
4 

Dimensional regularization 

We have seen how convenient it is to regulate the UV divergences of 
perturbation theory by continuation in the dimension of space-time. To 
date, no-one has shown how to use the method in the complete theory. But 
in perturbation theory, as we will now demonstrate, it is consistent and 
well-defined. Now all results obtained by this method can be obtained by 
other, more physical methods (say, a lattice regulator). But frequently much 
more labor is involved. This is not a triviality, for in complicated situations, 
especially in gauge theories, it enables us to handle the technicalities of 
renormalization in a simple way. 

The idea of dimensional continuation has been used for a long time in 
statistical mechanics (see, for example, Fisher & Gaunt (1964)). It became 
very prominent when Wilson & Fisher (1972) discovered the 6-expansion 
and applied it to field-theoretic methods in statistical mechanics (Wilson 
(1973), Mack (1972), and Wilson & Kogut (1974)). In the 6-expansion one 
works in 4 - 6 spatial dimensions, and expands in powers of 6. At the same 
time, in a purely field-theoretic context, a need arose to find a way of 
regulating non-abelian gauge theories that preserved gauge in variance and 
Poincare invariance. This led to dimensional regularization ('t Hooft & 
Veltman (1972a), Bollini & Giambiagi (1972), Cicuta & Montaldi (1972), 
and Ashmore (1972)). Speer & Westwater (1971) had actually discovered 
the method earlier, but their paper is considerably more abstract, and had 
not attracted much attention. 

Now vector spaces either have infinite dimension or a finite integer 
dimension. So the concept of integration on a space of finite non-integer 
dimension, d, cannot be taken completely literally. Either it is a set of purely 
formal rules for obtaining answers or it is an operation that is not literally 
integration in d dimensions, but only behaves in many respects as if it were 
integration in d dimensions. It is not sufficient to treat it only as a set of 
formal rules (even though that is what it becomes in practice), because one 
must know that the rules are consistent with one another and with the 
algebraic manipulations one carries out on integrals. To show that no 
inconsistencies can arise, we must construct an explicit definition. 

62 
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Dimensional regularization 63 

There are three issues to address: (1) uniqueness, (2) existence, and (3) 
properties. Uniqueness is necessary, to avoid the possibility of constructing 
two definitions, each definition being self-consistent but giving different 
results from the other definition. Existence, shown by construction of an 
explicit definition, is necessary to prove that no inconsistencies arise. Once 
having seen that integration in non-integer dimension can be defined, we 
cannot just assume that all properties associated with ordinary integration 
are true; indeed they need not be. 

So we also have to prove those properties which we need and which are 
true. We also must prove that the results agree with ordinary integration if d 
is an integer. 

These considerations are quite non-trivial, as can be seen by considering, 
for example, the anomaly in the Ward identity for the axial current 
ji5> = !iJy~'y 5 1jJ in the gauge model (2.11.7). If the fermion masses are zero, 
then a naive application of the fermion equations of motion shows that the 
current is conserved: o~'ji5 > = 0. In fact, the current is not conserved, as 
shown by Adler (1969, 1970) and Bell & Jackiw (1969). A counterterm can 
be added to ji5 > to make it conserved, but only at the expense of removing its 
gauge invariance. 

Among the objects to be extended to d dimensions are the Dirac matrices 
(y~' and y5 ). If we assumed the obvious generalization of their anticom
mutation relations, then for all values of d we would have 

(4.0.1) 

But then we would be able to derive the false result that the anomaly for the 
gauge-invariant axial current is zero. So there has to be an inconsistency 
('t Hooft & Veltman (1972a)). More complicated problems in a similar vein 
arise when treating supersymmetric theories (Jones & LeVeille (1982)). 

In this chapter we will start by stating the axioms for d-dimensional 
integration given by Wilson (1973). These are sufficient to prove unique
ness. Our calculation of a one-loop graph in Section 3.5 was in fact a 
realization of the uniqueness proof for one particular integral. Then we will 
construct an explicit definition of d-dimensional integration. The vector 
space on which we work is in fact infinite dimensional. 

Unfortunately, the definition gives a divergent result in most cases, so we 
will next have to find a powerful enough extension (Section 4.2). We then 
prove some standard properties (Section 4.3). One particular result in
volves finding a definition of the metric tensor on an infinite-dimensional 
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space such that its trace is d rather than infinity. 
Then we will be in a position to derive some useful formulae (Sections 4.4 

and 4.5) for use in Feynman graph calculations. Finally we will show how to 
define Dirac matrices; this is obviously important if we are to be able to 
calculate consistently graphs containin,g the Adler-Beli-Jackiw anomaly. 

The utility of a precise definition such as we give is that if inconsistencies 
arise at some stage, then one can always go back to first principles to 
discover the error. 

4.1 Definition and axioms 

Let d be a complex number. We wish to define an operation that we may 
regard as integration over a d-dimensional space: 

Jddpf(p). (4.1.1) 

Here f(p) is any given function of a vector p, which is in the d-dimensional 
space. We will suppose that the space is Euclidean. (Minkowski space is 
regarded as a one-dimensional time together with a (d- i)-dimensional 
Euclidean space.) Following Wilson (1973) we will give an explicit 
definition in which the space is actually infinite dimensional; it is the 
integration operation that gives the dimensionality. Making d a positive 
integer n will effectively insert a £5-function in the integration that will force 
all vectors involved in defining the function f(p) to lie in some n

dimensional subspace. 
What properties must we impose on a functional off in order to regard it 

as d-dimensional integration? The following properties or axioms (due to 
Wilson (1973)) are natural and are necessary in applications to Feynman 
graphs: 

(1) Linearity: For any complex numbers a and b 

Jddp[af(p) + bg(p)] =a Jddpf(p) + b Jddpg(p). 

(2) Scaling: For any numbers 

Jddpf(sp) = s-d fddpf(p). 

(3) Translation invariance: For any vector q 

fddpf(p + q) = Jddpf(p). 

We will also require rotational covariance of our results. 

(4.1.2) 

(4.1.3) 

(4.1.4) 
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Linearity is true of any integration, while translation and rotation 
invariance are basic properties of a Euclidean space, and the scaling 
property embodies the d-dimensionality. 

