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STRUCTURE THEOREMS FOR GROUPS WITH
DIHEDRAL 3-NORMALISERS
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(Received 14th March 1977)

0. Introduction

In this paper we prove five structure theorems for groups with dihedral 3-
normalisers. The interest in these theorems lies not so much in the results themselves
as in what can be proved from them. The original versions of the results are contained
in our doctoral thesis (1) where they are used to prove the following theorem, of
which this paper, together with (2), (3) and other papers in preparation, will constitute
a published proof:

Theorem. Let G be a finite group with cyclic Sylow 3-subgroups. Let d be an
element of G of order 3 and suppose that NG((d)) = (H, T), where (hr)2 = 1 for all
h G H, H is abelian and 4 does not divide \H\. Suppose further that any simple group
of order prime to 3 involved in G is isomorphic to Sz(r) for some r. Then one of the
following holds:

(a) 3 divides \S(G)\, in which case G is soluble and G = O22(Oy(G))NG((d));
(b) GIOX,2(G) = SL(2,2") for some integer n 5= 2;
(c) GIO2(G) s= PSL(2, q) where q is a prime power, q>5 and q = ±5, ±7 or ± 11

(mod 24);
(d) GIO22(G) = PSL(2, q) where q is a prime power, q > 5, q = ±5 or ±7 (mod 24)

and a Sylow 2-subgroup of Oy,2(G) has order 2;
(e) GIOX,2(G)= PSL(2,1)= GL(3,2) and a Sylow 2-subgroup of O22(G) is ele-

mentary abelian of order 8;
(f) GIO2;2(G)=S5;
(g) G has a subgroup K of index 2 such that G = KCG(d) and KIOT(G) =

PSL(2, q) where q is a prime power, q>5 and q=±5 or ±7 (mod 24).

The five theorems proved in this paper are the following.

Theorem 1. Let G be a finite soluble group with a normal subgroup K of order
prime to 3 such that GIK = D6. Let d be an element of G of order 3 and suppose that
NG((d)) = {H, T), where (hr)2 = 1 for all hE.H, H is abelian and H has a cyclic Sylow
2-subgroup. Then

K = O7.2(K)CK(d).

Theorem 2. Assume the same hypotheses as Theorem 1. Let T be a (d,r)-
invariant Sylow 2-subgroup of K. Then [T', (d)] « O2(K).
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Theorem 3. Let G be a finite group with cyclic Sylow 3-subgroups. Let d be an
element of order 3 and suppose that Na((d)) = (H, T) where (/IT)2 = 1 for all h £ H
and H is abelian. Suppose further that G has a subgroup V = VA such that {V,d) = A4

and a soluble normal subgroup K of order prime to 2 and 3 such that all involutions
of GIK are conjugate in G\K. Then CK( V) = 1.

(Note: this theorem is designed specifically to deal with a group G with a normal
subgroup K such that GIK s= PSL(2, q), q odd.)

Theorem 4. Let G be a finite group with a normal soluble subgroup K of order
prime to 2 and 3 such that GIK = SL(2,2"), n & 2. Let d be an element of G of order 3
and suppose that No((d)) = (H, T) where (hr)2 = 1 for all h £ H and H is abelian.
Then either

(a) K = \,or
(b) n =s 3 and, if T is a Sylow 2-subgroup of G, CK(T) = 1.

Theorem 5. Let G be a finite group with a normal 2-subgroup T such that
GIT ss PSL(2, p"), p > 3, p" > 5. Let d be an element of G of order 3 and suppose that
CT(d) is cyclic. Then either

(a) T = Z2m for some m 5= 0, or
(b) r s Z y i X Z z - x Z j . for some m 5= 1, G/TsPSL(2,7) and GIT acts as

GL(3,2) on each elementary abelian section of T of order 8.

Notation. Throughout this paper we use the notation of Gorenstein's book (4).

1. Proof of Theorem 1

Let G be a minimal counterexample to Theorem 1 and let K, H, d, T be as in the
statement of the theorem.

Lemma 1.1. O2(K) = 1 and <P(O2(K)) = 1.

Proof. Immediate, since G is a minimal counterexample.

Lemma 1.2. K = O2.r(K).

