VOL. 3 (1970), 145-154.

Generating groups of nilpotent varieties

M. R. Vaughan-Lee

If \underline{V} is a variety of groups which are nilpotent of class cthen \underline{V} is generated by its free group of rank c. It is proved that under certain general conditions \underline{V} cannot be generated by its free group of rank c - 2, and that under certain other conditions \underline{V} is generated by its free group of rank c - 1. It follows from these results that if \underline{V} is the variety of all groups which are nilpotent of class c, then the least value of k such that the free group of \underline{V} of rank kgenerates \underline{V} is c - 1. This extends known results of L.G. Kovács, M.F. Newman, P.F. Pentony (1969) and F. Levin (1970).

1. Introduction

If \underline{V} is a variety of groups let $d(\underline{V})$ be the least value of k such that the free group of \underline{V} of rank k generates \underline{V} . Of course $d(\underline{V})$ may be infinite but in many cases it is finite. For instance if \underline{V} is nilpotent of class c then $d(\underline{V}) \leq c$ ([1], 35.12), and if \underline{V} is the variety of all metabelian groups which are nilpotent of class c (c > 1) then $d(\underline{V}) = 2$ [2].

Let $\underline{N}_{\mathcal{C}}$ denote the variety of all groups which are nilpotent of class c, and let \underline{AN}_2 denote the variety of all groups which are abelian-by-(nilpotent of class 2). In this paper I shall prove the following theorems.

THEOREM 1. If $(\underline{N}_c \wedge \underline{AN}_2) \leq \underline{V} \leq \underline{N}_c$, c > 2, then $d(\underline{V}) \geq c - 1$. THEOREM 2. If $\underline{V} \leq \underline{N}_c$, c > 2, and if the free group of \underline{V} of

Received 1 May 1970.

rank c is torsion free then $d(\underline{V}) \leq c - 1$.

Since the free groups of $\underline{\mathbb{N}}_{\mathcal{C}}$ are torsion free these theorems have the following corollary, which has been independently proved in [3] and [4].

COROLLARY. $d(\underline{\mathbb{N}}) = c - 1$ for c > 2.

Theorem 2 is not true in general without the condition that the free group of \underline{V} of rank c be torsion free, as the following example shows. Let $\underline{V} \leq \underline{N}_3$ be determined by the laws $[x_1, x_2, x_2]$, $[x_1, x_2, x_3, x_4]$. Then the free group of \underline{V} of rank two is nilpotent of class two but \underline{V} is not, and so $d(\underline{V}) = 3$. However \underline{V} does satisfy the law $[x_1, x_2, x_3]^3$ and so the free group of \underline{V} of rank three is not torsion free.

The notation is generally consistent with [1]. If $\underline{\mathbb{V}}$ is a variety of groups then $F_k(\underline{\mathbb{V}})$ denotes the free group of $\underline{\mathbb{V}}$ generated by x_1, x_2, \ldots, x_k . If G is a group then $\gamma_n(G)$ denotes the *n*-th term of the lower central series of G.

2. Proof of Theorem 1

I shall show that for each c>2 there is a word $w_c\in F_c(\underline{\mathbb{N}}_c)$ such that

(1)
$$w_c$$
 is a law in $F_{c-2}(\underline{\mathbb{N}}_c)$
(2) $w_c \notin \gamma_2(\gamma_3(F_c(\underline{\mathbb{N}}_c)))$.