Not only are the above three axioms necessary, but they also ensure that 
integration is unique, aside from an overall normalization (Wilson (1973)). 
In fact, they determine the usual integration measure in an integer
dimensional space (again up to normalization). The proof is simple: 

Use linearity to expandf(p) in terms of a set of basis functions. Choose a 
basis such as the functions 

(4.1.5) 

Then the integral of a basis function can be written in terms of the integral of 
one single function : 

Iddpfs.q (p)=s-dfddpexp(-p2). (4.1.6) 

The integral of this one function sets the normalization. It is natural to 
require that the value be the usual one in integer dimensions and that we 
can write 

Jdd'pddzqexp( -p2 -q2)= Idd,+dzkexp( -k2). (4.1.7) 

Thus the normalization is given by 

Jddpexp( -p2)=ndi2. (4.1.8) 

An abstract uniqueness theorem is not sufficient for us. We also need an 
explicit formula so that a d-dimensional integral can be written as a 
sequence of ordinary integrals. This will be important in allowing us to 
prove standard properties of the integration. In addition it ensures that 
there exists a self-consistent definition. It is a priori possible that no 
consistent definition exists; the uniqueness theorem only applies if the 
integration operation exists. 

A function f(p) that we integrate could in principle be any function oft he 
components of its vector argument. However, we do not, a priori, know the 
meaning of the components of, say, a vector in 3.99 dimensions. We will 
soon see that there are in fact infinitely many components. In practice, we 
will work with rotationally covariant functions. So we will assume that f is 
a tensor function of a finite set of vectors: p, q1 , ... , qN say. For example, a 
scalar function is a function only of scalar products 

(4.1.9) 
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Thus f is in fact an ordinary function of scalar numbers, rather than some 
more complicated kind of function. Of course the values of the scalar 
products lie in restricted ranges. Thus: 

q;; ~0, 
I q, · qb I :-;;; q;; q;. ( 4.1.1 0) 

A tensor function is obtained by writing explicit tensors in terms of the 
vectors p, q1 , ... , qN and ofthe metric tensor Jii, with scalar coefficients. For 
example, we might have 

(4.1.11) 

Such functions are the most general that we need to consider. (We will see 
later how to handle the antisymmetric tensor £";.1,. and the Dirac y
matrices.) 

To give a realization of the objects p, q 1 , ••• , we assume that they are 
vectors in an ordinary vector space. The space must be infinite dimensional, 
as we will show in a moment. So we define the vectors each to be an infinite 
sequence of components, p = (p 1, p2, •.. ), just as we can define a three
dimensional vector Vas a sequence of three components (V 1, V 2 , V3 ). The 
metric is given by: 

p·q = plq! + p2q2 + .... 

The reason for the infinite dimensionality is that an integral with, say, 
d = 3.99 can be used not only as a regulator for a physical theory in a space

time of dimension d0 = 4, but also as a regulator for a model theory in any 
higher dimension, e.g., d0 = 5 or 6 or .... The vectors q1 , q2 , ••. in (4.1.9) can 
be thought of as momenta of external particles, and our vector space must 
be large enough to accommodate d0 linearly independent momenta. Since 
d0 is arbitrary, we are forced to infinite dimension. 

To define the d-dimensional integral of a scalar function, we find a finite
dimensional subspace containing all the q/s. Then we write p as a 
component p 11 in this space and an orthogonal component P1: 

p = Pil + PT 
J 

=I piei+PT· (4.1.12) 
j= 1 

The 'parallel space', in which lie the q/s, is spanned by an orthonormal basis 
ei (withj= l, ... ,J). We define the integral over p to be the ordinary]
dimensional integral over p 11 performed after integration in d- J dimen-
sions over P1 : 

(4.1.13) 
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Since f(p) does not depend on the direction of PT we now can define 

fdd-JPT f(p) = Kd-J I: dpTp~-J - 1 f(p). (4.1.14) 

Here K. (with v = d- J) is effectively the area of the surface of a 
hypersphere in v dimensions. The value of K. is obtained by considering the 
special case where f is chosen to be a Gaussian - see (4.1.8) - with the result 

2n•12 
K. = r(v/2)" (4.1.15) 

Hence we have a definition of d-dimensional integration in terms of 
ordinary integration: 

Jddpf(p) = r~(~(~~;;2)Jd 1p 11 J: diJrP~-~- 1/(p). (4.1.16) 

We must check that the result is independent of the choice of the subspace of 
the p 11 • We must extend the definition to handle the divergences at PT= 0 
when dis small, which we will do in Section 4.2. Then in Section 4.3 we will 
prove important properties of our definition. But first there are a couple of 
details to clear up. 

The J-dimensional subspace of p 11 's is chosen subject only to the 
requirement that it include all q/s. So it is possible to extend the space to 
include extra dimensions. To show this has no effect on the value of the 
integral we must prove 

K.foo dpp•-1g(p2) = foo dkKv-1 foo dPrp;-2g(p~ + k2) (4.1.17) 
0 -oo 0 

for any function, g, which depends on a scalar argument. This equation is 
true since the right-hand side is 

dpp•-1g(p2) dxx(v-3)/2(1- x)-112, (4.1.18) 
2n(v- 1)/2 Joo f1 

r((v- 1)/2) 0 o 

where p~ = xp2 and k2 = (1 - x)p2. 
To show that different choices of the 'parallel' subspace have no effect on 

the value of the integral, we merely extend both spaces to a common larger 
space. The sole problem is that there may be a divergence in (4.1.18) at 
x = 0; this we will cover by Section 4.2. 

Up till now we have supposed f(p) is a scalar function. If it is a tensor 
Jii· · ·(p), we work component-by-component. To define, say, the 
component 
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we take the parallel space to include the 1- and 2-directions and any vectors 
qj on which fij depends. Then we proceed as before. 

For example, supposefij(p) = pipjg(p2), where g is a scalar function. Then 

Jf12(p)ddp = fdpldp2 fdd-2PTPIP2g[(pt)2 + (p2)2 + p?) = O, 

while 

More general cases are treated in Section 4.3. 

