Generating groups of nilpotent varieties

M. R. Vaughan-Lee

Abstract

If $\underline{\underline{V}}$ is a variety of groups which are nilpotent of class c then V is generated by its free group of rank c. It is proved that under certain general conditions \underline{V} cannot be generated by its free group of rank c-2, and that under certain other conditions $\underline{\underline{V}}$ is generated by its free group of rank $c-1$. It follows from these results that if $\underline{\underline{V}}$ is the variety of all groups which are nilpotent of class c, then the least value of k such that the free group of V of rank k generates \underline{V} is $c-1$. This extends known results of L.G. Kovács, M.F. Newman, P.F. Pentony (1969) and F. Levin (1970).

1. Introduction

If $\underline{\underline{V}}$ is a variety of groups let $d(\underline{\underline{V}})$ be the least value of k such that the free group of $\underline{\underline{V}}$ of rank k generates V. Of course $d(\underline{\underline{V}})$ may be infinite but in many cases it is finite. For instance if \underline{V} is nilpotent of class c then $d(\underline{V}) \leq c \quad([1], 35.12)$, and if \underline{V} is the variety of all metabelian groups which are nilpotent of class $c(c>1)$ then $d(\underline{\underline{V}})=2$ [2].

Let $\stackrel{N}{\underline{N}}$ denote the variety of all groups which are nilpotent of class c, and let $\underline{\underline{A N}}_{2}$ denote the variety of all groups which are abelian-by-(nilpotent of class 2). In this paper I shall prove the following theorems.

THEOREM 1. If $\left(\underline{N}_{c} \wedge \underline{\underline{A N}}_{2}\right) \leq \underline{\underline{\mathrm{V}}} \leq \underline{\underline{N}}_{c}, c>2$, then $d(\underline{\underline{\mathrm{~V}}}) \geq c-1$.
THEOREM 2. If $\underline{\underline{\mathrm{V}}} \leq \underline{\underline{N}}_{c}, c>2$, and if the free group of $\underline{\mathrm{V}}$ of
rank c is torsion free then $d(\underline{\underline{V}}) \leq c-1$.
Since the free groups of $\underline{\underline{N}}_{\mathcal{C}}$ are torsion free these theorems have the following corollary, which has been independently proved in [3] and [4].

COROLLARY. $d\left({\underset{c}{\mathbb{N}})}^{(1)}=c-1\right.$ for $c>2$.
Theorem 2 is not true in general without the condition that the free group of V of rank c be torsion free, as the following example shows. Let $\underline{\underline{V}} \leq \underline{\underline{N}}_{3}$ be determined by the laws $\left[x_{1}, x_{2}, x_{2}\right]$, $\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$. Then the free group of $\underline{\underline{V}}$ of rank two is nilpotent of class two but $\underline{\underline{V}}$ is not, and so $d(\underline{\underline{V}})=3$. However $\underline{\underline{V}}$ does satisfy the law $\left[x_{1}, x_{2}, x_{3}\right]^{3}$ and so the free group of $\underline{\underline{V}}$ of rank three is not torsion free.

The notation is generally consistent with [1]. If \underline{V} is a variety of groups then $F_{k}(\underline{\underline{V}})$ denotes the free group of $\underline{\underline{V}}$ generated by $x_{1}, x_{2}, \ldots, x_{k}$. If G is a group then $\gamma_{n}(G)$ denotes the n-th term of the lower central series of G.

2. Proof of Theorem 1

I shall show that for each $c>2$ there is a word $w_{c} \in F_{c}\left(\underline{N}_{c}\right)$ such that
(1) w_{c} is a law in $F_{c-2}({\underset{N}{c}})$,
(2) $\omega_{c} \notin \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{\underline{N}}_{c}\right)\right)\right)$.