Proof. If O2AK) < K then O22{K)(d, r)<G whence O2,2(K) = O2(K)Co^K)(d).
Let bars denote images under the natural map G -»G/O2(K). Then d centralises
OAK) = O2?(K). Thus [OT2(K), (d)] *£ [ O ^ K ) , Ca(OAK)]« OT2(K) D Cc(O2.(K))
«Oj(K) by _ the Hall-Higman centraliser lemma. By (4, _Theorem 6.2.2)
O?2(K) *s CG(d), which is abelian. But Oi(K) = 1. Therefore O?2(K) = OAK) which
implies that K = OAK), i.e. K = O2Z(K) contrary to assumption.

Lemma 1.3. K = O2(K)P for some prime p and Sylow p-subgroup P of K.
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Proof. For any odd prime p dividing \K\ we may, by (4, Theorem 6.2.2), choose a
Sylow p-subgroup P of K such that O2(K)P is (d, r)-invariant. If O2(K)P < K then
Theorem 1 applies to O2(K)P(d, T>, giving P *£ CK(d) whence K = O2(K)CK(d), which
is a contradiction.

Lemma 1.4. P(d, T) acts irreducibly on M = O2(K) with P acting faithfully.

Proof. P certainly acts faithfully on M by Lemma 1.1 and the Hall-Higman
centraliser lemma. If P(d, r) does not act irreducibly on M let AT be a composition
factor of M, regarding M as a GF(2)P(d, T>- module. Then N*M. Let G, be the
semidirect product N.P(d, T). By the minimality of G, N.P = Oz2(N.P)CN.P(d). Thus
[P, <<*)]*£ OT(N.P)*s C(N). This holds for all choices of N so that [P,<d>]« C(M). But P
acts faithfully on M. Therefore [P,<d)] = l, forcing K = O2(K)CK(d), which is a
contradiction.

Lemma 1.5. CM(d) = Z2.

Proof. CT(d) is cyclic by hypothesis and M is elementary. Therefore the lemma
is true or CM(d) = 1. If the latter holds then (7, Corollary 3.2) gives us the usual
contradiction that K = O2(K)CK(d).

Lemma 1.6. M is homogeneous as a GF(2)P-module.

Proof. We apply Clifford's Theorem (4, Theorem 3.4.1) to the action of P(d, T) on
M taking P as the normal subgroup. Clearly M has 6, 3, 2 or 1 homogeneous (or
Wedderburn) components.

If there are six components we may write M = V © Vd @ Vd2 © W © Wd © Wd2

where W = VT. Then, for any v G V, v + vd + vd2 is centralised by d but not inverted
by T, contrary to the structure of NG((d)).

If there are three components we may write M = V © Vd © Vd2 where V is a
homogeneous component. Since CM(d) = Z2 it follows that V s Z2. But then P
centralises V whence P centralises M, contrary to Lemma 1.4.

If there are two components then we may write M = V © VT where both V and
VT are <d)-invariant. Since T has to invert CM(d), Cv(d) = CVr{d) = 1. So CM(d)= 1,
contrary to Lemma 1.5. Thus there is one component, which proves the lemma.

Lemma 1.7. Z(P) acts trivially on M.

Proof. Let N be an irreducible P-submodule of M. By Lemma 1.6 P acts
faithfully and irreducibly on M. Thus Z(P) is cyclic. But Z(P) admits (d, T). SO Z(P)
is centralised by d. But CK(d) is abelian and CM(d) * 1. Therefore CM{Z(P)) * 1. By
the irreducibility of Af, Z(P) centralises M.

Since Lemmas 1.4 and 1.7 contradict each other we have proved Theorem 1.
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2. Proof of Theorem 2

Let G be a minimal counterexample to Theorem 2 and let K, H, T, d, r be as in the
statement of the theorem. Note that T exists for the following reasons. We can
certainly choose a d-invariant Sylow 2-subgroup of K. Its normaliser will contain a
Sylow 2-subgroup of G and by a suitable conjugation in NG({d)) we obtain a
(d, r)-invariant Sylow 2-subgroup of K.

Lemma 2.1. O2(K)=l.

Proof. Otherwise we could apply the theorem to GIO2(K) and deduce a
contradiction.

Lemma 2.2. K = O2a(K).

