting elsewhere, at a slightly later time, their
dissipation rate is strongly affected by their SGS production rate from when they were
on the centreline. The initial phase of increasing dissipation time scale in figure 10
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suggests that this Lagrangian cascade effect is, at least initially, stronger than the effect
of particle dispersion to higher dissipation regions (in an Eulerian-averaged sense)
nearer the wall. As the particle ensemble continues to spread towards the walls and
the memory of initial conditions continues to fade, the average dissipation rate over
the particle ensemble increases as expected from the Eulerian observations. However,
as shown by figure 11, this Lagrangian effect can still be seen even at much later
times by conditional averaging based on y.

In the a priori test case, shown as a grey line in figure 10, the actual DNS
trajectories are used and a non-equilibrium correction (explained in appendix B)
ensures an accurate wall-normal profile of Eulerian-averaged dissipation rates in the
fDNS. The result is that this initial ‘bump’ in the ensemble time scale is captured and
the time history of particle ensemble dissipation rate is quite accurately reproduced.
In fact, the time lag model between Π and ε̂ given in (2.12) has been introduced
and the coefficient Cε = 1.5 has been chosen precisely to accurately capture this
effect, which can be important in non-homogeneous flows. Similarly, figure 11 shows
that dissipation rates conditioned on wall distance are also captured well in the a
priori case due the combination of accurate Eulerian-averaged dissipation profiles and
Lagrangian trajectories. However, the results for the a posteriori test case are not
as accurate, owing both to a deterioration in accuracy of the trajectories themselves
due to the limitations of the stochastic dispersion model described in § 2.3 and to
the overprediction of Eulerian-averaged dissipation rate by the LES, as shown in
figure 4. These errors are largely independent of the details of the RDGF velocity
gradient model, and improvements in velocity gradient magnitude would need to
be accomplished primarily through a more accurate model for ε̂ in the LES, for
example, by including turbulent diffusion effects in the spirit of RANS modelling of
the ε equation (Pope 2000; Wilcox 2006). Improved accuracy of subgrid dispersion
modelling could also be helpful here. It is important to recall from figure 4, and
more generally from the scaling arguments of § 2.2, that the LES with no model
will more severely underpredict the dissipation rates, and the LES-RDGF model
still represents a significant improvement which is even more important as Reynolds
number increases, as emphasized in § 2.2.

The results shown in this section (and the following one) have neglected data from
any particle closer to the wall than 100 viscous units, so as to compare only data
from regions which roughly follow local isotropy behaviour at small scales in this
flow (Johnson et al. 2017). A clear limitation to the LES-RDGF model as presented
here is that the RDGF model is designed for isotropic (or approximately isotropic)
turbulence at small scales. Near the wall, this type of behaviour is no longer seen,
and capturing velocity gradient statistics in the near-wall region (as well as at higher
Reynolds number flows) will require more detailed future modelling efforts.

4.3. Droplet deformation statistics
To illustrate the benefits and predictive properties of the velocity gradient modelling
technique proposed in this paper, we choose one particular application for which
velocity gradient information is necessary, namely predicting deformation statistics of
sub-Kolmogorov scale droplets. The droplets are evolved numerically according to
(2.24) using a second-order predictor–corrector method. They are deformed by the
velocity gradients from the stochastic model (one-way coupling). The main parameter
used to quantify the magnitude of deformation for a droplet is

D=
σ1 − σ3

σ1 + σ3
, (4.1)
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FIGURE 12. (Colour online) At t = 23.4, the PDF of D (a) and conditional average
〈D|y〉L (b) for the droplet ensemble. Droplet with location y+ < 100 are removed from
the ensemble for these plots. The DNS results (red dashed lines) are compared with
fDNS-RDGF (grey lines), LES-RDGF (black lines), and LES-NM (black dotted lines).

where σi is the ith singular value of the deformation tensor D. These three singular
values, representing the lengths of the three semi-axes of the ellipsoid, are computed
using a singular value decomposition routine from LAPACK. The deformation
parameter 0 6 D < 1 takes on the value D = 0 when the droplet is spherical (as
in the initial condition) and asymptotically approaches D = 1 for strongly deformed
droplets (σ1�σ3). In this way, the temporal history of D (and other droplet measures)
is computed along each trajectory.