Since $\underline{\underline{\mathrm{V}}} \leq \underline{\underline{\mathrm{N}}}_{c}, \quad F_{c-2}(\underline{\underline{\mathrm{~V}}})$ is a homomorphic image of $F_{c-2}\left(\underline{\underline{N}}_{\mathcal{C}}\right)$ and so (1) implies that ω_{c} is a law in $F_{c-2}(\underline{\underline{V}}) \cdot F_{c}(\underline{\underline{V}}) \cong F_{c}\left(\underline{N}_{c}\right) / V$ for some fully invariant subgroup V of $F_{c}\left(\underline{\mathbb{N}}_{c}\right)$. Since $\left(\underline{\underline{N}}_{c} \wedge \underline{\left.\underline{\mathcal{N N}_{2}}\right) \leq \underline{V}}\right.$, $V \leq \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{\underline{N}}_{c}\right)\right)\right\}$, and so (2) implies that ω_{c} is not a law in $\underline{\underline{V}}$. This shows that $F_{c-2}(\underline{\underline{V}})$ does not generate $\underline{\underline{V}}$, and so $d(\underline{\underline{V}}) \geq c-1$.

The word w_{c} is defined as follows.

Let P be the group of permutations of $(2,3, \ldots, c)$. If $\sigma \in P$ let

$$
\operatorname{sgn} \sigma=\left\{\begin{array}{rccc}
1 & \text { if } & \sigma & \text { is an even permutation } \\
-1 & \text { if } \sigma & \text { is an odd permutation. }
\end{array}\right.
$$

For $\sigma \in P$ let
$\left(\left[x_{\sigma(2)}, x_{\sigma(3)}\right],\left[x_{\sigma(4)}, x_{1}\right],\left[x_{\sigma(5)}, x_{\sigma(6)}\right], \ldots\right.$,
$w_{c}(\sigma)=\left\{\begin{array}{rr} \\ \left.\left[x_{\sigma(c-1)}, x_{\sigma(c)}\right]\right] \text { if } c \text { is even , } \\ {\left[x_{\sigma(2)}, x_{1}, x_{\sigma(3)}\right],\left[x_{\sigma(4)},\right.} & \left.x_{\sigma(5)}\right],\left[x_{\sigma(6)}, x_{\sigma(7)}\right], \ldots, \\ & \left.\left[x_{\sigma(c-1)}, x_{\sigma(c)}\right]\right] \text { if } c \text { is odd. }\end{array}\right.$
Let $w_{c}=\prod_{\sigma \epsilon P} w_{c}(\sigma)^{s g n \sigma}$. (The order of the product is immaterial since each term of the product is contained in $Y_{c}\left(F_{c}\left(N_{c}\right)\right)$ which is the centre of $\left.F_{c}\left(\underline{\mathbb{N}}_{c}\right).\right)$

First I shall show that w_{c} is a law in $F_{c-2}\left(\underline{N}_{c}\right)$.
Since $w_{c}=w_{c}\left(x_{1}, x_{2}, \ldots, x_{c}\right)$ is contained in $\gamma_{c}\left(F_{c}\left(N_{c}\right)\right)$ it follows from repeated use of the identities

$$
\begin{aligned}
& {[x y, z]=[x, z][x, z, y][y, z]} \\
& {[x, y z]=[x, z][x, y][x, y, z]}
\end{aligned}
$$

that

$$
\begin{array}{r}
w_{c}\left(a_{1}, \ldots, a_{i-1}, a b, a_{i+1}, \ldots, a_{c}\right)= \\
w_{c}\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{c}\right) \\
\\
w_{c}\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{c}\right)
\end{array}
$$

and that

$$
\begin{aligned}
w_{c}\left(a_{1}, \ldots, a_{i-1}, a^{-1}, a_{i+1}\right. & \left., \ldots, a_{c}\right) \\
& =w_{c}\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{c}\right)^{-1}
\end{aligned}
$$

for any $a_{1}, a_{2}, \ldots, a_{c}, a, b \in F_{c}\left(N_{c}\right)$ and for each $i=1,2, \ldots, c$.
Hence to show that w_{c} is a law in $F_{c-2}\left({\underset{\sim}{N}}_{N}\right)$ it is sufficient to show that whenever θ is an endomorphism of $F_{c}\left(\mathbb{N}_{c}\right)$ which maps the set $\left\{x_{1}, x_{2}, \ldots, x_{c}\right\}$ into the set $\left\{x_{1}, x_{2}, \ldots, x_{c-2}\right\}$ then $w_{c} \theta=1$. Now if θ is such a map then $x_{i} \theta=x_{j} \theta$ for some $i, j \geq 2, i \neq j$. Let (i, j) be the permutation of $(2,3, \ldots, c)$ which interchanges i and j and fixes everything else, and let T be a transversal of (i,j) in P such that $P=T \cup(i, j) T$. If $\tau \in T$ let $\tau^{\prime}=(i, j) \tau$. Then