Since $\underline{\underline{V}} \leq \underline{\underline{N}}_{c}$, $F_{c-2}(\underline{\underline{V}})$ is a homomorphic image of $F_{c-2}(\underline{\underline{N}}_{c})$ and so (1) implies that w_{c} is a law in $F_{c-2}(\underline{\underline{V}})$. $F_{c}(\underline{\underline{V}}) \cong F_{c}(\underline{\underline{N}}_{c})/V$ for some fully invariant subgroup V of $F_{c}(\underline{\underline{N}}_{c})$. Since $(\underline{\underline{N}}_{c} \wedge \underline{\underline{AN}}_{c}) \leq \underline{\underline{V}}$,

 $V \leq \gamma_2 \left(\gamma_3 \left(F_c(\underline{\underline{N}}_c) \right) \right)$, and so (2) implies that w_c is not a law in $\underline{\underline{V}}$. This shows that $F_{c-2}(\underline{\underline{V}})$ does not generate $\underline{\underline{V}}$, and so $d(\underline{\underline{V}}) \geq c - 1$. The word w_c is defined as follows.

https://doi.org/10.1017/S0004972700045809 Published online by Cambridge University Press

Let P be the group of permutations of $(2, 3, \ldots, c)$. If $\sigma \in P$ let

$$sgn\sigma = \begin{cases} 1 & if \sigma is an even permutation, \\ \\ -1 & if \sigma is an odd permutation. \end{cases}$$

For $\sigma \in P$ let

$$w_{c}(\sigma) = \begin{cases} \left[\begin{bmatrix} x_{\sigma(2)}, x_{\sigma(3)} \end{bmatrix}, \begin{bmatrix} x_{\sigma(4)}, x_{1} \end{bmatrix}, \begin{bmatrix} x_{\sigma(5)}, x_{\sigma(6)} \end{bmatrix}, \dots, \\ \begin{bmatrix} x_{\sigma(c-1)}, x_{\sigma(c)} \end{bmatrix} \end{bmatrix} & \text{if } c \text{ is even }, \\ \left[\begin{bmatrix} x_{\sigma(2)}, x_{1}, x_{\sigma(3)} \end{bmatrix}, \begin{bmatrix} x_{\sigma(4)}, x_{\sigma(5)} \end{bmatrix}, \begin{bmatrix} x_{\sigma(6)}, x_{\sigma(7)} \end{bmatrix}, \dots, \\ \begin{bmatrix} x_{\sigma(c-1)}, x_{\sigma(c)} \end{bmatrix} \end{bmatrix} & \text{if } c \text{ is odd }. \end{cases} \end{cases}$$

Let $w_c = \prod_{\sigma \in P} w_c(\sigma)^{\operatorname{sgn}\sigma}$. (The order of the product is immaterial since each term of the product is contained in $\gamma_c \left(F_c(\underline{\mathbb{N}}_c) \right)$ which is the centre of $F_c(\underline{\mathbb{N}}_c)$.)

First I shall show that w_c is a law in $F_{c-2}(\underline{\mathbb{N}}_c)$.

Since $w_c = w_c(x_1, x_2, \ldots, x_c)$ is contained in $\gamma_c(F_c(\underline{N}_c))$ it follows from repeated use of the identities

$$[xy, z] = [x, z][x, z, y][y, z] ,$$

$$[x, yz] = [x, z][x, y][x, y, z] ,$$

that

$$w_{c}(a_{1}, \ldots, a_{i-1}, ab, a_{i+1}, \ldots, a_{c}) = w_{c}(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{c})$$
$$w_{c}(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{c})$$

and that

$$w_{c}\left[a_{1}, \ldots, a_{i-1}, a^{-1}, a_{i+1}, \ldots, a_{c}\right]$$

= $w_{c}\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{c}\right)^{-1}$,

for any $a_1, a_2, \ldots, a_c, a, b \in \mathbb{F}_c(\underline{\mathbb{N}}_c)$ and for each $i = 1, 2, \ldots, c$.

