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SOME ADMISSIBLE ESTIMATORS IN EXTREME 
VALUE DENSITIES 

BY 

R. SINGH 

Let X be a random variable having the extreme value density of the form 

q(6)r(x), 0<x<d 
(1) f(x;0) 

0 , otherwise 
where r is assumed to be a positive Lebesgue measurable function of x and the func­
tion q is defined by 

*>o 
1/^(0) = r(x) dx < oo 

Jo 

for all 6 in O=(0 , oo). It is further assumed that q(d) approaches zero as 6~>co. 
In this note we are concerned with estimating parametric functions g(d) of the 

form [llq(6)]a, a any real number. The loss function is assumed to be squared 
error and the estimators are assumed to be functions of a single observation X. 
The case of estimators based on a sample of size n>\ is discussed in Remark 1. 

In our search for a 'good' estimator for g(0)= [l[q(0)]a we calculate E[\jq(X)]*= 
il[\jq{x)fq(d)r{x) dx. Since r(x)= — q\x)jq\X) almost everywhere we find that 
for every < x > - l , E[llq(X)f exists and is given by ^[l/^(^)]a=(l/oc+l)[l/^((9)]a. 
This leads us to consider the class Aa={ôK(X)=K[llq(X)]a:K real} of estimators, 
which are constant multiples of [\jq{X)f, for estimating the given parametric 
function [l/#(0)]a. Which of these estimators in Aa has the smallest risk uniformly 
for all 6 in ft? Since E[l[q(X)]l=[ll(l+l)]2[llq(6)]1 i f /> —1 and =00 if / < - l , 
it follows easily that for any àK in Aa, 

R(ÔK, 6) = E[K{\lq{X)T-(llq{B)rf 

mimf, K = 0, all a 

( 2 ) = ( ^ T - ^ r + l)[l/«(e)]2a, a > - l , alliC 
I \ 2 a + l a + 1 / 
loo, a < - | , K j* 0 

where throughout this paper 00 stands for + 00. If a > — J, the quadratic expression 
[K2l(2oL+l)]-[2Kl(oL+l)] + l in K achieves its minimum at #=(2oc+l)/(oc+l). 
It follows from this that for estimating [l/q(d)]a

9 a>— \, the minimum risk esti­
mator in Aa is Ta(X)=[(2oL+l)l(oL+l)][llq(X)]a corresponding to K=(2OL+1)I 
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(<x+1) with risk 

(3) R(ôK,d) = [Kl(K+l)T[llq(6)r-

Is Ta an admissible estimator of [llq(0)]a for all a? We have the following 

THEOREM 1. Let the random variable X have density (1) and let the loss be quad­
ratic. Then the estimator 

TJLX) = ^ ± i [iMx)Y 
a + l 

is admissible for estimating [ijq{ )]a for every a>— \ and is inadmissible for all 

Proof. Assume a > — | . Let T be any estimator satisfying the inadmissibility 
inequality for Ta: 

(4) E[T-(ilq(6)rf <C E[Ta-(llq(P)y? 

Writing m(6) for E(T) and m*(0) for E(Ta) we have the following equivalent 
inequalities : 

(5) E[T-m(d)f+[m(d)-(ljq(6W? ^ [a/(a+l)]2[<z(0)]-2a, 

and 

(6) E(T-Taf+2E{[T-Tx][Ta-(llq(d)y]} < 0. 

