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ON GROUPS WITH CHAIN CONDITIONS 

BERNHARD AMBERG 

Our aim in this note is to generalize results of Baer in [3; 5]. In § 1 an 
arbitrary formation n is considered, the key result being Proposition 1.5. 
This is applied in § 2 to characterize various finiteness conditions, for example 
the classes of groups with maximum [minimum] condition on subgroups, 
subnormal subgroups, and normal subgroups respectively, or the class of 
(not necessarily soluble) polyminimax groups (see Theorems 2.1 and 2.6). 
These results may also be regarded as generalizations of the well-known 
theorem of Malcev-Baer that a radical group satisfies the maximum condition 
[is a polyminimax group] if all its abelian subgroups satisfy the maximum 
condition [are minimax groups]. 

Notation. 
X o Y = set of all commutators x oy = x~ly~lxy with x in X, y in Y. 
G' = G o G = commutator subgroup of the group G. 
cX = centralizer of the subset X of G. 
lG = centre of G. 
Factor = epimorphic image of a subgroup. 
A group theoretical property e is a non-empty isomorphism closed class 

of groups. 
A group is an e-group if it has the property e. 
If N is a normal subgroup of G, then N e G if and only if G/cN is an e-group. 
Almost-e-group = group with an e-subgroup of finite index. 
Locally-e-group = group whose finitely generated subgroups are e-groups. 
Radical group = group whose non-trivial epimorphic images possess non-

trivial locally nilpotent normal subgroups. 
Poly-e-group = group with a finite (normal) chain from 1 to G with 

e-factors. 
Soluble group = group G with G(i) = 1 for almost all i. 
Minimax group = group which possesses a normal subgroup with maximum 

condition such that its quotient group satisfies the minimum condition. 
diG — radical of the group G = product of all radical normal subgroups of G. 
A set of normal subgroups of a group is independent if their product is direct. 
Accessible subgroup of a group G = subgroup of G that can be connected 

with G by a well-ordered ascending normal chain. 
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1. Formations of groups. In this section we consider a group theoretical 
property n meeting certain requirements. Most of the discussion may be 
read either with the word ''characteristic subgroup" or with the word "normal 
subgroup". Therefore we will always use the word "invariant subgroup" 
which may be read "normal subgroup" or "characteristic subgroup" through
out. The following requirements are imposed upon n: 

(H) Epimorphic images (modulo invariant subgroups) of n-groups are 
n-groups. 

(R) If X and F are invariant subgroups of the group G and G/X and G/Y 
are n-groups, then also G/ (X C\ Y) is an n-group. 

A group theoretical property n meeting these two requirements is called a 
formation. Since G/ (X P F) is isomorphic to a subgroup of the direct product 
G/X X G/Y, requirement (R) is always satisfied if it is inherited by subgroups 
and direct products. 

If X is a normal subgroup of the group G} then G/cX is essentially the group 
of automorphisms induced in X by G. We write X n G if and only if G/cX is 
an n-group. 

If X and Y are normal subgroups of the group G such that X C F, then 
c F Ç c I . Thus by (H), YnG implies XnG and (Y/X)n(G/X). Since 
c(XY) = tX C\ cY for any two normal subgroups X and F of G, by (R), 
XnG and YnG imply XYnG. Furthermore, it should be noted that the 
centralizer of an invariant subgroup of any group is an invariant subgroup 
of this group. 

LEMMA 1.1. If 1 is the only abelian invariant subgroup of the group G and if 
X and Y are invariant subgroups of G such that X C F, then 

F n G if and only if XnG and (Y/X) n (G/X). 

Proof. The necessity of the second condition is a consequence of the above 
remarks. Assume that XnG and (Y/X)n (G/X). Let T be the uniquely 
determined invariant subgroup of G such that X C T and T/X = c(Y/X). 
The hypotheses imply that G/cX and 

(G/X)/c(Y/X) = {G/X)/(T/X)~G/T 

are n-groups. By (R) also G/(T P cX) is an n-group. If t is an element in 
T P cX, then t stabilizes the normal subgroup X of F. This implies that 
to Y CI %X; see for instance [10, p. 88y proof of Satz 19]. Since %X is a char
acteristic subgroup of X, it is an invariant subgroup of G. Since 1 is the only 
abelian invariant subgroup of G, %X = 1. This shows that to Y — 1, and t is 
contained in cF. Thus T P cX = cF, so that G/(T C\ cX) = G/cY is an 
n-group and YnG. 

For the group theoretical property n and any group theoretical property f 
and any ordinal fi we define inductively the following properties: 

(o) n°(f) = n; 
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(/S) The group G is an n^(f)-group if and only if every epimorphic image 
H ^ 1 of G (modulo an invariant subgroup) possesses an invariant subgroup 
N 7e 1 which is an f-group or iVn^(f) H for some ft' < £. 