Hence to show that w_c is a law in $F_{c-2}(\underline{\mathbb{N}}_c)$ it is sufficient to show that whenever θ is an endomorphism of $F_c(\underline{\mathbb{N}}_c)$ which maps the set $\{x_1, x_2, \ldots, x_c\}$ into the set $\{x_1, x_2, \ldots, x_{c-2}\}$ then $w_c\theta = 1$. Now if θ is such a map then $x_i\theta = x_j\theta$ for some $i, j \ge 2$, $i \ne j$. Let (i, j) be the permutation of $(2, 3, \ldots, c)$ which interchanges i and j and fixes everything else, and let T be a transversal of (i, j) in P such that $P = T \cup (i, j)T$. If $\tau \in T$ let $\tau' = (i, j)\tau$. Then

$$\begin{split} \boldsymbol{\omega}_{c} &= \prod_{\sigma \in P} \boldsymbol{\omega}_{c}(\sigma)^{\operatorname{sgn}\sigma} \\ &= \prod_{\tau \in T} \boldsymbol{\omega}_{c}(\tau)^{\operatorname{sgn}\tau} \cdot \prod_{\tau \in T} \boldsymbol{\omega}_{c}(\tau')^{\operatorname{sgn}\tau'} \end{split}$$

But $\operatorname{sgn} \tau' = -\operatorname{sgn} \tau$ and, since $x_i \theta = x_j \theta$, $w_c(\tau) \theta = w_c(\tau') \theta$. Therefore $w_c \theta = 1$.

To show that $w_c \notin \gamma_2 \left(\gamma_3 (F_c(\underline{\mathbb{N}}_c)) \right)$ I shall express w_c as a product of basic commutators.

The basic commutators of $F_{c}(\underline{\mathbb{N}}_{c})$ are defined as follows.

(1) The basic commutators of weight one are x_1, x_2, \ldots, x_c .

(2) Having defined the basic commutators of weight less than n, and ordered them by < , the basic commutators of weight n are [c, d] where

(a) c, d are basic commutators and wt(c) + wt(d) = n, and

(b) c > d, and if $c = [c_1, c_2]$ then $c_2 \leq d$.

(3) The basic commutators of weight n follow those of weight less than n under < , and are ordered arbitrarily with respect to each other.

The basic commutators of weight c form a free basis for the free abelian group $\gamma_c \left(F_c(\underline{N}_c) \right)$ [5]. By Theorem 9.1 of [6] the basic

commutators of weight c of the form $[c_1, c_2]$, $c_1, c_2 \in \gamma_3(F_c(\underline{\mathbb{N}}_c))$, form a free basis for $\gamma_c(F_c(\underline{\mathbb{N}}_c)) \cap \gamma_2(\gamma_3(F_c(\underline{\mathbb{N}}_c)))$; and so to prove that $w_c \notin \gamma_2(\gamma_3(F_c(\underline{\mathbb{N}}_c)))$ it is sufficient to show that, modulo $\gamma_2(\gamma_3(F_c(\underline{\mathbb{N}}_c)))$, w_c can be expressed as a non-trivial product of basic commutators of weight c which are not of the form $[c_1, c_2]$, $c_1, c_2 \in \gamma_3(F_c(\underline{\mathbb{N}}_c))$.

I shall need a specific ordering on the basic commutators of weights one to two.

Let $x_1 < x_2 < \dots < x_c$.

Then the basic commutators of weight two are the commutators $[x_i, x_j]$, i > j. If $[x_i, x_j]$, $[x_k, x_1]$ are basic commutators let $[x_i, x_j] < [x_k, x_1]$

if j < 1 or j = 1 and i < k.

First suppose that c is even. Then

$$w_{c}(\sigma) = \left[\left[x_{\sigma(2)}, x_{\sigma(3)} \right], \left[x_{\sigma(4)}, x_{1} \right], \left[x_{\sigma(5)}, x_{\sigma(6)} \right], \dots, \left[x_{\sigma(c-1)}, x_{\sigma(c)} \right] \right].$$