Inequality (5) implies that 

[m(0)-(l/«(0))«]a < [a/(a+l)]2[l/g(6)]2a 

from which we get the bounds for the function m as 

?ï±i—— <m(0)<— — if - | < « < 0 
a + l [q(6)]"- a+l [q(d)Y 

(7) — — < m(0) < ^ ± i _ J _ if a > 0. 
« + l [ « ( f i ) r ~ « + 1 [«(0)]' 

Since l/#(0) tends to zero as 0 tends to zero, it is clear from (7) that rn{6)j[q(Q)f~*a--+ 
0 for every ô > 0. Now the hypothesis a>— | guarantees some (5>0 such that 
a = (d/2)-( i) i.e., 2 a + l = <5, i.e., a + l = e$-a. Thus it follows that 

(8) m(d)l[q(d)Y+1 -> 0 as 6 -> 0 

The rest of the proof consists in showing that the only solution of the inadmissi­
bility inequality (6) is ra=m*. For this it is enough to show that m=m* is the only 
solution to the inequality 

(9) [m(d)-m*(d)?+2E{[T-Ta][Ta-(llq(d)y]} < 0 
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which is relaxation of (6) obtained after replacing its LHS by something smaller. 
But (9) still has T in it. To express it in terms of m we use the identity m(d)= 
q(0)$lT(x)r(x) dx to provide us the relation 

(10) T(x) = - hm(x) 
q(x)r(x) 

Substituting this value of Tin (9) and performing the expectation of the expression 
therein, we obtain the inequality 

(11) [m(0)-m*(0)]*+— ™WLJ*Q*±2 £ ( mW ] < 0 
a + 1 [q(6)T a + 1 \[q(X)f) ~ 

where in this derivation integration by parts and result (8) is used. This inequality 
still contains the integral E{m(X)j[q(X)f}. If we write 

\[q(X)]xl Jo [q(x)T 
we have 

(12) m(6) = u(d)q«(6)- p ^ J *(B). 

Introducing u(6) in (11) we have the inequality 

(13) [m(6)-m*(6)f- 4a2 

a + 1 . 
«(0)-

2a q(ey u'(d) <, 0 
x+llq'(d)_ 

wherein m(6) is to be replaced by its value in terms of u(d) from (12). It is now shown 
that M*(0)= [1/(1 +a)2][l/<jr(0)]2,z, corresponding to m=m*, is the unique solution 
of (13). For convenience we write 

[imfm = "(0)-7rfri tW)]2* 
(1+a) 

in (13) which becomes 

(14) ( l+2aM0)-
q'W) 

v\S) 
2a q(0) 

\+lq'(6) 
v'(0) < 0. 

The proof now consists in showing that v(6)=Q is the only solution of (14). This 
is done by using typical Hodges-Lehmann argument as follows : 

(a) t/(0)>O for - i < o c < 0 and < 0 for <x>0. If i/(0)<O, then, using the fact 
that q'(0)<0, we find that the expression -[2oLl(oL+l)][q(d)jq'(0)]v'(d) is positive 
for — J < a < 0 . But then inequality (14) is violated. 

Hence the assertion for ~ ^ < a < 0 follows. The conclusion for a > 0 follows 
likewise. 

(b) v(6) is bounded. The inequality (7) for — | < a < 0 can be written as 

2 a + l 

a + 1 Lq(x). 

1 
< m(x) < 1 

a+1 
" 1 ] 
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which after multiplying through by [q(0)r(x)]l[q*(x)] and integrating from 0 to 0 
becomes 

'h \a(x)r'+2 ~ ~ a + i Jo rflrx)i2a+2 

i.e. 
a + 1 Jo [q(x)f+2 ~ a + 1 Jo [q(x)] 

1 ttiqm2*<u(6)<—-±—-[iiqm 2a 

a+1 ~~ (a + l)(2a+l) 

Expressed in terms of v(0), it becomes 

*[l + a]-2 < v(6) < -a[( l - f2a)( l + a)]-2 

showing that v(6) is bounded. The boundedness of v(6) for oc>0 follows likewise. 