4.2 Continuation to small d 

The convergence of the definition (4.1.16) is d-dependent at PT = 0 and 
PT = oo.lt improves at PT = oo when d gets smaller, but it improves at PT = 0 
when d gets bigger. Even for a function that decreases exponentially at large 
p, and that is analytic for finite p, the defining integral has a divergence if the 
transverse space has a dimension d- J s 0; this is forced to happen if dis 
negative or zero. So our first task in this section is to find an explicit formula 
for the continuation of (4.1.16) to arbitrarily negative d. We will see that the 
PT-integral has poles whenever (d- J)/2 is zero or a negative integer, but that 
these are cancelled by the zeros in 1/r((d- J)/2). 

We will then be able to adopt the resulting formula as a definition of the 
d-dimensional integral of a function for which (4.1.16) converges for no 
value of d. An examp'e of such a function is 

1 
f(p) = (qt + pf + (qz + Pf + m2 • 

The parallel space must be at least two-dimensional to accommodate q 1 and 

q2 , so we may set J = 2. Then the transverse integral converges at PT = 0 
only if d > J = 2, while the complete integral converges at p = oo only 
ifd<2. 
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We will have a definition that defines f ddpf(p) for all small enough 

d. For larger values of d we define the integral by analytic continuation. In 
general there will be ultra-violet poles at certain values of d- just as in the 
Feynman graph we computed in Sections 3.5 and 3.6. 

To explicitly define the continuation to small d, it is sufficient to consider 
a functionf(p2). Let us assume thatf---+0 rapidly enough asp---+ ro that 

I 2nd;z fx 
ddpf(p2) = -- dppd-lf(p2) 

r(d/2) 0 
(4.2.1) 

converges at p---+ ro for some positive value of d. We also assume thatf(p2) is 
analytic at p = 0. Then (4.2.1) converges and is analytic in d for some range 
0 <Red< dmax· We define the integral for all other values of d by analytic 
continuation in d. Explicit formulae for the continuation to smaller d's are 
constructed by adding and subtracting the leading behavior at p---+ 0. For 
example, the following formula gives the integral in the range - 2 <Red 

< dmax: 

fddpJ(p2) =:~:;~){{X dppd-IJ(p2) 

+ f>p pd- I [f(p2)-f(O)] + f(O)Cd jd}. (4.2.2) 

This is independent of the arbitrary constant C. 
When - 2 < Re d < 0 we may let C---+ ro to obtain 

f ddpf(pz) = :(:d;~) f~ dppd-1 [f(pz)- f(O)], (4.2.3) 

while at d = 0 the zero in 1/f(d/2) is cancelled by the pole term to give 

(4.2.4) 

We extend this procedure to continue to - 21- 2 <Red< - 21 for any 
positive integer /: 

f d- z'pf(pz) = (- n)-'f(l)(O). (4.2.5) 

This equation gives us the integral when - 21 - 2 < Re d < - 21 on the 

https://doi.org/10.1017/9781009401807.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.004


70 Dimensional regularization 

assumption that the original formula ( 4.2.1) converges when dis just greater 
than zero. Suppose now that (4.2.1) diverges at p = w for all positive values 
of d, but thatfis power behaved asp-> w. Then it is sensible to adopt (4.2.5) 
as the definition of the integral. This particular definition is very important 
since we will use dimensional continuation to regulate Feynman graphs 
that are ultra-violet divergent at d = 4. The definition (4.1.16) applied to a 
Feynman graph frequently has a negative number d- 4 of transverse 
dimensions in order to ensure ultra-violet convergence of the complete 
integral. Then we may apply the definition (4.2.5) to the PT-integral with d 
replaced by d - J. 

Another obstacle to continuation in d is sometimes that f(p 2 ) is not 
analytic at p 2 = 0 but has a power-law singularity there. We may generalize 
the derivation of (4.2.5) to write down a formula for the continuation of the 
integral. 

An example of the use of (4.2.5) as a definition is given by choosing 

where A and Bare numbers. The definition (4.2.l)divergesfor all d, but with 
l = 1, (4.2.5) gives us a definition valid for - 2 < Re d < 0: 

The integral can be explicitly computed to give: 

Jddp(p2 + A)/(p2 +B)= (n:B)df2 (A/ B- l)r(l - d/2), 

which can be continued to all d. 
Suppose/has a power-law singularity, as for example 

1 
f = (p + q)2(p2 + m2) · 

The definition (4.1.16) of the integral of this function converges if 2 < d < 4. 
To continue it to lower d we must subtract the power behavior at p = - q, 
just as we did for singularities at p1 = 0, or at p = 0 in (4.2.2). Then we can 
define the integral of say 

One result of all these definitions is that the integral of a power of p is 
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zero: 

Iddp(p2)a = 0 (4.2.6) 

for any value of a (integer or not). It should not be thought that there is any 
choice in (4.2.6). It follows from (a) the explicit continuation of (4.1.16) to 
small d, and (b) application of the continued formula as a definition of 
f.ddp(p2)a. 

Consistency of the formalism also requires (4.2.6). For suppose thatf(p) 
= (p2Yf(p2 + m2 ). Then when - 2ct- 2 < d ::::; - 2ct we have 

Iddpf(pz) = Iddp[f(pz) _ (pzy;mz]. 

If linearity is to be true then we have (4.2.6). 
We could subtract out the singularity differently, by a function that is not 

just a power of p. But then, for example, the simplification obtained in (4.2.2) 
by taking C---+ oo would no longer occur. 

Observe that if in the first of our definitions (4.1.16), we take f to be a 
positive-definite function, then the integral is positive. But when the integral 
is continued away from the region where this definition converges, then the 
subtraction terms mean that the integrand is no longer positive definite, so 
that the integral need not be positive. 