For Ca=1, figure 12 compares the PDF of D for the ensemble of droplets at a time
late in the simulation. It is clear that the LES-NM results significantly underpredict
the extent of deformation, which is a straightforward result of the lower velocity
gradient magnitudes. Meanwhile, the results of the a posteriori (LES-RDGF) test
reveal results that are much closer to the DNS results. A slight overprediction of
D can be observed, which is related to the small overprediction of dissipation rates.
The a priori test shows the best accuracy compared with DNS, but does slightly
underpredict the deformations. This is most likely attributable to minor inaccuracies
in the RDGF model itself, for example, in the Lagrangian auto-correlation of strain.

In addition to D, we introduce the shape parameter,

s∗d =−
3
√

6 ln σ1 ln σ2 ln σ3(
ln2 σ1 + ln2 σ2 + ln2 σ3

)3/2 , (4.2)

which helps differentiate between prolate and oblate droplet shapes. A droplet having
the shape of a prolate spheroid assumes the value s∗d = −1 while an oblate shape
has s∗d = 1. The value s∗d = 0 signifies that the intermediate semi-axis has its original
(undeformed length) while σ3 =−σ1. For short times starting from an initial sphere,
lnσi≈Λi, where Λi is the ith eigenvalue of the strain-rate tensor. This means that, for
arbitrarily short time, s∗d = s∗, where s∗ is the original parameter defined by Lund &
Rogers (1994) for the strain-rate tensor. Therefore, s∗d≈ s∗ for nearly spherical droplets,
and the PDF of s∗d approaches that of s∗ for Ca� 1. The PDF of s∗d at Ca = 1 is
shown in figure 13 for the different cases. At this capillary number, a bias towards
oblate droplets is seen in the DNS and is well matched by both fDNS-RDGF and
LES-RDGF cases. The LES-NM results underpredict the bias towards s∗d > 0.
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FIGURE 13. (Colour online) (a) PDF of the shape parameter s∗d at t = 23.4 for the
ensemble of droplets, exclude those with y+<100. (b) PDFs of alignment cosines between
the σ1 singular vector of the droplet deformation tensor and the three eigenvectors of the
strain-rate tensor (blue: Λ1, green: Λ2, red: Λ3) as well as the vorticity vector (black). In
both, the continuous lines indicate LES-RDGF results, the dashed lines show DNS results,
and the dotted lines are results from the LES-NM case.

Also shown in figure 13 are the PDFs of alignment between the singular vector
of the deformation tensor associated with its largest singular value with the three
strain-rate eigenvalues as well as with vorticity. Here, LES-RDGF and LES-NM are
compared with DNS. The main qualitative features are similar: a strong tendency
towards parallel alignment with the largest strain-rate eigenvalue and perpendicular
alignment with the other two, especially the smallest strain-rate eigenvalue. The slight
bias towards parallel alignment with the vorticity seen in the DNS results is mimicked
by the LES-RDGF model but not by LES-NM. The most notable advantage gained
by the LES-RDGF velocity gradient model over simply using the velocity gradients
from LES without a model is the magnitude of deformation (figure 12), but some
improvements in droplet shape and alignment with flow features are also seen. The
importance of the RDGF model is expected to become even more important for
higher Reynolds numbers.

We now consider a more detailed comparison directly between the DNS and the
a posteriori LES-RDGF model. To this end, droplets with 0.25 < Ca < 4.0 were
simulated to characterize the ability of the models developed in this paper to capture
dependence of droplet deformation on relative surface tension strength. For simplicity,
a viscosity ratio of µd/µ0 = 1.0 is assumed. Again, inertial effects due to density
differences are neglected.

