Notes on Inequalities.

By V. Ramaswami, M.a.

[The following is a digest, consisting mainly of extracts, of Mr Ramaswami's paper. The author mentions that the Notes are intended for readers of Chrystal's "Algebra."]

On a General Inequality Theorem.

1. The important inequality of which Prof. Chrystal has given so many examples may be called the "Power Inequality."

There is a simple theorem of the Differential Calculus which is to a general function $f(x)$, what the Power Inequality is to the function x^{m}.

In what follows it will be supposed that the functions and the differential coefficients considered are finite, single-valued, and continuous between the limits of the variable considered, though they may be infinite, at either limit.
2. Theorem: If $f^{\prime \prime}(x)$ be always positive, or always negative, as x increases from a value B to a value A , and if a and b be any two quantities lying between the limits A and B, a being greater than b, then $\quad f^{\prime}(a) \geqslant \frac{f(a)-f(b)}{a-b} \geqslant f^{\prime}(b)$ according as $f^{\prime \prime}(x) \geqslant 0$, between the limits A and B .
[Then follow several proofs of the theorem (which is practically an aspect of the Mean Value Theorem) ; the simplest is that obtained from consideration of the fact that the curve $y=f(x)$ is, under the specified conditions, either convex or concave to the axis of x throughout the range of values considered.]

Applying the theorem to the elementary functions, we have
(i) If x and y be positive, and $x>y$, then

$$
m x^{m-1} \geqslant \frac{x^{m}-y^{m}}{x-y} \geqslant m y^{m-1}
$$

according as $m(m-1) \geqslant 0$. (The Power-Inequality.)
(ii) If a is any positive quantity $\neq 1$, and $x>y$,

$$
a^{x} \log a>\frac{a^{x}-a^{y}}{x-y}>a^{y} \log a .
$$

(iii) If x and y be positive, and $x>y$,

$$
\frac{1}{x}<\frac{\log x-\log y}{x-y}<\frac{1}{y} .
$$

(iv) If $\frac{\pi}{2}>x>y>0$,

$$
\begin{aligned}
& \cos x<\frac{\sin x-\sin y}{x-y}<\cos y \\
& \text { etc. }
\end{aligned}
$$

We proceed to deduce some consequences from the general theorem.
3. Theorem: If $f^{\prime \prime}(x)$ be constantly positive, or constantly negative, as x increases from B to A , and if x, y, z be any three quantities in descending order of magnitude, lying between the limits A and B, then

$$
f(x) \cdot(y-z)+f(y) \cdot(z-x) \cdot)+f(z) \cdot(x-y) \geqslant 0,
$$

according as $f^{\prime \prime}(x) \geqq 0$, between the limits A and B .
Demonstration: Suppose $f^{\prime \prime \prime}(x)$ to be positive. Then, by the general theorem,

$$
\begin{aligned}
& \frac{f(x)-f(y)}{x-y}>f^{\prime}(y)>\frac{f(y)-f(z)}{y-z} \\
& \therefore \frac{f(x)-f(y)}{x-y}>\frac{f(y)-f(z)}{y-z}
\end{aligned}
$$

The denominators being positive, we have multiplying out, etc., the result

$$
f(x) \cdot(y-z)+f(y) \cdot(z-x)+f(z) \cdot(x-y)>0 .
$$

If $f^{\prime \prime}(x)$ be negative, the inequality sign is reversed throughout.
Examples: (i) $f(x)=a^{x}, \quad$ (ii) $f(x)=x^{\prime \prime \prime}, \quad$ (iii) $f(x)=\log x$.
4. Theorem: If $f^{\prime \prime}(x)$ be constantly positive, or constantly negative, as x increases from B to A, and a be any fixed quantity lying between A and B , then the expression $\frac{f(x)-f(a)}{x-a}$ constantly increases, or constantly decreases, as x increases from B to A (passing through the value $f^{\prime}(a)$ as x passes through a).

Demonstration: Suppose $f^{\prime \prime}(x)$ to be positive. Let x and y be any two quantities lying between the limits A and B, x being greater than y. We have to show that

$$
\frac{f(x)-f(a)}{x-a}>\frac{f(y)-f(a)}{y-a}
$$

First, if $x>y>a$, we have

$$
\frac{f(x)-f(y)}{x-y}>\frac{f^{\prime}(y)-f(a)}{y-a}
$$

Secondly, if $x>a>y$, we have

$$
\frac{f(x)-f(a)}{x-a}>\frac{f(a)-f(y)}{a-y}
$$

Thirdly, if $a>x>y$, we have

$$
\frac{f(a)-f(x)}{a-x}>\frac{f(x)-f(y)}{x-y}
$$

And in each case the result reduces to

$$
\frac{f(x)-f(a)}{x-a}>\frac{f(y)-f(a)}{y-a}
$$

If $f^{\prime \prime}(x)$ be negative, the inequality sign is reversed throughout.
Examples : $\quad \frac{x^{m}-a^{m}}{x-a}, \frac{a^{x}-1}{x}, \frac{\tan x}{x}$.
5. Theorem: If $f^{\prime \prime}(x)$ be constantly positive or constantly negative, as x increases from B to A; and if $a, b, \ldots k$ be any n quantities, not all equal, lying between the limits A and B; and $p, q, \ldots t$ be any system of positive multiples corresponding to $a, b, \ldots k$, respectively, then