At the end of Section 4.1, we proved that the value of a d-dimensional 
integral does not depend on how we split the integral into an ordinary 
integral over some integer-dimensional 'parallel space' and a spherically 
symmetric integral over the remaining dimensions. We let J be the 
dimension of the parallel space. Then the proof consists of examining what 
happens when J is increased by one. Ultimately we had to prove (4.1.17), 
which is a property of ordinary integrals. We assumed d > J, so that there 
were no subtraction terms. To generalize the result to the case that d - J is 
not positive, we must prove that 

Kd-J I: dppd-J-1 [f(p2)- [J :t:2]Jf"l(O)p2"/n! J 

= Kd-J-1 I~ X dk I: dpTp~-J-2[f<k2 + pn 

[(J +I -d);2] J 
n~O Jf"l(k2)p7"/n! . (4.2. 7) 

Here the symbol [a] denotes the largest integer smaller than a. To prove the 
equation we change variables on the right-hand side to x and p, where 
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p~ = xp2 and k2 = (1 - x)p2. For the right-hand side we get 

(4.2.8) 

Here we have added and subtracted 
[(1-d)/2] 

L J<")(O)p2n!n !, 
n=O 

so that the integral over p2 of pd-1- 2 times each square bracket term is 
convergent. After scaling p2 by (1 - x), we get: 

-j-Kd-1-1 I~ dxx<d-1-3)/2(1-x)-1/2 I~ dp2(p2)d!2-1!2-1 x 

X {[f(p2)- [1/:t:/2JJ<")(O)p2n/n! J 
[(1 + 1-d)/2) x"(1 - x)1!2 -d/2 -np2n 

- I 
n=O n! 

Integration by parts in the p-integral gives 

Kd-1-1 I~ dxx<d-1-3)/2(1-x)-1/2 x 

[ 
[(1+1-d)/2) (1+1/2-d/2)! J 

X 1- L x"(1- xl/2-d/2-n X 
n=O n!(1 +1/2-d/2-n)! 
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An integration by parts on the x-integral is used to show that it equals 
r(1/2)r[(d- J- 1)/2]/r[(d- 1)/2], from which the required result 
follows. 

4.3 Properties 

Property 1. Axioms: The definitions (4.1.16) and (4.2.5) satisfy Wilson's 
axioms (4.1.2), etc., for d-dimensional integration. 

Proof. We reduced d-dimensional integration to ordinary integration so 
linearity follows from linearity of ordinary integration. We must choose the 
p 11 space to be large enough that it is the same for both functions f and gin 
(4.1.2). Our explicit continuation (4.2.5) to arbitrary negatived ensures that 
reducing the dimens{on of the transverse space is no problem. 

Scaling and rotation covariance are explicit properties of all our 
definitions. 

Translation in variance is valid for ordinary integration, so it follows from 
definition (4.1.16) provided the p11 space is big enough to include the vectorq 
used in the axiom (4.1.4). 

Property 2. 

fdd (p2 )'" = d;z Md+ za- zp r(cx. + d/2)r(p- ex- d/2) 
p (pz + Mz)p n r(d/2)r(p) . (4.3.1) 

Proof. Immediate from ( 4.2.5). Note that this implies that the integral of a 
power of p2 is zero, since r(p) "' 1/ p as p __,. 0. 

Property 2a. 

(4.3.la) 

Proof. Already done. 

Property 3. 

aJd fda ) aq d pf(p,q, .. . ) = d P aqf(p,q,·· .. (4.3.2) 

Proof. Contract with a vector t:5q which projects out the derivative with 
respect to the component of q in the t:5q direction. Then make the parallel 
space (ofp 11 's) big enough to include t:5q and use (4.3.2) on ordinary integrals. 
This is true for all t:5q. 
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Property 4. 

Dimensional regularization 

;;ij;; .. =d u ul 1 . (4.3.3) 

Proof and definition of ~ij· Now ~ii is defined to be the component form of 
a contravariant tensor with ~ii = 1 if i = j and zero otherwise. The obvious 
definition of the covariant tensor ~ii is as the inverse matrix, i.e., the same 
thing. This gives ~ii~ii = oo. However in an infinite-dimensional space, 
there is space for a different definition. 

A contravariant tensor may be defined by specifying its components. But 
a covariant tensor w is fundamentally a linear function acting on covariant 
tensors: w(T).We can write cv(T)= wiiTii only if the sum converges. 

We need the covariant ~ (which we symbolize by ~ii) to be rotation 
invariant, and to give ~(T)= Tii whenever the sum exists. We would also like 
contraction with ~ii to commute with integration. For example 

~ij Iddppipj f(p2) = ~ij I ddp~ijp2 f(p2)/d} 

~ij I ddppipj f(p2) = I ddpp2 f(p2). 

and (4.3.4) 

Since we have an infinite sum, we cannot immediately apply linearity to 
prove this equation. 

Let us define 

(4.3.5) 

Whenever IJii converges, this definition gives 

~(T) = Lyii 

But if the sum diverges, then it is possible to get a finite value for ~(T). In 
particular, 

as required. The definition is rotationally invariant. Commutation of 
contraction with ~ii and integration will now be a consequence of 
commutativity of two integrals- which we will prove later. 

Property 5. Integration by parts: 

Iddpof(p)/opi = o. (4.3.6) 
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Proof. Work component-by-component. Contract with an arbitrary 
vector k: 

f . a 
ddpk'-.f. 

op' 

Then, to define this integral, we must put kin the parallel space, and we can 
use the proof of (4.3.6) for ordinary integration in the space parallel to k. 

Property 6. To define integration over two (or more) variables: 

Jddpddkf(p, k; ql, ... qN) 

we must choose to calculate one integral then the other, according to the 
rules already stated. 

For this definition to be sensible we need the result to be independent of 
the order of integration: 

fddp fddkf= fddk fddpf. (4.3.7) 

We could also allow the dimensions of the p- and k-integrals to be 
different. Then exchange of order of integration JddpJdd'k-+ Jdd'kJd"p. 
is allowed only if d = d', or iff is independent of p· k. 

Proof. It is sufficient to consider the case that there are no q;'s, so that 
f=f(p2,p·k,k2). (If there are q;'s, then we take out a fmite-dimensional 
integral for both k and p which spans all q;'s and then we apply the theorem 
to the remaining dimensions.) 