Figure 14 shows the temporal evolution of particle ensemble averages after spherical
droplets are released from the centreline of the channel at t= 0 and allowed to deform
as they are advected by the flow. There is a rapid adjustment from initially spherical
droplets (D = 0) to a quasi-equilibrium in which velocity gradient stretching is
approximately balanced by surface tension in the sense of ensemble averages. This
rapid adjustment period is followed by a slow variation dictated by the magnitude
of velocity gradients experienced as the droplets spread away from the centre of
the channel and towards the walls, where they experience higher velocity gradient
magnitudes. The droplets’ initial departure from sphericity follows the local strain
rate at t= 0, so s∗d = s∗ for short times. As observed by Johnson & Meneveau (2016),
〈s∗〉 ≈ 0.37 in isotropic turbulence and the same value is observed here for 〈s∗d〉 at
t= 0.
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FIGURE 14. (Colour online) The deformation magnitude (0 < D < 1) (a) and shape
parameter (−1 < s∗d < 1) (b) averaged over the particle ensemble as a function of time
for Ca= 0.25 (black), 0.5 (magenta), 1.0 (blue), 2.0 (green), 4.0 (red). Dashed lines show
DNS results while continuous lines show results from the a posteriori LES simulation.
Arrows indicate the direction of increasing Ca.
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FIGURE 15. (Colour online) Probability density functions for droplet deformation
magnitude (a) and shape parameter (b) near the end of the simulation, t = 23.4. In (a),
the range of Ca in figure 14 is shown, while in (b), a reduced set Ca= 0.25, 1.0, 4.0 is
shown. Continuous lines indicate LES-RDGF results while dashed lines show DNS results.
Arrows indicate the direction of increasing Ca.

At any given time, the average deformation increases as surface tension forces are
decreased (increasing Ca). Less trivially, the average shape parameter decreases as Ca
is increased, signalling a decreasing bias towards disk-shaped (oblate) droplets. In fact,
near the very end of the simulation (t> 20), the Ca= 4.0 DNS results show a slightly
negative s∗d average, indicating a slight bias towards cigar-shaped (prolate) droplets.
The full distributions of D and s∗ for a single time near the end of the simulation
are shown in figure 15. For the deformation magnitude, the PDF shifts from most
droplets slightly deformed (D< 0.2) at Ca= 0.25 to a situation in which most droplets
become highly deformed for Ca= 4.0. Meanwhile, as Ca increases, the bias towards
oblate droplets decreases. One of the more noticeable differences between the PDFs
for DNS and LES-RDGF results is the consistent overprediction of s∗d ≈ 1 droplets.

Figure 16 further elaborates on these trends. The deformation magnitude as a
function of wall-normal distance shows that the trend with Ca is captured very well,
but the slight overprediction of deformation is consistent at any Ca. The conditional
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FIGURE 16. (Colour online) Conditional means for deformation magnitude conditioned on
wall-normal distance (a) and shape parameter conditioned on deformation magnitude near
the end of the simulation, t= 23.4 (b). The same range of Ca from figure 15 is shown.
Arrows indicate the direction of increasing Ca.

average of s∗d as a function of D shows the dependence of shape on the extent to
which droplets are deformed. At all Ca, the maximum 〈s∗d|D〉 (most bias towards
oblate shapes) occurs near the peak of the PDF. The LES-RDGF model gives an
accurate prediction for 〈s∗d|D〉 when D is small, regardless of Ca. The increasing errors
for 〈s∗d〉 at higher Ca are caused by errors in 〈s∗d|D〉 for large D. The LES-RDGF
model appears to overpredict the bias towards oblate shapes for highly deformed
droplets, whereas DNS even shows a prolate bias for very high D. Because higher
Ca leads to higher probabilities for large D events, the total error in 〈s∗〉 increases
with Ca, as shown in figure 14. Taken together with figure 15, this shows that the
velocity gradient model overpredicts the amount of highly deformed oblate droplets
compared with the DNS. Otherwise, the agreement between the LES-RDGF model
and DNS is very good.

Finally, while the above simulations have demonstrated the relative accuracy of the
LES-RDGF model compared with DNS, we close by considering a more physically
motivated choice of parameters (Ca and µ̂) to mimic oil droplet behaviour in a
turbulent environment. The following parameter choices are rough estimates for
the purpose of demonstration only, and not necessarily meant to directly match
any particular flow experiment or simulation. We consider oil droplets in water
(µ0 = 1 × 10−3 Pa s, ρ0 = 1 × 103 kg m−3) with estimated surface tension of
about σ = 2 × 10−2 N m−1 and viscosity µd = 4 × 10−3 Pa s without added
dispersants (Daling et al. 2014) and σ = 5 × 10−5 N m−1 with a dispersant-to-oil
ratio of 50 (Johansen, Brandvik & Farooq 2013). We use a dissipation rate of
〈ε〉=5 m2 s−3 (Derakhti & Kirby 2014), which yields η≈2×10−5 m, τη≈4×10−4 s,
υη ≈ 5 × 10−2 m s−1, for estimated Kolmogorov length, time, and velocity scales
respectively. These values result in µ̂= 4 and Ca= 5× 10−3 (without dispersants) and
2 (with dispersants) for droplets with radius R ≈ 2η, which would be on the upper
end of droplet sizes which can be described well by (2.24), namely R� 10η, since
most of the dissipation occurs at scales near ∼10η (Pope 2000).