$$
\begin{aligned}
w_{c} & =\prod_{\sigma \in P} w_{c}(\sigma)^{\operatorname{sgn} \sigma} \\
& =\prod_{\tau \in \mathcal{T}} w_{c}(\tau)^{\operatorname{sgn} \tau} \cdot \prod_{\tau \in \mathcal{T}} w_{c}\left(\tau^{\prime}\right)^{\operatorname{sgn} \tau^{\prime}}
\end{aligned}
$$

But $\operatorname{sgn} \tau^{\prime}=-\operatorname{sgn} \tau$ and, since $x_{i} \theta=x_{j} \theta, \quad w_{c}(\tau) \theta=w_{c}\left(\tau^{\prime}\right) \theta$. Therefore $w_{c} \theta=1$.

To show that $\omega_{c} \notin \gamma_{2}\left(\gamma_{3}\left(F_{c} \frac{\left(\mathrm{~N}_{c}\right)}{{ }_{c}}\right)\right)$ I shall express w_{c} as a product of basic commatators.

The basic commutators of $F_{c}\left(\underline{\underline{N}}_{c}\right)$ are defined as follows.
(1) The basic commutators of weight one are $x_{1}, x_{2}, \ldots, x_{c}$.
(2) Having defined the basic commutators of weight less than n, and ordered them by $<$, the basic commutators of weight n are $[c, d]$ where
(a) c, d are basic commutators and $w t(c)+w t(d)=n$, and
(b) $c>d$, and if $c=\left[c_{1}, c_{2}\right]$ then $c_{2} \leq d$.
(3) The basic commutators of weight n follow those of weight less than n under $<$, and are ordered arbitrarily with respect to each other.

The basic commatators of weight c form a free basis for the free abelian group $Y_{c}\left(F_{c}\left({\underset{N}{N}}_{c}\right)\right)$ [5]. By Theorem 9.1 of [6] the basic
commutators of weight c of the form $\left[c_{1}, c_{2}\right], c_{1}, c_{2} \in \gamma_{3}\left(F_{c}(\underline{N})\right)$, form a free basis for $\gamma_{c}\left(F_{c}\left(N_{c}\right)\right) \cap \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(N_{c}\right)\right)\right)$; and so to prove that $w_{c} \notin \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\mathrm{~N}_{c}\right)\right)\right)$ it is sufficient to show that, modulo $\gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{\underline{N}}_{c}\right)\right)\right), \quad w_{c}$ can be expressed as a nontrivial product of basic commutators of weight c which are not of the form $\left[c_{1}, c_{2}\right]$, $c_{1}, c_{2} \in \gamma_{3}\left(F_{c}\left(\underline{N}_{c}\right)\right)$.

I shall need a specific ordering on the basic commutators of weights one to two.

Let $x_{1}<x_{2}<\ldots<x_{c}$.
Then the basic commutators of weight two are the commutators
$\left[x_{i}, x_{j}\right], i>j$. If $\left[x_{i}, x_{j}\right],\left[x_{k}, x_{1}\right]$ are basic commutators let

$$
\left[x_{i}, x_{j}\right]<\left[x_{k}, x_{1}\right]
$$

if $j<1$ or $j=1$ and $i<k$.
First suppose that c is even. Then
$w_{c}(\sigma)=\left[\left[x_{\sigma(2)}, x_{\sigma(3)}\right],\left[x_{\sigma(4)}, x_{1}\right],\left[x_{\sigma(5)}, x_{\sigma(6)}\right], \ldots\right.$,