The left-hand side of (4.3.7) is 

Here k1 is the component of k parallel top, while p 1 is the component of p 
parallel to k. Change variables to, say, p2, k2 , and z = p·k/(pk) = 

Pd j(pi + p~) = kd j(ki + k~ ), with the result that both (4.3.7L) and 
(4.3. 7R) are equal to 

4nd-1!2 f"' f"' f 1 
dppd-! dkkd-! dz(l-z2)<d-JJ12f(p2 pkz k2 ). 

r(dj2)r((d- 1)/2) o 0 - 1 ' ' 

(4.3.7C) 
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The theorem is thus proved in the case that (4.3.7L) and (4.3.7R) are both 
convergent. Note that it is not a trivial consequence of the corresponding 
result for integer-dimensional integration. 

If the dimensions of the integrations are not the same, then let the k 
integral have dimension d'. The left-hand side gives 

4n<d+d'-1)/2 foo d-1 foo d'-1 f1 2 (d'-3)/2 
r(dj2)r((d' -l)/2) 0 dp p 0 dkk _ 1 dz(l- z ) f, 

which in general is not the same as the corresponding expression for the 
right-hand side. But if f is independent of z, then the z-integral can be 
computed explicitly. The result is 

fd d' d 2 2 - 4n(d+d')/2 Joo d d-1 foo d'-1 2 k2 
kd pf(p ,k ) - r(dj2)r(d'/2) 0 p p 0 dk k f(p ' ). 

(4.3.8) 

A problem is that if dis not positive, we must make subtractions as in 
(4.2.5). These are clearly asymmetric between the two orders (4.3.7L) and 
(4.3.7R) of performing the original integral (with now d' =d); in practice, d 

will be the number of dimensions transverse to the external vectors 
q1, ... , qN. In applications to Feynman graphs d will therefore be negative in 
order to regulate UV divergences. So we must use (4.2.5) to define the 
integrals. Then (4.3.7) does not give (4.3.7L), (4.3.7R) and (4.3.7C). 

We solve this problem by defining an auxiliary integral with a 
convergence factor, say 

l(a,d) = Jddp Jdd'kf(p,k)exp [- a(p2 + k2)]. (4.3.9) 

Assume f is power-behaved at infinity. Then for all d, (4.3.7L orR) is UV 
convergent. Moreover, if d > 1 then both (4.3.7L) and (4.3.7R) are IR 
convergent without subtractions. The function l(a, d) is analytic in a and d. 
Continue down to small enough d that (4.3.7) is UV convergent. Then 
I(a,d) is given both by (4.3.7L) and (4.3.7R) with f replaced by 
f exp [- a(p2 + k2)], and with subtractions made. Now set a= 0 to prove 
the theorem ( 4.3. 7). 

Property 7. 

Jddk Jdd'pf(p2 + k2) = Jdd+d'qf(q2). (4.3.10) 

Proof. Since f is independent of p · k, the previous theorem shows that the 
left-hand side is independent of the order of integration, even if the 
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dimensions of the p- and k-integrals are different. Then use (4.3.9) and 
change variables to q = (p2 + k2) 1i2 and x = p2 jq2 • 

Property 8. 

with 

and 

if tis odd, 
if tis even, 

+ all permutations of the i's ]It!, 

A ( ) = r(d/2)r(t/2 + 1/2) fdd (p2)ti2 (p2) 
t g r(1/2)r(d/2 + t/2) p g 

2n412r(t/2 + 1/2) fro 
= r(1/2)r(d/2 + t/2) 0 dp pd+t-lg(p2 ). 

(4.3.11) 

(4.3.12) 

(4.3.13) 

Proof. If t is odd, antisymmetry of the integrand under p--+ - p makes 
the integral over the 'parallel' space zero. 

Antisymmetry under reversal of one component of p, symmetry under 
permutations of the i's, and rotation invariance give the general form 
(4.3.11) and (4.3.12). Computation of one component (say, i 1 = i2 = · · · = 
i, = 1) then gives (4.3.13). 

Examples. 

(4.3.14) 

Jdd- i j k 'g( 2) = (CiiWI + (jik(jil + (jil(jik) [dd I j4g( i) 
l'P P P P P d(d + 2) J P p p . (4.3.15) 

Property 9. Consider an integral 

/(pl> · · ·, PJ) = f d4kf(k, P1, ... , p1) (4.3.16) 

which is UV convergent by power-counting at d = 4; that is f = 0(1/k4 +a) as 

k goes to infinity in any direction, for some positive number a. Then the 
integral is analytic in d and in the parameters P;. when dis close to four, if the 
integrand is analytic. If the p;'s lie in the first four dimensions, then the 
integral at d = 4 has the same value as the ordinary four-dimensional 
integral of f. 
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Example Suppose f has the form 

f = ](k, p1 , ... , PJ)exp(- Ak2 + 2Ak·p), (4.3.17) 

where for any vector v we let v be its projection onto the first four 
dimensions and let v be its projection onto the remaining dimensions. Then 
we let l be the ordinary four-dimensional integral of f. By use of our 
definitions of d-dimensional integration, we have 

I= fddkf 

= l fd"- 4 kexp(- Ak2 + 2Ap·k) 

= l(n/A)a;z- 2 exp(Ap2 ). ( 4.3.18) 

This is manifestly analytic in d and p. If we set d = 4, the integral becomes 

I= l exp (Ap2 ). 

Notice that there is no restriction on p, even though p = 0 in four 
dimensions. However, if we Jet d--> 4 and p--> 0, the limit is smooth. 

Proof of Property 9. The proof is easily made by examining the definition 
of the d-dimensional integral in terms of ordinary integrals. As usual we 

divide the space into a finite-dimensional parallel space big enough to 
contain p1 , ... , pJ, and into a transverse space containing the remaining 
dimensions. It is convenient to choose the parallel space to have an odd 
number 2N + 1 of dimensions. Then: 

I=foo dk "'fcc dk 7r(d-1);2-N Joc dk2(k2)(d-3)!2-N X 

-x I -oo 2N+lr((d-1)/2-N) 0 T T 

x [F(k 1,k2 , ... ,k2N+I•k~)- :t: F<"'(k 1 , ... ,k2N+I•O)k~"/n!J. (4.3.19) 

Here we have used F to denote f considered as a function of the first 2N + 1 
components of k and of k~. Since f is an analytic function of k, it can be 
expanded in powers of k~. 