(*) The group G is an n*(f)-group if and only if it is an tt^(f)-group for 
some (3. 

Thus a group G is an n*(f)-group if and only if every epimorphic image 
H 7* 1 of G (modulo an invariant subgroup) possesses an invariant subgroup 
N ?£ I which is an f-group or N n* (f ) H. 

It follows from the definition that epimorphic images (modulo invariant 
subgroups) of n^(f)-groups and n*(f)-groups are likewise n^(f)-groups and 
n*(f)-groups, respectively, so that these properties always satisfy (H). Also, 
a group is an n^(f)-group for any ft > 0 if its epimorphic images H ^ 1 
(modulo invariant subgroups) possess invariant subgroups, not 1. The above 
definitions are generalizations of group classes considered by Baer in [3]. 

LEMMA 1.2. / / the group theoretical property f is factor inherited, then the 
group G is an îi^(f)-group for some ordinal 13 [an n* Q)-group] if and only if every 
invariant subgroup K 9+ 1 of the epimorphic image H 7e 1 {modulo an invariant 
subgroup) contains an invariant subgroup N ^ 1 such that 1 C N Ç K and 
N is an \-group or N n*' (f) H for some & < (3 [N n* (f) H]. 

Proof. This may be proved in the same way as [4, p. 17, Lemma 3.2]. The 
property (R) is not needed in this proof. 

LEMMA 1.3. If the group theoretical property f is inherited by normal subgroups, 
then the properties n^(f) for any fi and n*(f) satisfy (R). 

Proof. Note first that a group G is an n^(f)-group if and only if it possesses 
an ascending invariant series (Gt) leading from 1 to G with d invariant in G 
and such that Gi+i/Gi is an f-group of Gi+i/Gi n^'(f) G/Gt for some /3' < p. 

Let X and F be invariant subgroups of the group G with n^(f)-quotient 
groups GIX and G/Y. If 0 = 0, then (R) implies that G/(X C\ Y) is an 
n^(f)-group. Thus it may be assumed that 0 is a positive ordinal. By the remark 
above there exist invariant series 

X = Xo C Xi C X2 Q . . . £ Xy = G for some ordinal 7, 

Y = F0 C Fx C F2 C . . . C YB = G for some ordinal <5, 

such that 

Xi+1/Xi is an f-group or {Xi+1/Xt) n^'(f) (G/Xt) for some 0' < /3, 
Yi+1/Yt is an f-group or (Yi+1/Yt) n^'(f) (G/Yt) for some 0" < 0. 

It has to be shown that there exists an invariant series of G leading from 
X C\ Y to G whose factors are f-groups or G induces n^'"(f)-groups of auto
morphisms in them for fi"' < 0. 

Clearly XiC\ F is an invariant series of G leading from X0 C\ Y = X C\ Y 
to X C\Y = GC\Y = Y. Now (Xi+1 H Y)/(Xt H F) is isomorphic to a 
normal subgroup of Xi+\/Xu and if Xi+i/Xt is an f-group, then so is 
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(Xi+1n Y)/{Xtr\ F) . Assume now that {Xi+1/Xt) n"'(f) (G/Xt) for some 
fi' < P, and let C/Xt be the centralizer of Xi+i/Xi in G/Xt. Then 
(G/Xi)/ (C/Xi) is an n '̂ (f)-group. If x is an element in C, then x o -X\+i Ç Z i § 

Therefore x o (Xi+1 r\ Y) C ( X , n F) and C ( X , n F ) / ( X , n F) is in the 
centralizer of (Xi+1 C\ Y)/{Xtr\ Y) in G/(Xtr\ F). Thus the group of 
automorphisms induced by G/(Xtr\ Y) in ( I m n Y)/(Xtr\ Y) is an 
epimorphic image of the n/3'(f)-group G/C, and thus itself an ^'(f)-group. 

COROLLARY 1.4. If f is a factor inherited group theoretical property, then the 
following properties are formations: 

(a) The class of groups whose non-trivial epimorphic images possess non-trivial 
normal ^-subgroups; 

(b) The class of groups whose non-trivial epimorphic images possess non-trivial 
subnormal \-subgroups. 

Proof. That the class in (a) is a formation follows from Lemma 1.3 if n is 
the universal property of being a group. That the class in (b) is also a formation 
follows from this by using transfinite induction and, for instance, [6, p. 413, 
Satz 5.7]. 

PROPOSITION 1.5. Let \ be a factor inherited group theoretical property such 
that abelian groups are \-groups, and assume that the group G satisfies the following 
two requirements: 

(a) 1 is the only invariant \-subgroup of G, 
(b) G is ann*(jj)-group. 