$$
\left.\left[x_{\sigma(c-1)}, x_{\sigma(c)}\right]\right]
$$

If τ is one of the permutations $(2,3),(5,6),(7,8), \ldots,(c-1, c)$ then $w_{c}(\sigma \tau)=w_{c}(\tau)^{-1}$ for any $\sigma \in P$ since $\left[x_{i}, x_{j}\right]=\left[x_{j}, x_{i}\right]^{-1}$. But τ is then an odd permutation and so ign $=-$ sgno . Hence

$$
\begin{aligned}
w_{c} & =\prod_{\sigma \in P} w_{c}(\sigma)^{\mathrm{sgn} \sigma} \\
& =\left(\prod_{\sigma \in Q} w_{c}(\sigma)^{\operatorname{sgn} \sigma}\right)^{\frac{c-2}{2}}
\end{aligned}
$$

where Q consists of those permutations in P such that

$$
\sigma(2)>\sigma(3), \sigma(5)>\sigma(6), \sigma(7)>\sigma(8), \ldots, \sigma(c-1)>\sigma(c)
$$

Now if $a_{1}, a_{2}, \ldots, a_{7} \in F_{c}\left({\underset{N}{c}}^{(N)}\right.$

$$
\left[\left[a_{1}, a_{2}, a_{3}\right],\left[\left[a_{4}, a_{5}\right],\left[a_{6}, a_{7}\right]\right]\right] \in \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{\underline{N}}_{c}\right)\right)\right)
$$

and so

$$
\begin{aligned}
& {\left[\left[a_{1}, a_{2}, a_{3}\right],\left[a_{4}, a_{5}\right],\left[a_{6}, a_{7}\right]\right]=} \\
& \quad\left[\left[a_{1}, a_{2}, a_{3}\right],\left[a_{6}, a_{7}\right],\left[a_{4}, a_{5}\right]\right] \operatorname{modr}_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{N}_{c}\right)\right)\right) .
\end{aligned}
$$

Hence if τ is any of the permutations $(5,7)(6,8),(7,9)(6,10), \ldots,(c-3, c-1)(c-2, c)$, $\omega_{c}(\sigma \tau)=\omega_{c}(\sigma) \bmod \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{N}_{c}\right)\right)\right)$ for any $\sigma \in P$. But τ is then an even permutation and so $\operatorname{sgn\sigma t}=\operatorname{sgno}$. Hence

$$
\begin{aligned}
w_{c} & =\left(\prod_{\sigma \in Q} w_{c}(\sigma)^{\mathrm{sgn} \sigma}\right)^{\frac{c-2}{2}} \\
& =\left(\prod_{\sigma \in R} w_{c}(\sigma)^{\mathrm{sgn} \sigma}\right)^{\frac{c-2}{2}}\left(\frac{c-4}{2}\right): \bmod \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{\underline{N}}_{c}\right)\right)\right)
\end{aligned}
$$

where R consists of those permutations in P such that

$$
\sigma(2)>\sigma(3), \sigma(5)>\sigma(6), \sigma(7)>\sigma(8), \ldots, \sigma(c-1)>\sigma(c),
$$

and

$$
\sigma(6)<\sigma(8)<\ldots<\sigma(c) .
$$

Now if $\sigma \in R$ then $\omega_{c}(\sigma)$ is a basic commutator of weight c which is not of the form $\left[c_{1}, c_{2}\right], c_{1}, c_{2} \in \gamma_{3}\left(F_{c}\left(\underline{\underline{N}}_{c}\right)\right]$, and so this proves that $\quad \omega_{c} \nmid \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{N}_{c}\right)\right)\right)$.