(c) [q(0)lq'(d)]v'(6) is not bounded away from zero as 0->O. For suppose there 
exists £>0 and 0O>O such that [q(0)lq'(0)]v'(6)<-e for d<d0. That is, 
—v' (x)<e[q' (x)/q(x)] for all x<0o. Integrating this from 6 to 0o we get v(0) — 
v(po)<eln[q(0o)lq(Q)] which shows that v(d)->-oo as 0->O. This violates (b). 
Thus there exists a sequence di~^0 along which 

Similarly we can show 

(d) [q(6)[q'(d)]v'(0) is not bounded away from zero as 6->co. 
Now from (c) and (d) there are sequences ^->0 and fl^oo along which [q(0)j 

q'(6)]v'(0)->0. From (14) it follows that v(6)->0 along these sequences. Hence from 
(a) it follows that v(0)=0. This completes the proof of admissibility of Ta for 
<x> — | . That Ta is inadmissible for oc< — \ follows from the fact that its risk (as 
shown in (2)) is finite for each such a. 

REMARKS 1. If Xl9. . . , Xn are independent random variables each having 
density (1) then the sufficient statistic jT=max Xi has density given by 

[q(d)Tn J' 
Jo 

r(x) dx r(t) for 0 < t < 0 

which is a density of the form (1) with q(0) replaced by [q(6)]n and r(x) replaced by 
n[jof(v) dv\n~1r{x). So from Theorem 1 we have the conclusion that 

^{«[JJK^)^]" V ) 2/3+ 

is an admissible estimator of [q(0)]~n^ if and only if /?>— \. That is, writing a 
for njl, we conclude that 

2a+H ( I" f * , . , ' 
{n\ r\v) dv r(x) 

-a/n 
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is an admissible estimator of [q(0)]~a if and only if <x> — n/2. So for a given a we 
have admissibility for all sufficiently large sample sizes n. 

2. Proof of Theorem 1 parallels the Blyth-Roberts [2] proof of the special case 
of the density (1) as 

ln6-nxn-\ 0<x<6 
(15) / ( * ;0 ) = { " . 

10 otherwise 
In [2], the parametric function of interest is g(6)=0. If g(0)=0 s then according to 
Theorem 1 the estimator (n+2s)[(n+s)Xs is admissible (with respect to quadratic 
loss) for estimating 6s for every s> —n/2 and is inadmissible for s< —n/2. 

3. In [5] Karlin proved Theorem 1 (of this paper) for all a > 0 (see his Theorem 
2, p. 418). His proof makes use of the fact that a>0 . Theorem 1 of the present 
paper settles the question of the admissibility of Ta for all values of a. 

4. An attempt was made in [6] to extend Karlin's Theorem 2 to all values of a 
but this was successful only for some special extreme value densities such as 
(15). The approach there is the limiting Bayes method, used by Blyth [1] and Karlin 

[5]. 
5. The following theorem extends Theorem 3 of Karlin [5] to all other values 

of a. 

THEOREM 2. Let X have density 

(q(6)r(x), x>6 
(16) f(x;0) = 

10, 6Q < x < 6, 

where 9~1(0)=Ja°^W dx and gr(0o)=O. Then (with quadratic loss) the estimator 
r a =[ (2a+ l ) / ( a+ l ) ] [%(*) ] a is admissible for estimating [%(0)f for all 
a > — -J and inadmissible for all a<— -|. 

6. If the loss function is given by L0(ô,g)=[(ô— g)lg]2, the estimator Tx is 
minimax and admissible for estimating [l/#(0)]a for all a>— -J. 

7. The estimator {oL+l)[ljq(X)]a is the uniformly minimum variance unbiased 
estimator of [ljq(6)T for all oc>—|. This estimator, however, is inadmissible 
for it is uniformly improved upon by the estimator Ta. 

8. In addition to the example of the density (15), Theorems 1 and 2 have the 
following applications : 

(i) Pareto distribution. Let X have density of the form 

17) 

where c>0 is 
case of (16). 

/(* 

known and 

;;0) = 

g(ff)= 

Le" 

lo 
es. if 

l 

we take 

x> e 

otherwise, 

r(x)=c/xe+1 then (17) is a special 
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110 R. SINGH 

(ii) Let X have density 

e~{x-d\ x>6 

0 otherwise, 

where 6 e (—OO, OO) and g(6)=ds. If we set r(x)=e~x the (18) is a special case 
of (16). 
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