As required by the definition, we have subtracted off a power series in q, to 
give convergence at kT = 0. We use £<•> to denote the nth derivative ofF with 
respect to k~. The integrand of the k~ integral behaves as k~- 5 , so we have 

convergence at kT = 0 if d > 3. Since f is analytic, there are no other 
singularities at finite k, and the only other possible source of a divergence is 
from large k. The subtractions do not introduce a divergence provided that 
d<5. Moreover, we have assumed that f=O(l/k 4 +a) as k->oo, so that 
there are no other large k divergences when dis close to four. Hence ( 4.3.19) 
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converges and is analytic in a neighborhood of d = 4. 
Now the integral will depend on the p;'s only through the Lorentz scalars 

Pa ·pb (with 1:::;; a:::;; b:::;; J). To determine this dependence, it is sufficient to 
keep the p/s within some fixed ]-dimensional subspace. Since (4.3.19) is a 
perfectly finite integral, it is an analytic function of the p;'s. 

To determine the value of the integral when d = 4 and when the p;'s are in 
the first four dimensions, we use the freedom to vary the dimension of the 
'parallel' space in the definition (4.3.19). Let us now make it four 
dimensional. We will obtain an integral of the form: 

I
oo 2nd!2-2 Ioo ~~d-5~ ~2 

I= _ 
00 

dk1 •.• dk4r(d/2 _ 2) 
0 

dkk f(k 1, k 2 , k3 , k4, k ) (4.3.20) 

if d > 4. When we let d-+ 4, the integral over k is singular at k = 0; the 
resulting divergence cancels the zero of the inverse r-function to give 

I(d = 4) = fdk 1 dk 2dk3 dk4 ](k1 , k2 , k 3 , k4 , 0), (4.3.21) 

as required. 
We may alternatively continue from d < 4 using 

I= J dkl ... dk4r~;;~2 ~22) J~ dkf.d- 5 [J(kp ... , k4, P)- ](k 1 , ••• , k4, on 
(4.3.22) 

The singularity at k = 0 is cancelled, but as d-+ 4 we get a divergence at 
k = oo which gives the same result (4.3.21). 

Comment In this proof we used the freedom to alter the dimension of the 
parallel space. To show that the integral is well-behaved at d = 4, it was 
convenient to choose the parallel space to have an odd dimension. But to 
compute the actual value at d = 4, it was convenient to choose the parallel 
space to have an even dimension, specifically, four.lt is instructive to see the 
equivalence in a simple non-trivial case. (The general case was summarized 
at the end of Section 4.2.) 

Suppose 3 < d < 4. Then define 

(4.3.23) 

(4.3.24) 
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Our definition of the d-dimensional integral off tells us that 

I= I:"" dk1 ... dk4I 1 = Idk1 ••• dk4I2, 

so we must prove that I 1 = I 2. 

(4.3.25) 

To do this we change variables in I 2, by setting k~ = xk2 and k~ = 

(1- x)k2 to obtain: 

I= dx dfC2(fC2)di2-3(1-x)-1i2xdi2-7i2x 7t(d-5)/2 I1 f"" 
2 r(d/2 - 5/2) 0 0 

x [f(kp ... , k4 , P)- f(k 1 , ••• , k4 , k2(1 - x))] 
(d-5)/2 I1 I"" = n dx dfC2JCd-6(1 -x)-1i2xd/2-7/2 x 

r(d/2- 5/2) 0 0 

X {(f(k1, ... ,k4,k2)-f(k1, ... ,k4,0)] 

-[f(k1 , ••• ,k4,P(l- x))- f(k 1 , ••• ,k4,0)] }. (4.3.26) 

In the last line we subtracted and added f(k 1, ... , k4, 0), so that we can 
integrate seperately each term in square brackets. In particular, we have 

I dk2kd- 6 [f(kp ... , k4 , P(1 - x))- f(k 1, ... , k4, 0)] 

= (1- x)2-df2 Idk2kd- 6 [f(k1 , ••• , k4,P)-f(k 1 , ••• , k4,0)]. 

Comparison with the definition (4.3.23) of I 1 shows that 

I n- 112 r(d/2- 2) I 1 
~= dx[(1 -x)-1f2~/2-7/2 
I 1 r(d/2- 5/2) 0 

-xdf2-7f2(1-x)3f2-di2]. (4.3.27) 

The integral is in fact the analytic continuation from d > 5 of a beta
function, so that it equals r(d/2- 5/2)r(1/2)/r(d/2- 2). The required 
result I 1 = I 2 follows. 

Property 10. Multiple integrals are correct at d = 4. 
Consider the integral 

I(p1···· ,pN) = Iddk1 ... d"kd(k1•··. ,kL,P1···· ,pN). (4.3.28) 

This might represent a Feynman graph with N external lines and L loops. 
Then the p/s and k;'s represent momentum vectors. Suppose that at d = 4 
the integral is completely convergent- in particular that there are no ultra
violet (k-+ oo) divergences or subdivergences. If we restrict the p/s to the 
first four dimensions and set d = 4, then I is the. ordinary four-dimensional 
integral of f. 
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Proof. For each vector v, we define the projections v and v, onto the 
physical and unphysical dimensions, as before. The result to be proved is 
that if pi = pi for each of the p/s then I defined as the limit as d-+ 4 of the 
dimensionally regulated integral is identical to the ordinary integral. We 
can split each integral over a ki into an ordinary four-dimensional integral 
over Iii and a (d- 4)-dimensional integral over ki. The result to be proved is 
then that 

lim Jdd- 4 k1 ... dd- 4 kd(k1, ... ,kL,P1•···•PN)=f(k1, ... ,1iL, P1····•PN) 

(4.3.29) 

as d-+4. 
This formula is proved by doing all but the integral over k1. Let the result 

be /(1): 

(4.3.30) 

its only dependence on k1 is via its length. We then have that the left-hand 
side of (4.3.29) is 

Jdd- 4 k1/(1) = /(1)(0) = Jdd- 4 k2 ... dd- 4 kLf(li1,k2•· .. ,kL,p1•··· ,pN), 

by use of the Property 9. Notice that the dependence on k1 is on its first four 
dimensions. We can then repeat this process to show that 

/(1)(0) = Jdd- 4 k3 ... dd- 4 kLf(kl,k2,k3, ... ). 