Now suppose that c is odd. Then
$w_{c}(\sigma)=\left[\left[x_{\sigma(2)}, x_{1}, x_{\sigma(3)}\right],\left[x_{\sigma(4)}, x_{\sigma(5)}\right],\left[x_{\sigma(6)}, x_{\sigma(7)}\right], \ldots\right.$,

$$
\left.\left[x_{\sigma(c-1)}, x_{\sigma(c)}\right]\right]
$$

and by an argument similar to that used above it can be shown that

$$
w_{c}=\left(\prod_{\sigma \epsilon S} w_{c}(\sigma)^{\mathrm{sgn} \mathrm{\sigma} \sigma}\right)^{\frac{c-3}{2}}\left(\frac{c-3}{2}\right)!\bmod \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{\underline{N}}_{c}\right)\right)\right)
$$

where S consists of those permutations in P such that

$$
\sigma(4)>\sigma(5), \sigma(6)>\sigma(7), \ldots, \sigma(c-1)>\sigma(c),
$$

and

$$
\sigma(5)<\sigma(7)<\ldots<\sigma(c) .
$$

But if $\sigma \in S$ then $w_{c}(\sigma)$ is a basic commutator of weight c which is not of the form $\left[c_{1}, c_{2}\right], c_{1}, c_{2} \in \gamma_{3}\left(F_{c}\left(\underline{N_{c}}\right)\right)$, and so this proves that $w_{c} \notin \gamma_{2}\left(\gamma_{3}\left(F_{c}\left(\underline{N}_{c}\right)\right)\right)$ if c is odd, which completes the proof of Theorem 1.

3. Proof of Theorem 2

Since $\underline{\underline{V}} \leq \underline{\underline{N}}_{c}, F_{c}(\underline{\underline{V}})$ generates $\underline{\underline{V}}([1], 35.12)$, and so to prove Theorem 2 it is sufficient to show that there is no non-trivial word in $F_{c}(\underline{\underline{V}})$ which is a law in $F_{c-1}(\underline{V})$.

Let $w \in F_{c}(\underline{V})$ and suppose that w is a law in $F_{c-1}(\underline{V})$. Let δ_{i} be the endormorphism of $F_{c}(\underline{\underline{V}})$ which maps $x_{i} \rightarrow 1$ and maps $x_{j} \rightarrow x_{j}$ for $j \neq i$. Then $w \delta_{i}=1$ for each $i=1,2, \ldots, c$ and so w can be written as a product of commutators each involving all of $x_{1}, x_{2}, \ldots, x_{c}$ ([1], 33.37). Since $F_{c}(\underline{V})$ is nilpotent of class c, w must be of weight one in each of the variables $x_{1}, x_{2}, \ldots, x_{c}$, and so, if

$$
\begin{aligned}
& w=w\left(x_{1}, x_{2}, \ldots, x_{c}\right) \\
& w\left(a_{1}, \ldots, a_{i-1}, a b, a_{i+1}, \ldots, a_{c}\right) \\
& \quad=w\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{c}\right) \omega\left(a_{1}, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_{c}\right)
\end{aligned}
$$

for any $a_{1}, a_{2}, \ldots, a_{c}, a, b \in F_{c}(\underline{V})$ and for each $i=1,2, \ldots, c$.
Let $1 \leq i<j \leq c$ and, for convenience, write
$w\left(x_{1}, x_{2}, \ldots, x_{c}\right)=w\left(x_{i}, x_{j}\right)$, indicating only the variables in the i-th and j-th places. Then $w\left(x_{i}, x_{i}\right)$ is a word in $c-1$ variables and so $w\left(x_{i}, x_{i}\right)=1$. Hence

$$
\begin{aligned}
1 & =w\left(x_{i} x_{j}, x_{i} x_{j}\right) \\
& =w\left(x_{i}, x_{i}\right) w\left(x_{j}, x_{j}\right) w\left(x_{i}, x_{j}\right) w\left(x_{j}, x_{i}\right) \\
& =w\left(x_{i}, x_{j}\right) w\left(x_{j}, x_{i}\right)
\end{aligned}
$$

Let P be the group of permutations of (1,2,..., c) and for $\sigma \in P$ let $w(\sigma)=w\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(c)}\right)$. Then the above remarks show that $w(\sigma) w(\sigma(i, j))=1$ for all $\sigma \in P$ and all (i, j). Hence $w(\sigma)^{\text {sgn }}=w$ and so $\prod_{\sigma \in P} w(\sigma)^{\text {sgn } \sigma}=w^{c!}$. I shall show that $\prod_{\sigma \in P} \omega(\sigma)^{\text {sgn } \sigma}=1$. Since $F_{c}(\underline{\underline{V}})$ is torsion free this shows that $w=1$, which completes the proof of Theorem 2.