Proof. By Theorem 1, K = O2;2(K)CK(d). Since CK(d) is abelian T *£ O2,2(K). If
O2;2(K) < K then, by the minimality of G, [T, (d)]« O2{OT,2(K))« O2(K).

Lemma 2.3. M = Oy(X) is an elementary abelian p-group for some prime p (p^2
or 3) on which T(d, T) acts irreducibly and T acts faithfully.

Proof. By Lemma 2.1 T acts faithfully on M.
Suppose there exists a subgroup L with l7tL<O2(K) and L<\G. By the

minimality of G, [T',(d)]^O2(LT) and also [T',(d)]LIL*&O2(KIL). Thus [T',(d)]
centralises L and O2(K)IL whence [T', (d)] centralises O2(K). This means that
[T',(d)] = 1, which is a contradiction. We conclude that no such subgroups L exist,
from which the lemma follows immediately.

Lemma 2.4. Either M has 3 homogeneous components as GF(p)T-module or
CM(d)=l.

Proof. We apply Clifford's Theorem to the action of T(d, T) on M with T as the
normal subgroup. Clearly M has 6, 3, 2 or 1 homogeneous components.

If M has six components we apply the argument of the six component case of
Lemma 1.6 to obtain a contradiction.

If M has two components the argument of the two component case of Lemma 1.6
shows that CM(d) = 1.

If M has one component then T acts faithfully and irreducibly on each irreducible
T-submodule of M. Thus Z(T) is cyclic, whence Z(T)=sC(d). Since CM(Z(T)) is
T(d, r>-invariant and T acts faithfully on M, CM(Z(T))= 1. But C(d) is abelian and
Z(T) =s C(d). We conclude that CM(d) = 1.

Hence either M has three components or CM(d) = 1.

Lemma 2.5. M has 3 homogeneous components as GF(p)T-module. Furthermore
we may choose a component V such that V = VT and M = V ® Vd® Vd2.
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Proof. If M does not have 3 components then by Lemma 2.4 Cstid) — l.LetTibean
abelian characteristic subgroup of T. Then, by (7, Corollary 3.2) applied to MT,(d),
Ti =s C(d) forcing T, to be cyclic.

We conclude that T has no noncyclic abelian characteristic subgroups. By a
theorem of P. Hall (4, Theorem 5.4.9) 7" is cyclic, whence [T, <d>] = 1 which
contradicts the hypothesis that G is a counterexample. So M has 3 components. The
existence of V follows immediately.

Lemma 2.6. CT(d) = 1.

Proof. Since v + vd + vd2 G CM(d) for any v G V and Co(d) is abelian (v + vd +
vd2)x = v + vd + vd2 for all x G CT(d). But V, Vd and Vd2 are all T-modules so that
v - vx, vd = vdx, vd2 = vd2x. Thus x acts trivially on M, whence x = 1. This proves
that CAd)= 1.

Lemma 2.7. [T, T] =S Cr( V).

Proof. For any v £ V, v + vd + vd2 G CM(d) and so (v + vd + vd2)r =
- u - vd - vd2. Since V = VT it follows that DT = — u so that r is in the centre of the
representation of T(T) on V. Thus [T, T ] « CT( V).

Lemma 2.8. Cr( V) n (CT( V))' = 1.

Proof. By Lemma 2.6 CT(d)= 1. It follows from (4, Lemma 10.1.1 (ii)) that, if
tGCAV)r\(CT(V))d, t = (fV2r'G(Cr(V))d2 so that CT(V) r\{CT(V))d =
CT(V) n(CT(V))d n(CT(V))d2, which is trivial since it is the kernel of the action of T
on M.

Lemma 2.9. T = <CT( V), (CT( V))d).

Proof. Let f G T and let u = rrl
T. By Lemma 2.7 [T, ud~']d[T, u]~l G

<CT(V), (Cr(V))d). An easy calculation shows that this element is in fact td~'t~l.
Because CT(d) = 1 (4, Lemma 10.1.1) tells us that every element of T can be written
in the form td'xt~\ whence the lemma.

Lemma 2.10. T'=\.

Proof. CT(V)<T and so, by Lemmas 2.8 and 2.9, T = CT(V)x (CT( V))d and
hence also T = (CT(V))d x (CT(V))"2 = (Cr(V))"2x CT(V). Thus T = <(CT(V))<I,
(CT(V))d2)«C(CT(V)). Therefore CT(V) is abelian and hence so also is (CT(V))d.
Therefore T is abelian.