If τ is one of the permutations (2, 3), (5, 6), (7, 8), ..., (*c*-1, *c*) then $w_c(\sigma\tau) = w_c(\tau)^{-1}$ for any $\sigma \in P$ since $[x_i, x_j] = [x_j, x_i]^{-1}$. But τ is then an odd permutation and so $\operatorname{sgn}\sigma\tau = -\operatorname{sgn}\sigma$. Hence

$$w_{c} = \prod_{\sigma \in P} w_{c}(\sigma)^{\operatorname{sgn}\sigma} \frac{c-2}{2}$$
$$= \left(\prod_{\sigma \in Q} w_{c}(\sigma)^{\operatorname{sgn}\sigma}\right)^{2}$$

where Q consists of those permutations in P such that

$$\sigma(2) > \sigma(3), \sigma(5) > \sigma(6), \sigma(7) > \sigma(8), \ldots, \sigma(c-1) > \sigma(c)$$

Now if
$$a_1, a_2, \ldots, a_7 \in F_c(\underline{\mathbb{N}}_c)$$

$$\begin{bmatrix} [a_1, a_2, a_3], [[a_4, a_5], [a_6, a_7]] \end{bmatrix} \in \Upsilon_2[\Upsilon_3(F_c(\underline{\mathbb{N}}_c))]$$

and so

$$\begin{bmatrix} [a_1, a_2, a_3], [a_4, a_5], [a_6, a_7] \end{bmatrix} = \begin{bmatrix} [a_1, a_2, a_3], [a_6, a_7], [a_4, a_5] \end{bmatrix} \mod_{\gamma_2} \left(\gamma_3 \left(F_c(\underline{N}_c) \right) \right)$$

Hence if τ is any of the permutations (5, 7)(6, 8), (7, 9)(6, 10), ..., (c-3, c-1)(c-2, c), $w_c(\sigma\tau) = w_c(\sigma) \mod \gamma_2 \left[\gamma_3(F_c(\underline{\mathbb{N}}_c)) \right]$ for any $\sigma \in P$. But τ is then an even permutation and so $\operatorname{sgn}\sigma\tau = \operatorname{sgn}\sigma$. Hence

$$w_{c} = \left(\prod_{\sigma \in Q} w_{c}(\sigma)^{\operatorname{sgn}\sigma} \right)^{2} = \left(\prod_{\sigma \in R} w_{c}(\sigma)^{\operatorname{sgn}\sigma} \right)^{2} \left(\frac{c-2}{2} \left(\frac{c-4}{2} \right)! \operatorname{mod}\gamma_{2} \left(\gamma_{3} \left(F_{c}(\underline{\mathbb{N}}_{c}) \right) \right) \right)$$

where R consists of those permutations in P such that

$$\sigma(2) > \sigma(3), \sigma(5) > \sigma(6), \sigma(7) > \sigma(8), \ldots, \sigma(c-1) > \sigma(c) ,$$

and

 $\sigma(6) < \sigma(8) < ... < \sigma(c)$.

Now if $\sigma \in R$ then $w_c(\sigma)$ is a basic commutator of weight c which is not of the form $[c_1, c_2]$, $c_1, c_2 \in \gamma_3\left(F_c(\underline{\mathbb{N}}_c)\right)$, and so this proves that $w_c \notin \gamma_2\left(\gamma_3\left(F_c(\underline{\mathbb{N}}_c)\right)\right)$.

Now suppose that c is odd. Then

$$\begin{split} \boldsymbol{w}_{c}(\sigma) &= \left[\left[\boldsymbol{x}_{\sigma(2)}, \, \boldsymbol{x}_{1}, \, \boldsymbol{x}_{\sigma(3)} \right], \, \left[\boldsymbol{x}_{\sigma(4)}, \, \boldsymbol{x}_{\sigma(5)} \right], \, \left[\boldsymbol{x}_{\sigma(6)}, \, \boldsymbol{x}_{\sigma(7)} \right], \, \dots, \\ & \left[\boldsymbol{x}_{\sigma(c-1)}, \, \boldsymbol{x}_{\sigma(c)} \right] \right] \,, \end{split}$$