Now $w\left(x_{1}, x_{2}, \ldots, x_{c}\right)$ can be written as a product of left normed commutators where each is of weight one in each of $x_{1}, x_{2}, \ldots, x_{c}$, that is w can be written as a product of elements of the form $\left[x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(c)}\right]$ where $\tau \in P$. Hence it is sufficient to show that

$$
\prod_{\sigma \in P}\left[x_{\sigma(\tau(1))}, x_{\sigma(\tau(2))}, \cdots, x_{\sigma(\tau(c))}\right]^{\operatorname{sgn} \sigma}=1
$$

Let α be the permutation of $(1,2, \ldots, c)$ which maps $1 \rightarrow 3$, $2 \rightarrow 1,3 \rightarrow 2$ and fixes everything else ($c>2$). Let T be a transversal of the subgroup $\left\{1, \alpha, \alpha^{2}\right\}$ in P such that $P=T \cup T \alpha \cup T \alpha^{2}$. Now α is an even permutation and so

$$
\begin{aligned}
& \prod_{\sigma \epsilon P}\left[x_{\sigma(\tau(1))}, x_{\sigma(\tau(2))}, \ldots, x_{\sigma(\tau(c))}\right]^{\mathrm{sgn} \sigma} \\
&= \prod_{\sigma \epsilon P}\left[x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(c)}\right]^{\mathrm{sgn} \tau \sigma} \\
&= \prod_{\sigma \in T}\left(\left[x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}, \ldots, x_{\sigma(c)}\right]\right. \\
& {\left[x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(4)}, \ldots, x_{\sigma(c)}\right] } \\
& {\left.\left[x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(4)}, \ldots, x_{\sigma(c)}\right]\right)^{\mathrm{sgn} \operatorname{sg} \sigma} } \\
&= \prod_{\sigma \in \mathcal{T}}\left[\left[x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right]\left[x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(1)}\right]\right. \\
& {\left.\left[x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(2)}\right], x_{\sigma(4)}, \ldots, x_{\sigma(c)}\right]^{\mathrm{sgnt} \mathrm{\sigma}} } \\
&= 1
\end{aligned}
$$

since

$$
\begin{array}{r}
{\left[x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}\right]\left[x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(1)}\right]\left[x_{\sigma(3)}, x_{\sigma(1)}, x_{\sigma(2)}\right] \epsilon} \\
\gamma_{4}\left(F_{c}(\underline{\underline{v}})\right) .
\end{array}
$$

This completes the proof of Theorem 2.
The methods used in this paper are similar to those used in [3] and [4], where it is proved that $d\left(\underline{\underline{N}}_{c}\right)=c-1$ for $c>2$; in fact the law ω_{c} used here seems very close to the one introduced in [3]; but Theorems 1 and 2 apply to a wide range of varieties. For instance they show that $d\left(\underline{\underline{N}_{c}} \wedge \underline{\underline{A}}^{Z}\right)=c-1$ for $c>2, Z>2\left(\underline{\underline{A}}^{Z}\right.$ is the variety of all groups which are soluble of derived length 2), which should be compared with the result mentioned in the introduction that $d\left(\underline{\underline{N}}_{C} \wedge \underline{\underline{A}}_{2}\right)=2 \quad$ [2].

References

[1] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[2] Gilbert Baumslag, B.H. Neumann, Hanna Neumann and Peter M. Neumann, "On varieties generated by a finitely generated group", Math. 2. 86 (1964), 93-122.
[3] L.G. Kovács, M.F. Newman and P.F. Pentony, "Generating groups of nilpotent varieties", BulZ. Amer. Math. Soc. 74 (1968), 968-971.
[4] Frank Levin, "Generating groups for nilpotent varieties", J. Austral. Math. Soc. 11 (1970), 28-32.
[5] Marshall Hall, Jr, The theory of groups (Macmillan, New York, 1959).
[6] M.A. Ward, "Basic commutators", Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 343-412.

Vanderbilt University, Nashville,

Tennessee, USA.