We have now proved Theorem 2 because Lemma 2.10 contradicts the supposition
that G is a counterexample.

3. Proof of Theorem 3
Suppose Theorem 3 is false. Let G be a minimal counterexample and let d, T, H, K

and V be as in the statement of the theorem. Note first that since K has odd order all
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involutions of G are conjugate. Let M be a non-trivial minimal normal subgroup of G
contained in K. M is then an elementary abelian p-group for some prime p ̂  2 or 3.
Let M* = M ®GF(P) 34T where 3if is a field of characteristic p containing a primitive 6-th
root of unity.

G acts on M* and M* is completely reducible as {d, r)-module. Since T inverts
CG(d) it follows that M* has a basis such that {d, T) is represented by block diagonal
matrices, each block being given by

(a) d ^ [ l ] T->[- l ] ,or

,M A [V ° 1 f°( b ) ^ U „-•] ^Li
where 17 is a primitive cube root of unity.

If we let a and fo be the dimensions of M* and CM>(d) respectively, we see that

Consider now the action of (V, d) on M*. We may write M* =
CM'{ V) © Mi © Af2 © • • • © Mk where Mx, M2, . . . ,Mk are irreducible < V, d)-modules
on which V acts faithfully. Applying Clifford's Theorem to Mt with V as the normal
subgroup we see that M\ has 1 or 3 homogeneous components. If there is only one
then V acts faithfully on every irreducible V-submodule of Mi. Since V is not cyclic
this is impossible. Therefore Mt has 3 components. The irreducibility of Mi now
implies that Mi = N © Nd © Nd2 for some irreducible V-submodule N. VICV(N) acts
faithfully and irreducibly on N and therefore CV(N) s Z2. Now (CV(N))d = Cv(Nd)
and (CV(N))"2 = Cv(Nd2). It follows that if t £ V* then dim(CM,(0) = 5 dim M,. Also,
since CM,(d) = {n + nd + nd2: n £ N}, dim(CM,(d)) = 3 dim M,. Similarly for M2, ...,Mk.

If we let c = dim(CM«(V0) then, since t and T are conjugate, dim(CM«(T)) =
dim(CM.(t)) = c + i(a-c). Also dim(CM«(d)) > 3(0 - c). Comparing these with the
earlier calculations we deduce that c = 0. Therefore CM«(V) = 0 and so CM(V) = 1.

G is a minimal counterexample. We can therefore apply the theorem to GIM,
obtaining CKIM(VMIM) = 1. We conclude that CK(V) = 1, which is a contradiction.

4. Proof of Theorem 4

We shall require the following lemma concerning SL(2,2") for n 5= 2.

Lemma 4.1. .Lef <a) foe a cyclic subgroup of SL(2,2") of order 2" - 1, and let (b)
be a cyclic subgroup of SL{2, 2") of order 2" + 1. Then {1, T, a*, fo': 1« fc =£ 2""1 - 1,
1 =£ / =£ 2""'} is a set of representatives for the conjugacy classes of SL(2,2") and the
character table of SL(2, 2") is as follows:

A
B
Q
D,

1

1
2"

2" - 1
2"+l

ak

1
1
0

e'k + <r'*

T

1
0

- 1
1

b'

1
- 1

0
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where w is a primitive (2" + \)th root of unity, 6 is a primitive (2" - \)th root of unity,
1 *s i s£ 2"~', and 1 «£ / «s 2""1 - 1. Furthermore, the Brauer character of any irreducible
p-modular representation of SL(2,2"), for p^ 2 or 3, is the restriction of an ordinary
irreducible character to the p-regular elements.

Proof. The character table is well known; the calculations concerning the Brauer
character are to be found in (8). [These are similar in nature to the calculations in (9,
Proposition 3.1).]

Now let G be a counterexample to Theorem 4 and let K, T, d, T, n be as in the
statement of the theorem.

Lemma 4.2. For some prime p^2 or 3, GIK has an irreducible p-modular
representation Mi with the property that mr = —m for all m G CMl(d).

Proof. Since hT = h~x for all h G CK(d), to obtain Mi we take a suitable elemen-
tary abelian homomorphic image of K, tensor it with a large field of characteristic p
and then take an irreducible G/X-submodule.