Another L- 2 repetitions give (4.3.29), from which the desired property 
follows. 

4.4 Formulae for Minkowski space 

In this section we derive a collection of results that are useful for Feynman 
graph calculations. 

4.4.1 Schwinger parameters 

To convert an arbitrary graph in d dimensions to a parametric integral, we 
first rewrite each propagator using 

1 _ 1 J"' a- 1 [ 2 2 J (m2 _ P)" - r(cx) 0 dxx exp - x(m - k ) . (4.4.1) 

Then we perform the momentum integrals. Since all Feynman graphs are of 

https://doi.org/10.1017/9781009401807.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.004


82 Dimensional regularization 

the form of a polynomial in momenta times a product of simple scalar 
propagators, we only have to calculated-dimensional integrals of the form: 

I~•· ··lln(A,B) = Iddkk~'• ... k~'"exp [- (- Ak2 - 2B·k)]. (4.4.2) 

Here A depends only on the parameters introduced by (4.4.1), while B~' 
depends on these parameters and also linearly on the other momenta (both 
external and loop momenta). 

By linearity we can find In by differentiating I 0 : 

I~····~'"= TI (_!__o_)fddkexp(Ak2 + 2B·k). (4.4.3) 
j; 1 2oB!lj 

(This uses linearity of d-dimensional integration.) We find I 0 by using the 
translation k~'~k~'-B~'/A, the scaling k~k A- 112 , and Wick rotation: 

Thus 

I 0 (A,B) = fddkexp(Ak 2 + 2B·k) 

= i(n/A)d12 exp(- B 2 /A). 

Ii = fddkk~'exp(Ak2 + 2B·k) 

= i(n/A)di2 exp(- B2jA)(- B~'/A), 

I't = fddkk~'k•exp(Ak2 + 2B·k) 

= i(n/A)di2 exp(- B2 j A)(B~' B• j A2 -jg~'• /A), 

I~~'·= fddkk"k~'k•exp(Ak2 + 2B·k) 

_ "( jA)d/2 -B21A + .:....__.:::__ __ "--=-_----"'---'-[
- B"B~'B• (B"g~'• + B~'g"• + B•g"~')] 

- I 7t e A 3 2A 2 ' 

J~Ap,v = fddk/c"kAkl'k" exp(Ak2 +2B·k) 

(4.4.4) 

(4.4.5) 

(4.4.6) 

(4.4. 7) 

(BK B"g~'• +five similar) 

2A 3 

(4.4.8) 

Each of the loop-momentum integrals is performed in this way. At each 
stage the momenta only appear quadratically and linearly in the exponent. 
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4.5 Dirac matrices 

4.4.2 Feynman parameters 

It is also common to use 

1/(AB) = t dx/[ Ax+ B(1 - x) ] 2 

and its generalizations: 

1 r(a+ P +···e) 
-----X 
r(a)r(/1)· · · r{e) 

X ~ 1 dxdy···dzt5(1-x-y-···z)x 
.}o 

Xa -1 yP- 1 ..• 2 e- 1 

X (Ax+ By+··· Ez)a+P+ ··· +e" 

83 

(4.4.9) 

(4.4.10) 

Here A, B, ... , E represent the denominators of the propagators of a 
Feynman graph. The resulting momentum integrals have the form 

Jlll"""lln = ddk . (4.4.11) I k"'···k"" 
n.a [ - k2 - 2p. k + c]a 

Application of (4.4.1) and the results (4.4.4)-(4.4.8), etc., gives 

J0 = fddk/(- k2 - 2p·k + C)a 

= ind12(C + p2)df2-ar(a _ d/2)/r(a), (4.4.12) 

J't = fddkk"/(- k2 - 2p·k + C)a 

= indf2(C + p2)df2-a( _ p")r(a _ dj2)jr(a), (4.4.13) 

Jl~v = fddkk~'k•j(- k2 - 2p·k + C)a 

= indf2(C + p2)df2- a X 

x [r(a- dj2)p"p•- r(a- 1- dj2)g"•(c + p 2)/2]/r(a). (4.4.14) 

4.5 Dirac matrices 

The Dirac matrices satisfy the following properties: 

(1) Anticommutation relation: 

{y", y•} = 2g"•t. (4.5.1) 
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(2) Hermiticity: 

' { yll if p = 0, 
.... ,Jl -}' -
r - ll - - I'll if p ~ 1. (4.5.2) 

When we use dimensional regularization, the Lorentz indices range over an 
infinite set of values, so we need infinite-dimensional matrices to represent 
the algebra (4.5.1). We will also need a trace operation: 

tr 1 = f(d), 

so that the representation behaves as if its dimension were f(d). We must 

require f(d 0 ) to be the usual value at the physical space-time dimension, 
d = d0 . Usually this means f(4) = 4. 

The trace is a linear operation on the matrices which we will define later. 
In an even integer dimension d = 2w, the standard representation of the yll's 

has dimension 2"'. However, it is not necessary to choose f(d) = 2d12• The 
variation f(d)- f(d 0 )is only relevant for a divergent graph, so, by Chapter 
7, any change in f(d) amounts to a renormalization-group transformation. 
It is usually convenient to set f(d) = f(d 0 ) for all d. 

To set up a formalism for dimensionally regularized y-matrices, we must 
treat the following issues: 

(1) We must exhibit a representation of the anticommutation relations; 
this will ensure consistency. 

(2) The formulae for the trace of an arbitrary product of yll's must be 
derived. 

(3) While a knowledge of the I'll's alone is sufficient for QCD and QED, we 
must show how to define a y5 so that we can treat chiral symmetries. 

