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THE LUMPED MASS FINITE ELEMENT METHOD
FOR A PARABOLIC PROBLEM
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Abstract

For the heat equation in two space dimensions we consider semidiscrete and totally
discrete variants of the lumped mass modification of the standard Galerkin method, using
piecewise linear approximating functions, and demonstrate error estimates of optimal
order in L2 and of almost optimal order in Lx.

1. Introduction

Let B be a convex plane domain with smooth boundary 3S2, and consider the
initial boundary value problem

u, - Au = / infi x[0, oo),

« = 0 on9fix[0,oo), (1.1)
u(- , 0) = v in S2,

where u, denotes du/dt and A the Laplacian d2u/dx2 + d2u/dxj.
For h small, let J A b e a partition of fi into disjoint triangles T with side lengths

at most h, such that no vertex of any triangle lies on the interior of a side of
another triangle, such that the angles of the triangles are bounded below indepen-
dently of h and such that the union of the triangles determine a polygonal domain
flA whose boundary vertices lie on 3fl. Let then Sh c //,}(fl) be the standard finite
element space of continuous functions in Q, which reduce to linear functions on
the triangles of !Th and vanish outside QA. With {/y}f* the interior vertices of S~h

we shall employ the standard basis {9,}^* for Sh consisting of the pyramid
functions defined by <Pj(Pk) = Sjk.
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330 C. M. Chen and V. Thomee (2 ]

Recall that the standard semidiscrete Galerkin method for (1.1) is to find uh:
[0, QO) -* Sh such that with (•, •) the appropriate L2 inner products,

(«*., . X) + (V«* ,VX) = ( A x ) VX G S*,for/ > 0,

«*(0) = o*. (1-2)

where vh is some approximation of v in Sh. Recall also that this method may be
written in matrix form as

Aa'(t) + Ba(t) = F{t) for * > 0,

«(0) = Y, (1.3)
where A = (ajk) and B = (bjk) are the mass and stiffness matrices whose
elements are ajk = (<py, cp̂ ) and bjk = (V<py, V<p̂ ), respectively, where a.j(t) and
Y7 are the components of uh{t) and vh with respect to {cp̂ } and where F is the
vector with components (/, tpk).

A simple way to define the lumped mass method is to replace the matrix A in
(1.3) by the diagonal matrix A obtained by taking for its diagonal elements the
numbers a^ = E^ixO^, so that the system of ordinary differential equations
becomes

Aa'(t) + Ba(t) = F(t) for / > 0. (1.4)

This procedure may also be interpreted as resulting from evaluating the first
term in (1.2) by numerical quadrature: Let T be a triangle of the triangulation^,,
let PTJ,j = 1,2,3, be its vertices and consider the quadrature formula

QTth(f) = a reaT ' T I f(prj - [fdx. (1.5)

We may then define an approximation of the L2 inner product by

and find that (1.4) is equivalent with

(«*.,. X)*+(VK A ,VX) = ( / , X ) V X ^ , (1.7)

For, with uh(t) = E^i1ay(/)<p/(x) this follows from the trivial observation that

(<P/> <Pk)h = ° f o r 7 * k a n d

H j % h j (1-8)

To show the latter fact we note that ((py, <pfc) is only nonzero fory # A: if /^ and P^
are neighbors and that in such a case, if T is a triangle with .P, and Pk as vertices,

J<Pj<pkdx= ^ area T,
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and

r -, l
iWidx— —area T.

JT
 J 6

It follows, since for each pair PJt Pk there are two such triangles T, that with D} the
union of triangles which have JP, as a vertex,

E («P/> 9k) = E (<P/> 9k) + \\9j\\

Since clearly

•y r-^ / -y \ A

our claim (1.8) follows.
The procedure just discussed is a special case of a family of quadrature schemes

analyzed in Raviart [6], where it is also shown to be the only viable such method
of diagonal type. In the present case Raviart's work shows O(h2) order conver-
gence in the norm in L2(fi) (cf. Theorem 1 below).

The method was applied in connection with eigenvalue problems in Tong, Pian
and Bucciarelli [8], where the first term in (1.7) was interpreted instead as
resulting from replacing the piecewise linear functions in (1.2) by certain piece-
wise constant functions. This interpretation was adopted also in Fujii [3] where it
was shown that if the angles of the triangulation are all nonobtuse, then a
maximum principle holds for (1.7). This was applied in Ushijima [9], [10] (cf. also
Tabata [7]) to derive uniform convergence, which, except for the case of uniform
triangulations, was only shown to be of first order in h.