Figure 17 shows results for droplets with viscosity ratio µ̂ = 4 in the turbulent
channel flow using DNS and LES-RDGF with Ca= 5× 10−3 (‘without dispersants’)
and Ca = 2 (‘with dispersants’). Given the dramatic reduction in surface tension
caused by the dispersants, the behaviour of the droplets also changes dramatically.
The droplets without dispersants deform negligibly and remain very close to spherical,
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FIGURE 17. (Colour online) Comparison of deformation for oil droplet cases for Ca =
5× 10−3 (without dispersants) and Ca= 2 (with dispersants). (a) Time history of ensemble
averaged deformation magnitude after release from channel centreline at t= 0. (b) Average
deformation magnitude conditioned on wall distance at t= 23.4. (c) PDF of deformation
magnitude at t= 23.4. (d) PDF of droplet shape parameter at t= 23.4.

while the Ca = 2 case shows significant deformation. Qualitatively the results in
figure 17 are similar to those of previous figures in this section, so that same
conclusions about droplet behaviour and model accuracy also apply to this case.

5. Summary and conclusions

In this paper, we have demonstrated that, while direct use of coarse-grained
velocity gradients in a large-scale flow simulation leads to significant errors (which
increase with Re), the stochastic modelling techniques for the velocity gradient tensor
in isotropic turbulence can be successfully coupled to LES to provide small-scale
information along trajectories. In this way, the effect of large-scale features captured
in the LES is transmitted to the small-scale dynamics and flow inhomogeneity from
LES is naturally incorporated into the stochastic model previously used only for
isotropic turbulence.

The stochastic model provides an accurate level of intermittency for the dissipation
and enstrophy fluctuations, matching the stretched-exponential tails of the PDFs. By
taking into account the nonlinear dynamics of the velocity gradient in the viscous
range, the tensorial structure is captured with remarkable accuracy by the stochastic
model. This includes the various alignment trends of vorticity with strain-rate
eigenvectors as well as the relative probability of prolate and oblate deformation
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events in the strain-rate eigenvalues. Further, the velocity gradient models provide a
rich description of the local flow conditions and can be coupled to micro-physical
models to predict the effect of inhomogeneous turbulence on small-scale physics.
In particular, this was demonstrated for small droplets using a phenomenological
model relating their deformation and rotational behaviour to the velocity gradient.
In addition to capturing deformation magnitude trends with Ca and accurate PDF
shapes, the stochastic model results were also able to represent shape distributions
with good accuracy, although there was a tendency to slightly overpredict highly
deformed oblate droplets.

While the LES-RDGF model shown here enjoys a good amount of success, a
few discrepancies with DNS results have been identified, such as the overprediction
of dissipation rate by the LES in the core of the channel and the overprediction
by the RDGF model of the bias towards creating oblate droplet morphologies for
highly deformed droplets. Further improvement on these shortcomings would rely
on (i) improved modelling of dissipation rate statistics from LES and (ii) improved
multi-time statistics in the RDGF stochastic model or similar modelling approach.

The scope of the velocity gradient model could also be quite usefully extended if
near-wall deviations from approximate isotropy could be taken into account. We recall
that the application of the RDGF model to the channel flow case studied in this paper
was predicated on the ability of isotropic turbulence to capture the main small-scale
effects in this non-homogeneous flow. This prevents the current methodology from
capturing some effects. For instance, it is known that the peak of the ∂u/∂y PDF in
channel flow occurs for negative gradients (Pumir, Xu & Siggia 2016), an observation
that cannot be explained by a local isotropy assumption. In fact, in our proposed
formulation, the tensorial structure of the resolved velocity gradient Ã is not used
when computing the total velocity gradient. However, in wall-bounded applications,
even at high Reynolds numbers, the local Reynolds number decreases near the wall,
and consideration of the resolved velocity gradient, Ã, becomes more important.
Also, the pressure Hessian and viscous Laplacian closures developed for unbounded
isotropic turbulence may also need modification to capture important near-wall effects
in the buffer region and viscous sublayer. Incorporating information from resolved
velocity gradients near the wall (for particles above the first grid point), as well as
from the LES wall model (for particles below the first grid point), into stochastic
models of the velocity gradient tensor is an important topic for future research.