$$
\frac{p f^{\prime}(a)+q f(b)+\ldots+t f(k)}{p+q+\ldots+t} \geqslant f\left(\frac{p a+q b+\ldots+t k}{p+q+\ldots+t}\right)
$$

according as $f^{\prime \prime}(x) \geqslant 0$, between the limits \mathbf{A} and B.
Demonstration: Suppose $f^{\prime \prime}(x)$ to be positive. We shall first prove the theorem in the case of two quantities a and b. Let a be $>b$, Then x being any quantity between a and b, we have

$$
\frac{f(a)-f(x)}{a-x}>\frac{f(x)-f(b)}{x-b}
$$

Now, for x write $\frac{p a+q b}{p+q}$. This is permissible as the value of this fraction lies between a and b.

Substituting and reducing, we get

$$
\frac{p f(a)+q f(b)}{p+q}>f\left(\frac{p a+q b}{p+q}\right) .
$$

The result is thus proved for two unequal quantities a and b. If a and b be equal, the inequality becomes an equality; so that, in any case, we can write

$$
\frac{p f(a)+q f(b)}{p+q} \nless f\left(\frac{p a+q b}{p+q}\right) .
$$

Hence, by induction, we obtain

$$
\frac{p f(a)+q f(b)+\ldots+t f(k)}{p+q+\ldots+t}>f\left(\frac{p a+q b+\ldots+t k}{p+q+\ldots+t}\right) .
$$

If $f^{\prime \prime}(x)$ be negative, the inequality signs are reversed throughout.
Examples:
(i) $f(x)=x^{m}$;
(ii) $f(x)=y^{x}$;
(iii) $f(x)=\sin ^{x}$;
(iv) $f(x)=\tan x$.
[The author then points out that inequalities of a different form can be obtained by writing for $f(x)$, say, $\log f(x)$; so that constancy of sign in $f^{\prime \prime}(x)$ is replaced by that in $u \equiv f(x) \cdot f^{\prime \prime}(x)-\left\{f^{\prime}(x)\right\}^{2}$.

The results are given for this particular case, and a great many interesting results arise out of it.
E.g., 1. (i) $e^{\frac{1}{x}}<\left(\frac{x}{y}\right)^{\frac{1}{x-y}}<e^{\frac{1}{y}}$ if $x>y>0$.
(ii) $x^{y-z} \cdot y^{z-x} \cdot z^{x-y}<1$ if $x>y>z>0$.
(iii) $x^{\frac{1}{x-1}}$ constantly decreases as x increases from 0 to ∞, passing through the value e as x passes through the value 1.
(iv) $\left(a^{p} . b^{q} \ldots k^{t}\right)^{\frac{1}{p+q+\ldots+t}}<\frac{p a+q b+\ldots+t k}{p+q+\ldots+t}$
where $a, b, \ldots k$ are not all equal, and the symbols all denote positive numbers.
2. From $\mathrm{S}_{x} \equiv a^{x}+b^{x}+\ldots+k^{x}$,
(iii) $\left(\frac{a^{x}+b^{x}+\ldots+k^{x}}{n}\right)^{\frac{1}{x}}$ constantly increases as x increases from $-\infty$ to $+\infty$, and has the limiting value $(a, b, \ldots k)^{\frac{1}{4 \prime}}$ when $x=0$.
3. From $\cos x$,
(ii) $(\cos x)^{y-z} \cdot(\cos y)^{:-x} \cdot(\cos z)^{x-y}<1$, if $\frac{\pi}{\underline{2}}>x>y>z>0$.
(iii) $(\cos x)^{\frac{1}{x}}$ constantly decreases as x increases from 0 to $\frac{\pi}{2}$ and has the limiting value 1 , when $x=0$.
(iv) $(\cos x)^{\mu} \cdot(\cos y)^{\mu} \cdot<\left(\cos \frac{p x+q y}{p+q}\right)^{p+q}, \frac{\pi}{2}>x>y>0$ and p and q positive.]

On Mathematical Instruments and the accuracy to be obtained with them in some elementary practical problems.

By J. H. A. M•Intyre.