In the present note we shall show a maximum-norm error estimate of essen-
tially optimal order in h which will require only that the triangulation is
quasiuniform, that is, such that each triangle T G lTh contains a disc of radius ch
with c bounded below, and thus without the nonobtuseness and uniformity
conditions referred to above. The basic ingredient in our proof, which follows the
approach taken by Wheeler [11], [12], is a superconvergent O(h2)L2 norm error
estimate for the gradient of 6 = uh — Rhu, where Rh denotes the elliptic or Ritz
projection of the exact solution. Together with the "almost" Sobolev inequality

VX e Sh, (1.9)

which is valid when the triangulation is quasiuniform, this yields a 0(/i2(log £)1/2)
maximum norm estimate for 6. Using also the well known O(/j2log \) maximum
norm estimate for the error p = Rhu — u in the elliptic projection (cf. Nitsche
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[4]), this results in a maximum norm error estimate for the lumped mass
semidiscrete parabolic problem of the form

IMO " "(Oikw < C(t, U)/,2log \ for / > 0,

for suitably chosen discrete initial data.
This estimate will require a certain amount of regularity of the exact solution,

including, in particular, a nontrivial degree of compatibility between the data on
9fi for / = 0. In the special case of the homogeneous equation, for instance, it will
assume that v e HA(Q>) and v = Av = 0 on 9fl. For this case we shall therefore
also demonstrate that under the milder assumptions that v e H2(Q) and v = 0
on 9 £2 we have for / > 0,

|| v K ( r ) - Rhu{t))\\Li(a) < Ch2rl\\v\\H2lQ),

and as a consequence

IK(') - "(Olkw < c*2iog ^'"'IMUw
We emphasize that although our superconvergence estimates in L2 generalize to

higher dimensions, the inequality (1.9) does not, so that our maximum norm error
estimates are only shown for two space dimensions.

The method of lumped masses may, of course, also be used in combination
with discretization in time. One could, for instance, consider the method defined
by, with 9, denoting the backward difference quotient with time step k, U" the
approximate solution at time tn = nk, and with 0 < K < 1,

(d,u\ x)h + <c(vt/", v x ) +(i - K)(VU"-\VX) = ( / ( ' „ - ! + Kk),x)

V x e Sh,n = 1,2,...,

or in matrix form, with a" the vector of the components of U" with respect to the
basis {(p,}^* and F"~l + K the vector with components (f(tn_1 + nk), <py),

Ak-l{a" - a"'1) + KBU" + ( l - ^Ba"'1 = F"- 1 + " ,

or, since A + xkB is obviously positive definite,

a" = (A+KkB)'l(A-(l - K)A:5)a"-1 + (A +KkB)'1F"-1+K.

The backward Euler method corresponds to K = 1, the Crank-Nicolson method to
K = 5, and for K = 0 we have the forward Euler method which is now purely
explicit since A is diagonal.

For these three different methods we first show error estimates in L2-norm,
which are of order O(h2 + k2) for the Crank-Nicolson method, and O(h2 + k)
for the forward and backward Euler methods, the former under a stability
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I s | Lumped mass finite element method 333

condition which is satisfied when the triangulations are quasiuniform and the
mesh ratio kh'2 is sufficiently small. We then also show estimates of these same
orders for the gradient of 6" = U" - Rhu", which as above for the semidiscrete
problem yield almost optimal order error estimates in the maximum norm. The
paper is completed by demonstrating some error estimates for somewhat less
regular data in the case of the homogeneous equation which match our above
corresponding estimates for the semidiscrete problem.

In the rest of the paper we shall denote the norm in L2($l) by || • ||, that in
HS(Q) by || • ||, and that in Lp{Q,){p * 2) by || • | | L / C will be different positive
constants independent of h and the functions involved, and not necessarily the
same at different occurrences.

2. The semidiscrete problem

We begin our error analysis with the following lemma concerning the quadra-
ture error

Eh(v> w) = (v,w)h -(v,w),

where (•, )A is defined by (1.5) and (1.6).