For realistic modelling of droplet behaviour, inertial effects caused by mismatched
density between the droplet and surrounding fluid (ρd 6= ρ0) could also become
important, e.g. in the case of oil droplets in § 4.3 above where the droplets are
lighter than the surrounding fluid. While preliminary steps have been taken towards
including inertial effects in both dispersion (Fede et al. 2006) and velocity gradient
models (Johnson & Meneveau 2017a), a fully functional version of RDGF does not
yet exist for inertial trajectories. Lighter particles tend to sample more rotationally
dominant regions of the flow, while heavy particles tend towards strain-dominated
regions, which could have an important impact on droplet deformation rates for large
enough particles.

Finally, the channel flow considered here has a relatively low Reynolds number
compared to many turbulent flow applications. At higher Reynolds numbers, the
phenomenon of intermittency means that extreme velocity gradient events become
more likely. Intermittency effects can be introduced into LES-RDGF by following the
approach of Johnson & Meneveau (2017b).
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In conclusion, the proposed method for coupling SDE models for the velocity
gradient tensor with LES provides an alternative to expensive DNS simulations
for capturing the effect of turbulence on the detailed dynamics of important
(approximately) passive micro-physics such as droplet deformation, rigid particle
rotation/orientation, or scalar dissipation and mass transfer, to name a few. While
most of the dissipation (velocity gradient magnitude) is not directly resolved in LES,
we have demonstrated a fairly simple way to estimate local dissipation rates from the
LES solution (at least for the channel flow considered here), and thus set expected
velocity gradient magnitudes, leaving the detailed evolution of the complex tensorial
structure of the velocity gradient tensor to the stochastic model. The recent advances
in physics-based modelling of the Lagrangian velocity gradient serves as a basis for
the success of this approach.
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Appendix A. Derivation of Yoshizawa and Smagorinsky coefficients

In this derivation, we assume a spectral cutoff filter Ĝ(κ) = H(κc − κ) for
wavenumber magnitude κ , where H is the Heaviside step function and κc=π/∆ is the
cutoff wavenumber. An infinitely long inertial range with spectrum E(κ)=Ckε

2/3κ−5/3

valid from k= 0 to k=∞ is assumed to simplify the calculations.
In order to estimate Cy and Cs in the expressions

kr = 2Cy∆
2
|S̃|2, (A 1)

and
Π =C2

s∆
2
|S̃|3, (A 2)

it is first necessary to estimate the strain-rate magnitude, |S̃| =
√

2S̃ijS̃ij, as follows
(Lilly 1967),

〈|S̃|2〉 =
∫
∞

0
Ĝ2(κ)

[
2κ2E(κ)

]
. (A 3)

Substituting the above expressions for the filter kernel and assumed energy spectrum,

〈|S̃|2〉 = 2Ck〈ε〉
2/3
∫ π/∆

0
κ1/3dκ =

3Ckπ
4/3

2
〈ε〉2/3∆−4/3. (A 4)

The ensemble average of (A 1) is

〈kr〉 = 2Cy∆
2
〈|S̃|2〉. (A 5)

The residual kinetic energy per mass is given by (Pope 2000),

〈kr〉 =

∫
∞

0
(1− Ĝ2(κ))E(κ) dκ. (A 6)
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Using the spectral cutoff filter kernel and inertial range spectrum assumed above, it
is straightforward to compute

〈kr〉 =Ck〈ε〉
2/3
∫
∞

π/∆

κ−5/3dκ =
3Ck

2π2/3
〈ε〉2/3∆2/3. (A 7)

Substituting (A 4) and (A 7) into (A 5), one finds for the Yoshizawa coefficient,