and by an argument similar to that used above it can be shown that

$$w_{c} = \left(\prod_{\sigma \in S} w_{c}(\sigma)^{\operatorname{sgn}\sigma} \right)^{2} \left(\frac{c-3}{2} \right)! \operatorname{mod} \gamma_{2} \left(\gamma_{3} \left(F_{c}(\underline{\underline{N}}_{c}) \right) \right)$$

where S consists of those permutations in P such that

$$\sigma(4) > \sigma(5), \sigma(6) > \sigma(7), \dots, \sigma(c-1) > \sigma(c)$$

and

$$\sigma(5) < \sigma(7) < \ldots < \sigma(c)$$

But if $\sigma \in S$ then $w_c(\sigma)$ is a basic commutator of weight c which is not of the form $[c_1, c_2]$, $c_1, c_2 \in \gamma_3 \left(F_c(\underline{\mathbb{N}}_c) \right)$, and so this proves that $w_c \notin \gamma_2 \left(\gamma_3 \left(F_c(\underline{\mathbb{N}}_c) \right) \right)$ if c is odd, which completes the proof of Theorem 1.

3. Proof of Theorem 2

Since $\underline{\mathbb{V}} \leq \underline{\mathbb{N}}_c$, $F_c(\underline{\mathbb{V}})$ generates $\underline{\mathbb{V}}$ ([1], 35.12), and so to prove Theorem 2 it is sufficient to show that there is no non-trivial word in $F_c(\underline{\mathbb{V}})$ which is a law in $F_{c-1}(\underline{\mathbb{V}})$.

Let $w \in F_c(\underline{\mathbb{V}})$ and suppose that w is a law in $F_{c-1}(\underline{\mathbb{V}})$. Let δ_i be the endormorphism of $F_c(\underline{\mathbb{V}})$ which maps $x_i \neq 1$ and maps $x_j \neq x_j$ for $j \neq i$. Then $w\delta_i = 1$ for each $i = 1, 2, \ldots, c$ and so w can be written as a product of commutators each involving all of x_1, x_2, \ldots, x_c ([1], 33.37). Since $F_c(\underline{\mathbb{V}})$ is nilpotent of class c, w must be of weight one in each of the variables x_1, x_2, \ldots, x_c , and so, if $w = w(x_1, x_2, \ldots, x_c)$, $w(a_1, \ldots, a_{i-1}, ab, a_{i+1}, \ldots, a_c)$ $= w(a_1, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_c)w(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_c)$ for any a_1, a_2, \ldots, a_c , $a, b \in F_c(\underline{\mathbb{V}})$ and for each $i = 1, 2, \ldots, c$. Let $1 \leq i < j \leq c$ and, for convenience, write $w(x_1, x_2, \ldots, x_c) = w(x_i, x_j)$, indicating only the variables in the *i*-th and *j*-th places. Then $w(x_i, x_i)$ is a word in c-l variables and so $w(x_i, x_i) = 1$. Hence

$$\begin{split} 1 &= w (x_i x_j, x_i x_j) \\ &= w (x_i, x_i) w (x_j, x_j) w (x_i, x_j) w (x_j, x_i) \\ &= w (x_i, x_j) w (x_j, x_i) . \end{split}$$

Let P be the group of permutations of (1, 2, ..., c) and for $\sigma \in P$ let $w(\sigma) = w\{x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(c)}\}$. Then the above remarks show that $w(\sigma)w\{\sigma(i, j)\} = 1$ for all $\sigma \in P$ and all (i, j). Hence $w(\sigma)^{\operatorname{sgn}\sigma} = w$ and so $\prod_{\sigma \in P} w(\sigma)^{\operatorname{sgn}\sigma} = w^{c!}$. I shall show that

 $\prod_{\sigma \in P} w(\sigma)^{\operatorname{sgn}\sigma} = 1 \text{ . Since } F_{\underline{\sigma}}(\underline{\underline{v}}) \text{ is torsion free this shows that } w = 1 \text{ ,}$ which completes the proof of Theorem 2.