LEMMA 1. We have for i/s X G Sh,

and

PROOF. Since the quadrature formula (1.5) is exact for / linear we have by
transformation to a fixed reference triangle T0 and using the Bramble-Hilbert
lemma and the Sobolev inequality

that, with hT the diameter of T,

M-2

After application t o / = \px this implies, since both \p and x are linear in T, that

Qr.Mx) - Ch2
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We conclude using the Cauchy-Schwarz inequality that

( ) Ch2 £ IIV^||t2(T)||Vxll/.l(T) < C*2||V*|| • ||Vxll,

which is the first of the desired inequalities. Using a local inverse estimate on T we
also have

which yields the second estimate.
We shall now show the following L2 error estimate (cf. [6]) in which we use the

elliptic projection Rh: HQ(Q) -» Sh defined by

Recall that

\\Rhv - v\\ + h\\vRhv - W\\ < CV|M|y fory = 1,2. (2.1)

THEOREM 1. Let uh and u be the solutions of (1.7) and (1.1), respectively. We then
have for t > 0,

\\uh(t) - u(t)\\ ^ C\\vh- Rhv\\ + Ch2 M O I I 2 + / l l « , l l i * •

PROOF. We write

Here by (2.1),

Turning to 8 we have

(4>x)* +(v«,vx) = («*,,,x)» +(v«
= (/. x) -(/?*«„ x)* -(VM,vx)
= (",,x) -(Rh»nx)h

= ~(PnX) -eh(RhunX). (2.2)

Setting x = 0 we obtain

\ Jt\\Hl + IIV^H2 = -(p,, ») - e,(/?,M/, tf). (2.3)

Here we have at once
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171 Lumped mass finite element method 335

and, in view of Lemma 1,

\eh(Rhun 0)| < Ch2\\vRhu,\\ • \\VO\\ < Ch2\\Vu,\\ • \\V6\\.

It follows that

\ Jt\\H\ + \\V0\\2 < O»2||«,||2||v0|| < ||V0||2 + Ch4\\u,\\2
2,

or, after integration,

Noting now that || • \\h and || • || are equivalent norms on Sh, which easily follows
by considering each triangle separately, we have hence

which completes the proof.

We now turn to an L2 norm error estimate for the gradient.

THEOREM 2. With uh and u the solution o/(1.7) and (1.1) we have for t > 0.

\\Vuh(t) - v«(r)|| < IIVo* - VRhv\\ + C*

PROOF. Setting this time x = 0, in (2.2) we obtain

l + \ Jt\W0\\2 = -(ft, 0,) - eh(Rhu,, 6,), (2.4)

where now

and by Lemma 1,

\eh(Rhu,,8,)\

Using again the equivalence between || • \\h and || • || on Sh we conclude

110,11* + \ Jt\\VH2 < ChWuMO.Wn < ll«,ll* + Ch2\\u,\\l

whence

\\v6{t)\\2 ^\\VO(O)\\2 + Ch2j'\\u,\\2ds.
Jo

Together with

||vp(0|| =
this completes the proof.
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A natural choice for discrete initial data in Theorems 1 and 2 is vh = Rhv but
also any other optimal order approximation to v in Sh produces optimal order
error estimates for the parabolic problem.

We shall now show that a slight modification of the above proof yields a
superconvergent O(h2) estimate for v6 similar to the case of the standard
Galerkin method (1.2).

LEMMA 2. Let uh and u be the solutions of (1.7) and (1.1). Then for each T > 0
there is a constant C = CTsuch that for 6 = uh — Rhu andO < t < T,

HI < nvfl(o)n + a2j||M((')lli + ( £ ( | | M , | | 2 + IKII 2 ) <&) }.

PROOF. It suffices to consider the case 6(0) = 0. For the solution uh of the
homogeneous equation with initial data uh(0) = 6(0) satisfies

| , 2 + I An u i|2 = 0
II h,t\\h 2 dt '

and hence

We have as before (2.4) which we now write in the form

Here

\{Pn «,)\ < llp,ll • W < ch2\\u,\\2\\o,\\H < ch*\\u,\\\ + \\e,\\l

Further, by Lemma 1,

\eh(Rhu,, 0)\ < Ch2\\vRhu,\\ • \\ve\\ < ChA\\u,\\l + }||V0||2,

and similarly with u, replaced by utr By integration of (2.5) we therefore obtain

f\\v6\\2ds.

The result now follows by Gronwall's lemma.