This will also give us a definition of the antisymmetric tensor t:K-<Ilv· 

The following construction gives a representation: 
Let w be a positive integer, and suppose inductively that we have 

defined a 2"' dimensional representation Yrrol of the algebra (4.5.1) for 
0 ;5; p ;5; 2w- 1. We define the infinite dimensional yll for 0 ;5; p ;5; 2w- 1 by 
having a sequence of vrw)'s down the diagonal, and zeros everywhere else: 

( 
f'rro) o J 

,.ll= 0 ,ll 0 

I l(w) .. 
(4.5.3) 

We will construct the next higher representation Yrw + 1 l of dimension 2"' + 1 , 

with 0 ;5; p ;5; 2w + 1. In order that (4.5.3) apply independently of w, we must 
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choose 

4.5 Dirac matrices 

Y" = (Yiwl O ) if 0 < " < 2w - 1 (w+l) 0 I' -1"'- • 
Y(w) 

85 

This satisfies the anticommutation relations (4.5.1) and the hermiticity 
relation (4.5.2), provided that 0 ~ JJ., v ~ 2w- 1. Our task then is to find 

Yiw+ IJ for J1 = 2w and 2w + 1. 
Notice that the induction starts with w = 1. We can define 

0 ( 1 0) 1 ( 0 1) 
Y(IJ = 0 - 1 ' Y(IJ = - 1 0 . (4.5.4) 

Given the 2w-dimensional representation YiwJ we define another matrix 
A ·w-1 0 2w-l 
Y<wJ =I Y<w> ... Y<w> · (4.5.5) 

Observe that 

(4.5.6) 

Also, when at w = 2, we have y = y5 , in the usual notation for Dirac matrices 
at d = 4. We define 

, 2w _ ( 0 Y(w)) 
Y(w+l)- _A 0 , 

Y(w) 

2w + 1 _ ( 0 if0<w>). Y(w) - ·A 

IY(w) 

It is easy to check that (4.5.1) and (4.5.2) 
v ~ 2w + 1. 

(4.5.7) 

are satisfied for 0 ~ JJ., 

We now have an explicit representation of the Dirac matrices for any w, 
and for the infinite-dimensional case, because of (4.5.3). 

Standard manipulations involving the anticommutation relations are 
valid independently of d. Two useful results are: 

y"yll=-f{y",yll}1=g~1=d1, (4.5.8) 

Y"YvY" = 2g"vY"- Y"Y"Yv 

= (2 -d)Yv· (4.5.9) 

We also need traces of y-matrices, in graphs with fermion loops. The trace of 
a matrix is linear: 

tr(aA + bB) = atr(A) + btr(B), (4.5.10) 

and is cyclic : 

tr(AB) = tr(BA). (4.5.11) 

Here A and Bare any product of y-matrices, and a and bare any numbers. 
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These properties, together with the value of tr 1, define the trace of any 
linear combination of products of y-matrices. 

For example, 

tr (y1'y"} = tr (yvy'-') (cyclicity) 

= tr(- y''y" + 2g~'v1) (anticommutation) 

= - tr (y~'yv) + 2g~'vtr 1 (linearity}, 

so we have the usual result 

Similarly 

(4.5.12) 

tr(y"i·y~'y') = (gKA.gt.tv- gKt.tg'-v + g"vg 1~'}tr 1. (4.5.13) 

The trace of the product of an odd number of y-matrices is zero. For 
example 

so try'-= 0. 

dtry1 = tr(y"y"y'-) 

= - tr (y"y 1yJ + 2 try'

= - tr (y"y"y") + 2 try'-, 

It should be possible to make a more constructive definition of the trace, 
along the lines of (4.3.5). It is necessary to check consistency. We can find a 
formula for the trace of any number of y-matrices- generalizing (4.5.13). It 
is true for any finite-dimensional representation, Yfw>• so it agrees with the 
algebraic properties. Linearity defines the trace of more general products. 
We must also check that contracting with gt.tv commutes with the trace. This 
can be checked directly. 

A possible explicit definition of the trace of a matrix with components 

Mii is 

1 N 
tr Mii = (tr 1) lim - L Mjj· 

N-ooNj=! 
(4.5.14) 

This definition exploits the fact that each matrix y~' is an infinite set of copies 
of a finite-dimensional Yfw> strung along the diagonal. Since the y~''s are 
independent of d, the only possible d-dependence is in the choice of the 
value of tr 1. 

4.6 Ys and £rc1t.tv 

In four dimensions, y5 = iy0 y1y2y3 and edt.tv is a totally antisymmetric 
Lorentz-invariant tensor with e0 123 = 1. We need y5 , for example, to define 

https://doi.org/10.1017/9781009401807.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401807.004


the axial current l{ryl'y51/J. The e-tensor comes in because y5 = 
ieK-'IL•yKy-'y~'y• /4 !, and we have the trace formula: 

tr y5yKyAyl'yV = ieKAILV tr 1 = - ieKAILV tr 1. 

The appropriate definition changes when we go to two dimensions: 
Instead of y5 we have y(ll = y0y1, and instead of eK-'IL• we have ell•' for which 

Bot = 1 = - Bto• Boo= eu = 0. 
To continue dimensionally, we might expect y5 to satisfy 

{ys,y~'} =0, 

just as in four dimensions. But then, as we will see in Chapter 13, the only 
consistent result for y 5 is that it has zero trace when multiplied by any string 
of y~''s. Thus we do not have a regularization involving the usual y5 • 

A consistent definition is obtained by writing 

y5 = iy0yly2y3 = iyKyAyllyVeKAIL./4 !, 

{ 
1 if (d,uv) is an even permutation of (0123), 

eK-<1'• = - 1 if (KA.,uv) is an odd permutation of (0123), 
0 otherwise. 

(4.6.1) 

(4.6.2) 

This definition is not Lorentz invariant on the full space, but only on the 
first four dimensions. We have 

{y5, y~'} = 0, if .u = 0, 1, 2, 3, 

[y 5 , y~'] = 0, otherwise, 

(Ysf = 1, Y1 = Ys· (4.6.3) 

The lack offull Lorentz in variance is a nuisance, but it does give the correct 
axial anomaly ('t Hooft & Veltman (1972a)). 
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