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SOME ADMISSIBLE ESTIMATORS IN EXTREME
VALUE DENSITIES

BY
R. SINGH

Let X be a random variable having the extreme value density of the form

qOr(x), 0<x<0

0o , otherwise

ey f(x;0)={

where r is assumed to be a positive Lebesgue measurable function of x and the func-
tion ¢ is defined by

1/9(6) =f:r(x) dx < o

for all 0 in Q=(0, o). It is further assumed that q(6) approaches zero as 6—co.

In this note we are concerned with estimating parametric functions g(6) of the
form [1/¢(0)]°, « any real number. The loss function is assumed to be squared
error and the estimators are assumed to be functions of a single observation X.
The case of estimators based on a sample of size n>1 is discussed in Remark 1.

In our search for a ‘good’ estimator for g(0)=[1/g(0)]* we calculate E[1/q(X)]*=
{ol1/g(x)1’q(O)r(x) dx. Since r(x)=—q'(x)/g2(X) almost everywhere we find that
for every a>—1, E[1/q(X)]" exists and is given by E[1/q(X)]*=(1/a+1)[1/q(0)]"
This leads us to consider the class A,={dx(X)=K[1/g(X)]*: K real} of estimators,
which are constant multiples of [1/¢(X)]’, for estimating the given parametric
function [1/¢(6)]*. Which of these estimators in A, has the smallest risk uniformly
for all 6 in Q? Since E[1/q(X)]'=[1/(+1)2[1/g(0)]" if I>—1 and =0 if I<—1,
it follows easily that for any dx in A,

Rz, 0) = EIK(1/a(X0)y—(1/a@)T
[1/g®F, K=0, alla
@ - (- uaor. > -1 aik
0, o S _%’ K # 0

where throughout this paper co stands for 4 co. If « > —%, the quadratic expression
[K?/(2a+1)]—[2K[/(x+1)]+1 in K achieves its minimum at K=2x+1)/(x+1).
It follows from this that for estimating [1/¢(6)]*, «>—3%, the minimum risk esti-
mator in A, is T,(X)=[Qa+1)/(x+1)][1/g(X)]* corresponding to K=(2ua+1)/
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(a+1) with risk

3 R(0g, 0) = [of(e+DI*[1/q(6)]**.

Is T, an admissible estimator of [1/g(6)]" for all «? We have the following

THEOREM 1. Let the random variable X have density (1) and let the loss be quad-
ratic. Then the estimator

T(X) = 2:‘111

[1/g(X))"

is admissible for estimating [1]q( )]* for every «>—% and is inadmissible for all
e —3.

Proof. Assume a>—3. Let T be any estimator satisfying the inadmissibility
inequality for T,:

Q) E[T—(1/q(0))] < E[T,—(1/q(6))"]*

Writing m(0) for E(T) and m*(0) for E(T,) we have the following equivalent
inequalities:

(5 E[T —m(0)FF+[m(0)—(1/q())* < [e/(x+DT*[a(0)I,

and

(6) E(T—-T,P+2E{[T-T,IT,—(1/q(6)*]} < 0.

Inequality (5) implies that
[m(6)—(1/q(0))*]* < [at/(ae+DI[1/q(0)]**
from which we get the bounds for the function m as

2041 1 1 1

<mO) < — L i 3 0
ot gor =" S er TP
1 1 24+1 1 .
7 - 0 < — if > 0.
@ aigor =" i gor ' %2

Since 1/¢(0) tends to zero as 6 tends to zero, it is clear from (7) that m(0)/ [q(O)]""“—»
0 for every 6 > 0. Now the hypothesis «>—% guarantees some 6>0 such that
a=(0/2)— @) ie., 2a+1=4, i.e., a+1=0—c. Thus it follows that

®) m(0)/[q(0)*"* -0 as 6—0

The rest of the proof consists in showing that the only solution of the inadmissi-
bility inequality (6) is m=m*. For this it is enough to show that m=m* is the only
solution to the inequality

® [m(0)—m*(0)]*+2E{[T—T,I[T,—(1/9(0)’']} < 0
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which is relaxation of (6) obtained after replacing its LHS by something smaller.
But (9) still has T in it. To express it in terms of m we use the identity m(0)=
q(0)feT(x)r(x) dx to provide us the relation

m'(x)
q(x)r(x)
Substituting this value of T'in (9) and performing the expectation of the expression
therein, we obtain the inequality

2o ) 2l [0}
a+1[g(0))  a+1 (X)) —

where in this derivation integration by parts and result (8) is used. This inequality
still contains the integral E{m(X)/[q(X)]*}. If we write

u(t) = {’"(X)} a(6) f ) ) d

(10) T(x) = +m(x)

(11) [m(6)—m*(O)F" +

[a(XOT [g()]*

we have
(6
12 0) = u(0)q%6
(12) m(®) = u(@)q*(6)— [ (9)} w'().
Introducing #(0) in (11) we have the inequality
e | 408 _ 20 Tq(0)7 ,

(13) (&)= O~ | 2 u(0)— +1[q,(0)}u<6)so

wherein m(0) is to be replaced by its value in terms of u(6) from (12). It is now shown
that u*(0)=[1/(1+«)?][1/q(6)]**, corresponding to m=m*, is the unique solution
of (13). For convenience we write

[1/q(0)1**v(6) =
in (13) which becomes
14 1120000099 2 2a a0) ., 0.
(14) [(+)(> (e)u] AR <

The proof now consists in showing that v(6)=0 is the only solution of (14). This
is done by using typical Hodges-Lehmann argument as follows:

(@) v"(0)>0 for —}<ax<0 and <0 for «>0. If v'(6)<0, then, using the fact
that ¢’(0)<0, we find that the expression — [2a/(x+1)1[g(6)/g’(6)]v'(0) is positive
for —4<a<0. But then inequality (14) is violated.