As an application of the lemma we prove the following maximum-norm error
estimate:

THEOREM 3. Assume that the triangulation 3Th is quasiuniform and let uh and u be
the solutions of (1.7) and (1.1), with vh = Rhv. Then for each T > 0 there is a
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constant C = CTsuch that for 0 < / < T,

PROOF. By a known maximum-norm error estimate for the elliptic problem (cf.
Nitsche [4]) we have

k O - «(Olk < ChHog \\\u(t)\\W2(Q). (2.6)

In order to bound 0(t)we note that

/ 1 \1 / 2

llxlL^C^log-j Hvxll VXe5, (2.7)

In fact, by Sobolev's lemma there is a constant C independent ofp>2 such that

HxIL, <Q>1/2llvx||
 v x e s v

On the other hand, since 3~h is quasiuniform, we have the inverse estimate

Choosing p = log(l//i) these inequalities show (2.7). Application to 0(f) and
invoking Lemma 2 now yields

\1 / 2

j
1/2

thus completing the proof.
We observe that our above error analysis requires more regularity of the

solution than known error estimates for the standard Galerkin method. For
instance, for the standard method (1.2) with vh = Rhv, applied to the homoge-
neous equation ( / = 0) one has (cf. [2])

whereas for the lumped mass method, Theorem 1 only yields

||«A(0 - «(f)|| < Ch2\\v\\2 if w = At; = 0 on 9fi. (2.8)

To prove the latter estimate, we recall that with { \y }f and {<py }f the eigenvalues
and eigenfunctions of -A with homogeneous Dirichlet boundary conditions, the
norm \\v\\s is equivalent to (Ey°_i^(f, <Py)2)1/2 for functions which satisfy the
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boundary conditions AJv = 0 on 9fl forj < s/2. Hence one has for the solution of
the homogeneous equation

and

\ds < C\'^\ylx''{v, <Pj)2ds *i C^)(v,%)2 < C\\v\\j,
i j

which gives (2.8). Similarly Lemma 2 shows

||V0(Oll < C/J2||U||4 if u = A« = 0on3fl,

whereas the standard Galerkin method only requires v to have three derivatives.
The boundary condition Aw = 0 on 3Q in (2.8) and (2.9) is particularly undesir-
able in applications.

For the standard Galerkin method, on the other hand, it is known that the
convergence is of optimal order for t positive, even if v is only in L2, or

\\uh(t)-u(t)\\*Ch2rl\\v\\.

We shall now demonstrate a weaker result of similar nature in the present
situation. It will reduce the regularity assumptions for optimal order convergence
for / positive t o o £ H2($l) and u = 0on 3R, and thus eliminate the requirement
that An = 0 on 3fi.

LEMMA 3. Consider the homogeneous equation ( / = 0) and let 6 = uh — Rhu.
Then for each T > 0 there is a constant C = CT such that if 6(0) = 0 then for
0 < t < Tand v e H2(Sl) with v = 0 on 3fl,

and

\\V6\\ < Ch2rx\\v\\2.

PROOF. Multiplying (2.3) by t we have

\ Jt{t\\e\\l) + 'IIV0||2 = -t{pt, 6) - teh(Rhun 0) + \\\0\\2.

Hence by integration and routine estimates, using Lemma 1 and (2.1),

' P ( 0 l l * + f's\\ve\\2 ds < Ch* ('{s2\\u,\\2 + s\\u,\\2) ds + CJ'pW2 ds
JQ JQ J0

< Ch*\\v\\2 + Cf'\\e\\2ds. (2.10)
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In order to bound the latter integral we set 0(f) = fo@(s) ds and integrate the
error equation (2.2) from 0 to Mo obtain

(9, X)H +( V 0 , VX) = (p(0) - p(/), x) " **(**(«(0 - v), X) VX e 5A.

Setting x = 0 = 0, this yields

\\e\\l + \ |nvei l2 = (p(o) - P(r), 0) - | £ , ( ^ ( « ( / ) -«),0)

and hence

f \ \ e \ \ l d s + | | V 0 | | 2 «S Ch4 f(\\u(s)\\2 + \\o\\l) ds + Ch4\\vRh(»(t) ~ v)\\2

*\\o\\i+ ['\\ve\\2ds,[
so that, using also Gronwall's lemma, for / < T,

f'\\8\\2
hds<Ch4\\v\\l. (2.11)

•'0

Together with (2.10) this proves the first estimate of the lemma.
In order to show the estimate for V0 we multiply (2.5) by /2 and obtain

\ f ('2llv0||2) < - | ( r V**W/, 9)) + a2||p,||2

+ t2eh(Rhu,,, 9) + 2teh(Rhun 9) + t\\v9\\2.