Lemma 4.3. If r = dim Mt and s = dim CMl(d) and x is the Brauer character of Mi
then

Proof. Mi is completely reducible as (d, T>-module and, using also Lemma 4.2, Mi
therefore has a basis with respect to which (d, r) is represented by block diagonal
matrices, each block being given by

(a) d-»[l] T-»[-l],or

where TJ is a primitive cube root of unity. Since TJ + TJ 1 = —1,
s - \(r - s) = j(3s - r) and #(T) = -S.

Lemma 4.4. G/K = SL(2,8) or SL(2,4).

Proof. An easy calculation using Lemma 4.1 shows that the Brauer character x of
Lemma 4.3 can only exist when n = 3 and x 's the restriction of C3 or when n = 2 and
X is the restriction of C, for some i.

Lemma 4.5. GIK = SL(2,8).

Proof. If not then by Lemma 4.4 GIK = SL(2,4). Since SL(2,4) contains sub-
groups isomorphic to A4 and D6 and has all its involutions conjugate, CK(T) = 1 by
Theorem 3, contrary to the supposition that G is a counterexample.

Lemma 4.6. Let M be an irreducible p-modular representation of GIK for some
prime p^ 2 or 3. Suppose that mr = —m for all m G CM(d). Then CM{T) = 1.
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Proof. GIK = SL{2,8). Note that the condition mr = -m ensures that M is
non-trivial. By Lemma 4.4 we see that M has as its Brauer character the restriction of
Cj to p-regular elements and therefore has dimension 7. Also T = Vs and there is an
element a of order 7 in NOIK(T) acting regularly on T*. Since T acts faithfully on M,
M as a T{a)-module has a composition factor N on which T acts faithfully. By (4,
Theorem 3.4.3), dim N 5*7. Hence M = N, i.e. M is irreducible as r(a)-module. Thus
C M (T)=1.

Now let G be a minimal counterexample to Theorem 4.

Lemma 4.7. TTiere /s a prime p for which OP(K) ^ 1 and OP(K) = 1.

Proof. Since K is soluble there is certainly a prime p for which OP(K) # 1. If
OP(K) # 1 then we may apply Theorem 4 to GIOP(K) and GIOP(K) to obtain

OP(K) n Op.(K) = 1, which is a contradiction.

Lemma 4.8. K is a p-group.

Proof. If the lemma is false there exists a prime q, q^ p, such that q divides
|Op,p.(K)|. Since GIK = SL(2, 8) we may let b be an element of G of order 9 such that
b3 = d and T inverts b. Let Q be a <fo, r)-invariant Sylow q-subgroup of OP,P(K). Then
Q acts faithfully on OP(K) and hence on OP(K)I<P(OP(K)). Let N be a subgroup of
OP(K)I<P(OP(K)) irreducible under the action of Q(b, T). Applying Clifford's Theorem
to N with Q as the normal subgroup we find that there are 1, 2, 3, 6, 9 or 18
homogeneous components.

If there are 2, 6 or 18 components we can write N = V® VT where V is
Q(b)-invariant. Since T inverts CN(d) it follows that CN(d) = 1.

If there are 9 components we may choose a component V such that N =
V © Vb® Vb2®- • •© VbB. Clearly CN(b) # CN(d). But CK(d) is abelian. So we
should have CN(b) = CN(d). Thus the 9 component case does not occur.

If there are 3 components we may choose a component V such that N =
V® Vb ® Vb2 and Vd = V. As remarked already CN(b) = CN(d), whence CN(d) = 1.

If there is 1 component suppose that QICQ(N)^ 1. Then QICQ(N) acts faithfully
and irreducibly on each irreducible Q-submodule of N. So Z(QICQ(N)) is cyclic. It
admits (b, T) and is therefore centralised by d. If CN(d) ^ 1 then since CK(d) is abelian
CN(Z(QICQ(N)))* 1. The irreducibility of N now forces Z(QICQ(N)) to act trivially
on N. This contradiction implies CN(d) = 1.