Now $w(x_1, x_2, \ldots, x_c)$ can be written as a product of left normed commutators where each is of weight one in each of x_1, x_2, \ldots, x_c , that is w can be written as a product of elements of the form $[x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(c)}]$ where $\tau \in P$. Hence it is sufficient to show that

$$\prod_{\sigma \in P} \left[x_{\sigma(\tau(1))}, x_{\sigma(\tau(2))}, \dots, x_{\sigma(\tau(c))} \right]^{\operatorname{sgn}\sigma} = 1 .$$

Let α be the permutation of (1, 2, ..., c) which maps $1 \neq 3$, $2 \neq 1$, $3 \neq 2$ and fixes everything else (c > 2). Let T be a transversal of the subgroup $\{1, \alpha, \alpha^2\}$ in P such that $P = T \cup T\alpha \cup T\alpha^2$. Now α is an even permutation and so

$$\begin{split} \prod_{\sigma \notin P} \left[x_{\sigma(\tau(1))}, x_{\sigma(\tau(2))}, \dots, x_{\sigma(\tau(c))} \right]^{\mathrm{sgn}\sigma} \\ &= \prod_{\sigma \in P} \left[x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(c)} \right]^{\mathrm{sgn}\tau\sigma} \\ &= \prod_{\sigma \in T} \left[\left[x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}, \dots, x_{\sigma(c)} \right] \right] \\ &\left[x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(4)}, \dots, x_{\sigma(c)} \right] \\ &\left[x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(4)}, \dots, x_{\sigma(c)} \right] \right]^{\mathrm{sgn}\tau\sigma} \\ &= \prod_{\sigma \in T} \left[\left[x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)} \right] \left[x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(1)} \right] \\ &\left[x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(2)} \right], x_{\sigma(4)}, \dots, x_{\sigma(c)} \right]^{\mathrm{sgn}\tau\sigma} \\ &= 1 \end{split}$$

since

$$\begin{bmatrix} x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)} \end{bmatrix} \begin{bmatrix} x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(1)} \end{bmatrix} \begin{bmatrix} x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(2)} \end{bmatrix} \in \gamma_{l_4} \left(F_{\sigma}(\underline{\underline{v}}) \right)$$

This completes the proof of Theorem 2.

The methods used in this paper are similar to those used in [3] and [4], where it is proved that $d(\underline{\mathbb{N}}_{c}) = c - 1$ for c > 2; in fact the law ω_c used here seems very close to the one introduced in [3]; but Theorems 1 and 2 apply to a wide range of varieties. For instance they show that $d(\underline{\mathbb{N}}_c \wedge \underline{\mathbb{A}}^l) = c - 1$ for c > 2, l > 2 ($\underline{\mathbb{A}}^l$ is the variety of all groups which are soluble of derived length l), which should be compared with the result mentioned in the introduction that $d(\underline{\mathbb{N}}_c \wedge \underline{\mathbb{A}}_2) = 2$ [2].

M.R. Vaughan-Lee

References

- [1] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [2] Gilbert Baumslag, B.H. Neumann, Hanna Neumann and Peter M. Neumann,
 "On varieties generated by a finitely generated group", Math. Z.
 86 (1964), 93-122.
- [3] L.G. Kovács, M.F. Newman and P.F. Pentony, "Generating groups of nilpotent varieties", Bull. Amer. Math. Soc. 74 (1968), 968-971.
- [4] Frank Levin, "Generating groups for nilpotent varieties", J. Austral. Math. Soc. 11 (1970), 28-32.
- [5] Marshall Hall, Jr, The theory of groups (Macmillan, New York, 1959).
- [6] M.A. Ward, "Basic commutators", Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 343-412.

Vanderbilt University, Nashville, Tennessee, USA.