By integration and obvious estimates this yields

Ch4('s2\\u,\\l<kJo

or

+ Ch*f(s3\\vRhu,l\\
2 + * | |V*,K, | | 2 ) ds + Cf's\\v9\\2ds,

'2||V0(/)||2<C*4(

+ C('s\\v9\\2dsJo

< ChA\\v\\2 + Cf's\\v9\\2ds,Jo
and hence, using our above estimates (2.10) and (2.11) we have, since I < T,

which completes the proof.
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As a consequence we have the following:

THEOREM 4. Let uh and u be the solutions of (1.7) and (1.1), respectively, with
/ = 0, and let vh = Rhv. Then for each T > 0 there is a constant C = CT such that
forO < t < T and v = 0 on 9fi,

and, if the triangulation yh is quasiuniform,

h2\og\

PROOF. We have by (2.1) for p = Rhu - u,

\\uh{t)-u{t)\\Lao^ch2\og\-rl\\v\\2.

Also, using (2.6), a Sobolev inequality, and the spectral norm discussed above,

^ •r1\\v\\2.

Together with the estimates of Lemma 3 these bounds show our assertions.

3. Totally discrete schemes

We shall begin our discussion of totally discrete schemes by showing an L2

norm error estimate for the lumped mass backward Euler method

( ) (/n,x) VxeS,, (3.1)

where U" e Sh is the approximate solution at tn = nk and f" = f(tn). For
simplicity we shall always choose vh = Rhv for discrete initial data below, where
Rh denotes the elliptic projection defined earlier; the modifications needed for
other natural choices are trivial.

THEOREM 5. Let u and U" be the solutions of (1.1) and (3.1) with vh = Rhv. Then
for tn= nk^ 0,

https://doi.org/10.1017/S0334270000004549 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004549


1131 Lumped mass finite element method

PROOF. Setting as usual, with u" = u{tn) etc.,

U" - u" = (U" - Rhu") +(Rhu" - u") = 0" + p",

we have

||p"|| <S Ch2\\u"\\2.

For fwe obtain

341

(3.2)

= (d,u\ x)h +(vun, vx) -(a,**«\ »«",vx)

(3.3)

= («,"- a,«", x) +(3>" - 3,/?*«", X) - eh(d,Rhu", x )

Here

" + r2
n + r3

n.

\T2"\^\\(I-Rh)d,u"\\

ft II / n \ 1 / 2

Ch2 k - 1 } " u,ds\\ llxll < C * 2 * - 1 / 2 / " ||M,||i«fa Hxll. (3-4)
J'n-X II 2 ^ ' - - 1 '

Further, using Lemma 1,

|r3"| < Ch2\\vR$tW\\ • HVXII < CA2||3,V«"|| • HVxIl

/ \1//2

2^^" \\ut\\
2ds} HvxIl,

(3.5)

and for the contribution from the discretization in time,

|77| < ||< - 3,u-|| • Hxll = | k ' 7 ' " (* - 'n-i) llxll

[S';\\u,,\\2ds
1/2

llxll- (3-6)

Choosing x = 6" m (3.3) we hence find after some manipulation, since ||x||

ciivxll,

jj-(\\n\l - P'-YH) + YkWO" - 8"-l\\\ +jj

||V»n ||2 + Ch^k-1!'" \\u,\\2ds+ Ckf" Wuj'ds,
'n-l ' / , - !
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whence

\\n\l < WO'-'Wl + Ch4f" \\u,\\2ds + Ck2f" \\utt\\
2ds,

' n - 1 ' n - 1

and, since 0° = 0,

\\9"\\l < Ch'j'"\\u,\\\ds + Ck2j'"\\ult\\
2ds.

J0 JO

Recalling that || • \\h and || • || are equivalent this concludes the proof.

We shall now derive the following superconvergent order L2 estimate for the
gradient of U" - Rhu(tn).

LEMMA 4. Let u and U" be the solutions of (1.1) and (3.1) with vh = Rhv. Then
for 6" = U" - Rhu(tn) we have for 0 < tn = nk < T, with C = CT,

l < Ch*[\\u,(0)\\l+(£(\\«,\\2 + IKH?)
1/2

PROOF. We use again (3.3), now with x = 3,0" and obtain

f |Wn\\l + Jj-(\\v9a\\2 ~ IIV0"-1!!2) + f ||v3,0n||2 = TV + T2 + T3". (3.7)

Here, by (3.4) and (3.6),

|77| + \T2»\ < Ch'k-1/'" \\u,\\lds+ Ckf" \\utl\\
2ds + \\dt0"\\l

' n - 1 ' n - 1

By summation we thus obtain from (3.7) since 6° = 0,
n

| | vm 2 < Ch4fl"\\ul\\lds+ Ck2h\uj2ds + 2k £ T{.