Cy =
1

2π2
, (A 8)

independent of ∆ or 〈ε〉.
Meanwhile, equating average SGS production (A 2) with the average dissipation rate,

〈Π〉 = 〈ε〉 =C2
s∆

2
〈|S̃|3〉 = SsC2

s∆
2
〈|S̃|2〉3/2, (A 9)

where Ss=〈|S̃|3〉/〈|S̃|2〉3/2 is the strain-skewness. Lilly (1967) assumes Ss to be equal
to unity but we find Ss≈1.3 in the channel flow simulation for this paper. Substituting
(A 4) into (A 9), one obtains an estimate for the Smagorinsky coefficient,

C2
s =

1
Ssπ2

(
2

3Ck

)3/2

. (A 10)

Finally, for the drift term in (2.19), we can compute,

Π

kr
=C′|S̃| =

C2
s

2Cy
|S̃| =

1
Ss

(
2

3Ck

)3/2

|S̃|, (A 11)

which is the result reported in (2.22). Substituting Ss≈ 1.3 as an empirical result from
our LES with scale-dependent Lagrangian model (Bou-Zeid et al. 2005), along with
Ck ≈ 1.6, one obtains

Π

kr
=C′|S̃| ≈ 0.207|S̃|. (A 12)

While we have used a prescribed constant for C′ in this paper, a dynamic model
based on (2.20) using a test filter could be constructed for Cy (Moin et al. 1991) and
combined with the dynamic model for Cs to compute C′.

Appendix B. Dissipation rates in the filtered DNS
In this appendix, the specialized treatment of dissipation rates in the fDNS dataset

is described. The main goal is to construct a dataset which isolates the modelling error
of the velocity gradient stochastic model by removing other errors such as LES SGS
modelling errors and particle trajectory errors. In particular, this appendix deals with
how Π is computed in the fDNS for use in (2.12).

For the a priori case, Π = −σijS̃ij could have been computed directly from the
database by computing the subgrid stress in addition to the filtered velocity gradient;
this would introduce the problem of dealing with significant backscatter, which
complicates the implementation of the velocity gradient model in § 2.2. In practice,
most LES models are designed to prevent backscatter, so we do not pursue this
difficulty further. Instead, for the fDNS data, we compute Π = (Cs∆)

2
|S̃|3 using
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FIGURE 18. (Colour online) (a) Kolmogorov time scales from DNS (lines) and fDNS
(symbols) constructed using subgrid production τη =

√
ν/〈Π |y〉E (- - - -, A) and using

dissipation rate τη =
√
ν/〈ε|y〉E (——, ©). (b) Non-equilibrium correction used for

matching the DNS dissipation rate in the fDNS case.

a Smagorinsky model with a fixed y-dependent Cs from Porté-Agel, Meneveau &
Parlange (2000),

Cs(y)=
[

C−n
s,0 +

(κy
∆

)−n
]−1/n

, (B 1)

where Cs,0 = 0.19 and n= 2 are chosen because they give good results for Eulerian-
averaged quantities for this flow (see figure 18a). Here, the coarse-grained velocity
gradient necessary for computing Π for (2.12) along the trajectories, is computed
using second-order finite differencing and trilinear interpolation.

Figure 18 elucidates the dissipative behaviour of the DNS and fDNS datasets. As
indicated by the agreement between the 4 symbols and dashed line on the left, the
average subgrid production as a function of wall-normal distance is matched well by
(B 1) when the values Cs= 0.19 and n= 2 are chosen. However, there is a significant
mismatch between the average production and dissipation near the centreline of the
channel (and near the wall). This mismatch is physical and related to the non-trivial
dynamics of subgrid kinetic energy, and is exacerbated by the relatively large filter
width used to construct the fDNS dataset. For the purposes of constructing an a priori
test case, we simply use the DNS dissipation to provide a non-equilibrium correction,
Πcorr = Cneq(y)Π , where the correction factor Cneq(y) = 〈ε|y〉E/〈Π |y〉E enforces the
agreement for average dissipation rate seen between ◦ symbols and the continuous
line on the left of figure 18. This does not, in general, guarantee the correct local
dissipation rate, and (2.12) is used with Πcorr to determine an approximate ε̂ for input
to the RDGF model.
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