Thus in all cases QICQ(N) = 1 or CN(d) = 1. When CN(d) = 1, QICQ(N) is central-
ised by d by (7, Corollary 3.2). So in all cases QICQ(N) is centralised by d. This holds
for all choices of N, whence Q « C(d). Thus OP,P(K)IOP(K) is centralised by d and
therefore inverted by T. Since CG/Op(K)(Op,p.(K)/Op(K))<]G/Op(K) this contradicts

= SL(2, 8).
So K is indeed a p-group.

Lemma 4.9. CK(T) = 1.
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Proof. Let M be a non-trivial minimal normal subgroup of G contained in K.
Since K is a p-group, M^Z(K) and G/K acts on M. The structure of NG((d))
ensures that mr = —m for all m G CM(d). By Lemma 4.6 CM(T) = 1.

Also, by applying Theorem 4 to GIM, CK(T) =s M. Whence CK(T) = 1.

Lemma 4.9 contradicts the definition of G; Theorem 4 is therefore proved.

5. Proof of Theorem 5

The following lemmas give properties of PSL(2,q), for q = p", p prime, p > 3,
p" >5 , which we shall require. Let (a) and (b) be cyclic subgroups of PSL(2,q) of
order \(q — 1) and \(q + 1) respectively, d be an element of order 3, q\ and q2 be
representatives of the two conjugacy classes of p-elements of PSL(2, q), and w and 6
be primitive \(q - 1) and \(q + l)-th roots of unity respectively.

Lemma 5.1.
follows:

If <? — 1 (wod 4), the ordinary character table of PSL(2, q) is as

A
B
C
D
E,
Fi

1

1
kq +1)
5(<J + 1)

q
q-\
q + \

Q\

1
5d+Vq)
5(1 - V < J )

0
- 1

1

1
5d-Vq)
5(1 +Vq)

0
- 1

1

a"

1
(-1)'
(-Uk

1
0

<oik + a>-*

b'

1
0
0
1

-(8" + e~")
0

for 1 « / ̂  \(q - 1), 1 ^ / =£ \(q — 5), 1 =£ k =£ \(q — 1) and 1 =s / s£ \(q - 1). Furthermore, if
X is the Brauer character of an irreducible 2-modular representation of PSL(2, q),
then x ^ the restriction to the 2-regular elements of A, B - A, C - A, E-, or Fh

Proof. See Proposition 3.1 of (9).

In a similar manner we also obtain:

Lemma 5.2. If q= — l (mod 4), the ordinary character table of PSL(2, q) is as
follows:

A
B
C
D
E,
Ft

1

1
\(Q ~ 1)
kq ~ 1)

1
q - 1
q + \

4 i

1
k-l+V-q)
l(-l-V-q)

0
- 1

1

<?2

1
k-l-V-q)
k-l + V-q)

0
- 1

1

a"

1
0
0
1
0

b'

1
(-1)'+1

(-l)l+1

- 1
-(6" + 0-")

0
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for 1 =s / =s \(q - 3), 1 =£ / =s \{q - 3), 1 =£ k =s \(q - 3) and 1 =s ; =s \{q + 1). Furthermore, if
X is the Brauer character of an irreducible 2-modular representation of PSL(2, q),
then x is the restriction to the 2-regular elements of A, B, C, E-, or Fj.

Lemma 5.3. Let M be a 2-modular representation of PSL(2, q) and let x be its
Brauer character. Then dim(CM(d)) = 3(

Proof. Since PSL(2, q) has an involution inverting d we may assume that
d is represented by the diagonal matrix diag{l 1 . . . 1 17 TJ"1 TJ TJ"1 . . . 17 TJ~'}
where 17 is a primitive cube root of unity. Since TJ + TJ"1 = — 1, x(d) =
dim(CM(d))-{[x(l)-dim(CM(d))], whence the lemma.

Lemma 5.4. Let M be a 2-modular representation of PSL(2, q) in which
dim(CM(d)) =£ 1. Then d\m(CM(d)) = 1 and either

(a) M is the trivial representation, or
(b) q = 7 and dim M = 3, or
(c) q = 11 and dim M = 5.

Proof. Use Lemmas 5.1, 5.2 and 5.3, firstly to show that dim(CM(rf)) = 0 is
impossible and then to list the cases with dim(CM(d)) = 1. Cases (b) and (c) arise when
the Brauer character of M is the restriction of B or C to the 2-regular elements.