We now note that

whence

2k f T{ = -2e»(3,i?,ii-,»-) + 2kt sh{dJRhu\d^). (3.8)
y- i 7=1
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[is] Lumped mass finite element method 343

Here

\eh(d,Rhu
n,en)\ ^ chm^

< CA4{ 1111,(0)11? + jTiKlli * } + lllV0"||, (3.9)

and similarly

* t Ie*(3,2**«', fl'""1)! < C*4/ '"Klli* + C* £ || V^"1!!2, (3-10)
j-l J° 7 = 1

so that altogether we have now shown

4{ 1111,(0)11? + j['"(ii«(|ii

/ V , H 2 A + C A : i

This shows the desired result by the discrete GronwalFs lemma.

Using the almost Sobolev inequality (2.7) and the elliptic error estimate (2.6)
we conclude at once the following maximum norm estimate:

THEOREM 6. Assume that the triangulation yh is quasiuniform and let u and U" be
the solutions of (1.1) and (3.1) with vh = Rhv. Then for 0 < fn = nk ^ T, with
C=CT,

l|t/"-«(<-)lk<CAMogi||«(OIUi(Q)
l/1( I ft \l/2

i W f r d i ? ) )
1/2

/ 1 \X

+ Ck(U*h)

We now turn to the second order in time lumped mass Crank-Nicolson scheme

{\U\ X)h + (V U" +
2

U"~1, VX) - ( / - 1 / 2 , X) V X e 5 A . (3.11)
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W e have now:

THEOREM 7. Let u and U" denote the solutions o/(l.l) and (3.11) with U° = Rhv.
Then for tn = nk > 0,

lit/"- u(tn)\\ < a

If the triangulation 3~h is quasiuniform we have for 0 < /„ = nk < T, with C = CT,

( 1 \l/2/ \l/2

logi) (jf"(||«J|2 + ||«H,||2)&) • (3-13)
PROOF. Writing again U" - u" = 6" + p" we have as before the estimate (3.2)

for p". We have this time for 6",

+ tf-"1)/!, VX) = (3,f/", x)* +(V(1/" + l / " - 1 ) /^ , Vx)

,*/,"", X )* " ( V(J?*«" + / ? A " - 1 ) / 2 , VX)

+ («,-1 / 2 " 3,«". X) + (5,«" " M*«". X) - e*(3,/?*«", X)

= E 7 } \ (3.14)

Here

•n-l

1/2

llvxll,
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and similarly

\i2 I ^ II", °tu II 11X11

As in (3.4),

Lumped mass finite element method 345

1/2

llxll-

U t
" I K I l

1/2

llxll,

and as in (3.5)

U t \ 1 / 2

" INI2*) llvxll-
Setting x = 0n + 0"~1we now have from (3.14),

) H 2

1/2

and hence

and since &° = 0,

ChAh\u,\\2
2ds+ CkA['"(\\uX + II«JI2) * •

•'o •'o

which completes the proof of (3.12)
In order to show (3.13) it suffices, in view of (2.6) and (2.7), to deduce

For this purpose, we use again (3.14), now with x = 3,0", and obtain

1
\\ln\l + 2^(llV0n||2 - HV0"-1!!2) =

(3.15)

(3.16)
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This time we estimate T" as

|7\-| = i^u"-1'2 -(«" + W-1)/!), x ) | < Ckf" ||

l/2

and obtain thus by our previous estimates for T2" and T",

\T?\ + \T2"\ + \T,"\ < Ck'j'" {\\u,,\\2 + \\um\\2) ds

By summation we thus obtain from (3.16), since 0° = 0,

2 < Ch4h\u,\\2ds+ C t t 4 / ' " ( | K | | i + | |« mJo Jo

Since Tl is the same as T{ in the proof of Lemma 4 we now conclude from (3.8),
(3.9) and (3.10),

Ch4{\\u,(O)\\l+ ['"(WuMl + WujDds)

n - 1

7 = 1

from which (3.15) follows by the discrete Gronwall lemma. This completes the
proof of the theorem.