Hence the assertion for —4<a<0 follows. The conclusion for «>0 follows
likewise.

(b) v(0) is bounded. The inequality (7) for —3<a<0 can be written as

el <m0 <5l
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which after multiplying through by [¢(0)r(x)]/[¢*(x)] and integrating from 0 to 0

becomes
2‘1+1 6)fo —Q(X)+ dx S u(o) _<- q(e) 0 ——q(x) dx
_ a+1 o [q(x)]**"* a+1Jo [q(x)PP**?
ie.
1 1
— [1/g(6)* ) < ——— [1/q(O)*
e [1/g(0)T* < u( )S(oc+l)(2a+l)[ [9(6)]

Expressed in terms of v(0), it becomes

a1 4a]7 < 0(0) < —af(14-20)(140)]
showing that v(6) is bounded. The boundedness of v(6) for >0 follows likewise.
(©) [q(6)/q'(6)]v'(0) is not bounded away from zero as 6—0. For suppose there
exists ¢>0 and 0,>0 such that [g(0)/q’(0)]v'(6)<—¢ for 6<0, That is,
—v'(x)<e[q'(x)[q(x)] for all x<0,. Integrating this from 6 to 6, we get v(6)—

v(6)<e1n[q(0,)/q(0)] which shows that v(6)——co as 0—0. This violates (b).
Thus there exists a sequence 6,—0 along which

[9(02)/q' (010" (6;) — 0.
Similarly we can show

(d) [q(6)/q'(6)]v'(6) is not bounded away from zero as 6—oco.

Now from (c) and (d) there are sequences 6,—0 and 6,—co along which [g(6)/
q'(0)]v'(6)—0. From (14) it follows that v(6)—0 along these sequences. Hence from
(a) it follows that v(6)=0. This completes the proof of admissibility of 7, for
a>—1%. That T, is inadmissible for a<<—% follows from the fact that its risk (as
shown in (2)) is finite for each such «.

Remarks 1. If Xj,..., X, are independent random variables each having
density (1) then the sufficient statistic 7=max X has density given by

[4(6)]"n [ fo ) dx} ") for 0<1<0

which is a density of the form (1) with g(6) replaced by [¢(6)]" and r(x) replaced by
n[fsf(v) dv]*'r(x). So from Theorem 1 we have the conclusion that

i el o a] o)

is an admissible estimator of [¢(0)]~"# if and only if §>—4%. That is, writing «

for np, we conclude that
] n—1 —a/n
Zatn {n [f r(v) dv:| r(x)}
a+n (1]
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is an admissible estimator of [¢(0)]~* if and only if «>—n/2. So for a given « we
have admissibility for all sufficiently large sample sizes n.

2. Proof of Theorem 1 parallels the Blyth-Roberts [2] proof of the special case
of the density (1) as

n"x™t  0<x<6
(15 f(x;0) = ,
0 otherwise
In [2], the parametric function of interest is g(6)=0. If g(0)=~0° then according to
Theorem 1 the estimator (n-+2s)/(n+s)X* is admissible (with respect to quadratic
loss) for estimating 6¢ for every s> —n/2 and is inadmissible for s< —n/2.

3. In [5] Karlin proved Theorem 1 (of this paper) for all >0 (see his Theorem
2, p. 418). His proof makes use of the fact that «>0. Theorem 1 of the present
paper settles the question of the admissibility of T, for all values of «.

4. An attempt was made in [6] to extend Karlin’s Theorem 2 to all values of «
but this was successful only for some special extreme value densities such as
(15). The approach there is the limiting Bayes method, used by Blyth [1] and Karlin
[S].

5. The following theorem extends Theorem 3 of Karlin [5] to all other values
of a.

THEOREM 2. Let X have density

qOr(x), x>0

16 ;0) =
(16) f(x;0) 0, 0, < x <0,

where ¢g1(0)=J¢r(x) dx and q(6,)=0. Then (with quadratic loss) the estimator
T,=[Qa+1)/(x+1)1[1/g(x)]* is admissible for estimating [1/g(6)]* for all
a>—1% and inadmissible for all «a<—13.

6. If the loss functionis given by L,(d, g)=[(6—g)/g]?, the estimator T, is
minimax and admissible for estimating [1/¢(6)]" for all «a>—1.

7. The estimator («+1)[1/g(X)]* is the uniformly minimum variance unbiased
estimator of [1/q(6)]* for all «>—4%. This estimator, however, is inadmissible
for it is uniformly improved upon by the estimator 7.

8. In addition to the example of the density (15), Theorems 1 and 2 have the
following applications:

(i) Pareto distribution. Let X have density of the form
c0° cl+1 ,
17) f(x;0) = x

0 otherwise,

x>0

where ¢>0 is known and g(6)=0°. If we take r(x)=c/x°** then (17) is a special
case of (16).
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(if) Let X have density

e—-(w-—ﬂ)’ X Z 0
18 fx;0) = 0

otherwise,

where 0 € (— o0, ) and g(6)=0°. If we set r(x)=e* the (18) is a special case
of (16).
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