Lemma 5.5. Let T be an elementary abelian 2-group on which PSL(2, q) acts
irreducibly with \CT(d)\^2. Then |Cr(d)| = 2 and either

(a) T = Z2, or
(b) T = Z2 x Z2 x Z2, q = 7 and PSL(2, q) acts as GL0,2) on T.

Proof. Since |Cr(d)| ^ 2 and PSL(2, q) has no 2-modular representations M with
dim(CM(d)) = 0 by Lemma 5.4, it follows that \CT(d)\ = 2. By the same reasoning we
can deduce that, if we tensor T with a large field of characteristic 2, T remains
irreducible. Thus, by Lemma 5.4, \T\ = 2 or 8 (and q = 7) or 32 (and q = 11). The last
of these cases is impossible because PSL(2, 11) contains an element of order 11 and
such an element cannot act faithfully on an elementary abelian group of order 32.
Finally we note that PSL(2,7) = GL(3, 2).

We are now in a position to prove Theorem 5. Let G be a minimal counterexample
and let us adopt the notation contained in the hypotheses of the theorem. We may
choose a minimal non-trivial normal subgroup To of G contained in T.

Lemma 5.6. Either (a) To = Z2 or (b) T0 = Z2xZ2x Z2, GIT = PSL(2,7) and GIT
acts as GL(3,2) on To; either (c) TIT0=Z2- for some m s l or (d) TIT0 =
Z2*> x Z2m x Z2- for some m 3= 1, GIT = PSL(2,7) and GIT acts as GL(3,2) on each
elementary abelian section of TIT0 of order 8.

Proof. To=£ Oi(Z(T)) so that GIT acts irreducibly on To. The structure of To now
follows from Lemma 5.5. Since G is a counterexample TQT^T and the structure of
T/To is obtained by applying the theorem to GIT0.
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Notation. Let T, be the inverse image in T of /2i(T/r0); when GIT ss PSL(2,7) let x
be an element of G of order 7.

Lemma 5.7. Parts (a) and (c) o/ Lemma 5.6 cannot occur together.

Proof. If (a) and (c) both held then d centralises To and T/To and hence
centralises T. Thus T = Z2™

+> which is a contradiction.

Lemma 5.8. Parts (a) and (d) o/ Lemma 5.6 cannot occur together.

Proof. Suppose (a) and (d) hold. Then |Cr,(d)| = 4 so that CTl(d) = Z*. In parti-
cular Ti contains an element of order 4. But x acts transitively on (TJTo)*. Therefore
Ti is a group with only one involution and hence is cyclic or quaternion, contrary to

Lemma 5.9. Parts (b) and (c) of Lemma 5.6 cannot occur together.

Proof. Suppose (b) and (c) hold. As in the proof of Lemma 5.8 T\ contains an
element of order 4. On the other hand, since To=£ Z(T) it follows that T, is abelian, so
that (t2: tET)r\T0 = Z2 which contradicts the minimality of To.

Lemma 5.10. Parts (b) and (d) of Lemma 5.6 hold.

Proof. Immediate from the three preceding lemmas.

Lemma 5.11. To =

Proof. Clearly /2,(T)=£ T,. If To* O\(T) there is an involution t in T,\T0. So the
coset tT0 is a set of involutions. The transitivity of x on (TJTo)* now forces every
element of T* to be an involution. Therefore T{ is elementary abelian. But, as in the
proof of Lemma 5.8, Tt contains an element of order 4. We conclude that To = /2i(T).

Lemma 5.12. T is abelian or a Suzuki 2-group of order 64.

Proof. Use (6) since, by Lemma 5.11, x permutes the involutions of T transitively.

Lemma 5.13. T is a Suzuki 2-group of order 64.

Proof. Otherwise T is abelian and by Lemmas 5.10 and 5.11 T satisfies the
conclusions of Theorem 5 (b).

Lemma 5.14. T is not a Suzuki 2-group of order 64.

Proof. If T were a Suzuki 2-group of order 64, then To = *(T) so that PSL(2,7)
acts on TI<P(T). However by (5) the only Suzuki 2-group of order 64 with 7
involutions, viz. r964e, has the property that its automorphism group induces on its
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Frattini factor a group of automorphisms of order 21. This gives us the contradiction
which completes the proof of the lemma and the theorem.
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