We now turn to the explicit lumped mass forward Euler method

In this case we shall need a stability condition which we state in the form

fl|Vxll2<Yllxll2 VX e Sh where y < 1. (3.18)

Such a condition is satisfied if Sh satisfies the inverse estimate

llvxll < QA-'IIXIIA.

and the mesh ratio condition kh'2 < 2yC0"
2 holds.

THEOREM 8. Let u and U" denote the solutions o/(l.l) and (3.17) with U° = Rhv
and assume that the stability condition (3.18) holds. Then for tn = nk > 0,

W" - «(Oll < ch2Uu(tn)\\2 +(jTi|U,ii2<fc)1/2J

:(h\utl\\
2ds)1/2, (3.19)
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and ifyh is quasiuniform, for tn = nk < T, with C = CT,

log^J

l/2/ , \l/2

) ( / 2 ) (3-20)

PROOF. With (3.2) valid as usual we have here

8,*",X)» + ( v « - \ VX) = (/"-X,X) -(3,^*«",X)* " ( V i i - 1 , VX)

= (« , - x - 3,«", X) + (3,(«" - **«"), X) - eh{d,Rhu", x )

= Tj" + T2" + r3", (3.21)

with the Tj" essentially as in (3.3). Setting x = fl" + ff""1,we have

j{\\n\l - WO'-X)

\\n\l < yllv<?"||2 + Ch'j'"\\u,\\\ds

whence by obvious estimates and summation, since 6 ° = 0,

llv<?"||2 + C h ' j \ \ , \ \ \

Using the stabihty assumption (3.18) now completes the proof of (3.19). Setting
X = 3,0" in (3.21) we have

H«"ll* - f HvM"ll2 +

1 /) nil _i T n
*t" \\h ' ^3

<i4k-lf" \\u,\\lds+ Ckf" \\un\\
2ds + Tf.

<n-l ' - i - l
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Applying the stability condition (3.18), summing, and estimating the sum in T{ as
in (3.8), (3.9) and (3.10), we obtain

n

||V<HI2 < Ch*j'n\\ut\\lds + Ck2fn\\ult\\
2ds + 2k £ T{Jo Jo , _ !

+ Ck2h\u,,\\2dsJo
n-1

The discrete Gronwall's lemma now yields
,1/2

/ r<n , \ 1 / 2

+ Ck\ \\ut,\\
2ds) ,

\Jo I
from which (3.20) follows in the standard way.

We shall now present some error estimates for our totally discrete schemes in
the case of the homogeneous heat equation ( / = 0 in (1.1)) in which the regularity
assumptions are somewhat weaker than so far and match those of Theorem 4 for
the semidiscrete problem

(«* . . x)». +(V«i,, VX) = 0 V Y £ S I , , / > 0 , (3.22)

«*(0) = IV
In view of the estimates of that theorem we may restrict our attention here to the
error in the discretization in time of (3.22).

We begin with the backward Euler method

and show the following:

THEOREM 9. Let U" and uh be the solutions of (3.23) and (3.22) with vh = Rhv.
Then if v = 0 on 3fi we have for ta = nk > 0,

ll^n-«A('Jll<CA:||l;||2, (3.24)
and, if$~h is quasiuniform, for tn > 0,

( \ \ 1 / 2

\\U" - uh{tn)\\L <C/fclogr t'n
1/2\\v\\2. (3.25)

°° \ h J
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PROOF. The proof of this result and the following will depend on spectral
representations. We define a discrete Laplacian Ah: Sh -* Sh by

and note that -Ah is symmetric, positive definite with respect to the inner product
(•, • ) h on Sh. With this notation, (3.22) may be written

\U" = \Un,

whence

w = {i - k^y'u"-' = {i - kbhyn
Vh.

Letting now { Ay}f* and {^jf* be the eigenvalues and eigenfunctions of -AA we
may write

y-i

y - l

and similarly for the solution of (3.22),

Hence for the error

U" - uh{tn) = -kZ 8n(kAj)(Ahvh, *j)h+j, (3.26)
y-i

where

We note that 8n(X) is bounded, uniformly in n, for X > 0. In fact, for X < 1, say,
we have

n - l
\ - l

y-o

< Cn\e-cnX < C, (3.27)

and for X > 1,

It thus follows from (3.26) that

W - uh(tn)\\l < Ck
2 I
y-i
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In particular, by (3.26),

\ \ V { U " - u h { t n ) ) \ \ 2 = k 2 L A M j
j - i

Now,

\Xl^8H{\)\ < Cn-1^2 forX^O.

For, we have by (3.27), for A < 1,
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Here, since || • || and || • ||A are equivalent, we find for vh = Rhv,

(&H"H, X)H = ~(vRhv,VX) = -(W,Vx) = (A«,x) < C||A«|| • ||x||*,
so that

\\Ahvh\\h < C||A»||, (3.28)

and hence altogether

W - uh(tn)\\ < C\\U" - uh{tn)\\h

which completes the proof of (3.24).
To show (3.25), we note that for x 6 Sh,

and for X > 1,

\\1/2Sn(X)\ < A-1/2{2-" + e - } < Cn-1/2.

Hence, using also (3.28), we find for vh = Rhv,

\\V(U" - uh(tn))f < C ^ H A ^ H 2 < C^| |A, ; | | 2 if 0 = 0 on 30 .

Together with (2.7) this shows (3.25) and thus completes the proof of the theorem.

We now consider the Crank-Nicolson scheme

(3.29)

U° = vh,

or with the above notation

U" = (I - $kAhy\l + HA*)! / - 1 = r(-*Ah)"vh,

where r(X) = (1 + \\)'\\ - |X). Since |r(X)| < 1 for all X > 0 this scheme is
stable in L2 and if kAj is bounded away from infinity it may also be expected to
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possess some smoothing property (cf. [1]). However, as max Â  is of order O(h~2)
this will require k to be of the order of A2 which is undesirable in applications. We
shall show now that with v e H2(Q) and v = 0 on 3S2 no such condition is
required for the L2 error estimate.

THEOREM 10. Let U" and uh be the solutions of (3.29) and (3.22) with vh = Rhv.
Then for tn = nk> 0,

W - uh(tn)\\ < C* Vll»ll2 ifu = 0on 90.

PROOF. We have now

where

This function satisfies

|«i(X)|< Cn-1 forX^O.

In fact, for X < 1 we have

Cn\2e2--cn\

and for X > 1,

x-1 1 - 2£V
i + 2/x;

C\-le-cn/x + Cn-1 < Cn-\
Hence

W-uh(tn)\\
2 =

which completes the proof.
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In order to be able to show a similar estimate for the gradient of the error and
thus also a maximum-norm error estimate we shall need to increase the smoothing
power of the method. For this purpose we shall employ a device of Rannacher [5]
which consists in starting the calculations by, in this case, one application of the
backward Euler operator. We have then

and we shall show the following:

THEOREM 11. Assume that the triangulation ^h is quasiuniform, let uh be the
solution of (3.22) with vh — Rhv and let U" be the solution of the Crank-Nicolson
scheme (3.29), modified by using in the first step the backward Euler method (3.23)
and with U° = vh = Rhv. Then for /„ = nk > 0,

\\U" ~ «*(Olk < CA:2(l08 h) '« ^l^l* if" = ° on

PROOF. We have this time

U" - uh(ta) = -k I «B
2(fcAy

7 - 1

where

n - l

Here

|X1/2Sn
2(X)| < OT 3 / 2 forX>0,

since for X < 1,

* / 2 ,1

and for X > 1,
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This yields

\\V(U" - uh(tn))\\2 = k2 t A/n
2(ArA,)2(AAt),,, <*>,.)*

n J = l

and thus shows the desired result.

We conclude by considering the forward Euler method

(d,Un, x)h + (VU"~l, Vx) = 0 Vx e St, (3.30)

t/° = vh.

THEOREM 12. Let U" and uh be the solutions of (3.30) and (3.22) with vh = Rhv,
and assume that the stability condition (3.18) is satisfied. Then if v = 0 on 3Q we
have for tn = nk > 0,

and if^~h is quasiuniform

I 1 \ 1 / 2

\\U" - uh(tn)\\L <OfclogT ';1/2|MI2- (3-32)
°° V » /

PROOF. We have now

W-uh{tn) = -k

with

We note that by the stability condition (3.18),

khj = -k(&h<(>j, <j>j)h = /

Since y < 1 we have for a sufficiently small positive c that

and hence
n - l

*(1 - \ - e~x) £ (1 - X ) " " 1 " ^ ' ^ *S Cn\e-cnX < C,
y-0

from which (3.31) follows as above. The proof of (3.32) is analogous.
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