Then the following properties hold: 
(I) For every invariant subgroup X ^ 1 of G there exists an invariant subgroup 

Y of G such that 1 C F £ X and Y n* (f ) G. 
(II) If G is not an n-group, then there exists an infinite independent set of 

invariant subgroups X of G such that X n*(f) G. 

Proof. (I) is a consequence of Lemma 1.2 and the absence of non-trivial 
invariant f-subgroups of G. 

Since G is an n*(f)-group, it is also an n^(f)-group for a least ordinal fi. 
If G is not an rt-group, then 0 < (3. By induction we construct invariant 
subgroups Ni of G with the following properties: 

( + ) Po = No = 1, if Pn = Il?=o Nu then Pn C\ Nn+1 = 1 and Pn tf'(f) G 
for some /3' < /3. 

Assume now that 0 < n and that invariant subgroups Ni, . . . , Nn have 
already been constructed. By ( + ) , G/cPn is an n^'(f)-group for some fi' < ft. 
By the minimality of /3, G is not an n^'(f)-group and thus cPn ^ 1. By 
Lemma 1.3 there exists an invariant subgroup F = Nn+i of G such that 
1 C Nn+i C tPn and Nn+i n^'(f) G. Here we note that Nn+i cannot be an 
f-group because of (a). There exist no non-trivial abelian invariant subgroups 
of G by (a) and thus 

pn n Nn+1 c p B n cPn = iPn = i, 
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and Pn r\ Nn+1 = 1. Since Pn n*' (f ) G and Nn+l xP (f ) G, the groups G/cPw and 
G/cNn+i are both n^'(f)-groups. Lemma 1.4 and (R) imply that 

G/{tPnr\cNn^) 

is an n^'(f)-group. However, cPn P\ ciVn+i = cPw+i, where Pn+i = PnNn+1, so 
that G/cPn+i is an n^'(f)-group. Thus ( + ) is proved. It is well known that ( + ) 
implies that the Ni form an infinite independent set of invariant subgroups 
of G. 

COROLLARY 1.6. Let all abelian groups be ^-groups, let the group theoretical 
property f be factor inherited and assume that the group G has the following 
properties: 

(a) 1 is the only invariant f-subgroup of G; 
(b) G is an n*tf)-group; 
(c) There exists no infinite independent set of invariant subgroups X of G. 

Then G is an n-group. 

This follows immediately from Proposition 1.5. 

2. Application to finiteness conditions. In this section we take for the 
group theoretical property n certain finiteness conditions. Also in the definition 
of the properties x\P(\) and n* (f) we take for the property f the class r of radical 
groups or the class a of abelian groups. It follows then that radical groups 
are n^r)-groups for every 0 > 0 and therefore also n*(r)-groups. Also, 
hyperabelian groups are n^(a)-groups for every f3 > 0 and therefore also 
n* (a)-groups. 

It is well known that in every group the product 9xG of all radical normal 
subgroups of G is a radical characteristic subgroup of G, the radical of G, 
whose quotient group G* = G/ÏÏIG possesses no non-trivial radical accessible 
subgroups and therefore also no non-trivial radical normal subgroups; see for 
instance [8, p, 44, 3.2.2]. I t follows from Corollary 1.6 that every n*(r)-group, 
whose epimorphic images modulo characteristic subgroups possess no infinite 
independent sets of invariant subgroups, is an extension of its radical by an 
n-group. 

A group G is a minimax group if G possesses a normal subgroup with 
maximum condition whose quotient group satisfies the minimum condition 
(see [7]). Abelian minimax groups may be specialized in the following way. 
If p is a set of primes, then the abelian minimax group A is a p-minimax group 
if p contains every prime p such that A contains an infinite ^-quotient group. 
It is easy to see that subgroups and quotient groups of p-minimax groups 
are p-minimax groups. Abelian extensions of p-minimax groups by p-minimax 
groups are p-minimax groups. An abelian p-minimax group satisfies the maxi
mum condition if and only if p is the empty set of primes. 

THEOREM 2.1. (a) / / the abelian subgroups of the n* (x)-group G are ^-minimax 

https://doi.org/10.4153/CJM-1971-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-015-8


156 BERNHARD AMBERG 

groups, then G is an extension of a characteristic soluble poly'-p-minimax subgroup 
by an n-group. 

(b) If the abelian accessible subgroups of the n* (a)-group G are p-minimax 
groups and no epimorphic image of G modulo a characteristic subgroup contains 
an infinite independent set of invariant subgroups, then G is also an extension of 
a characteristic soluble poly-p-minimax group by an n-group. 

Proof. If the abelian subgroups of the group G are p-minimax groups for the 
set of primes p, application of [7, p. 30, Satz 5.1] yields the following. 

(1) 9?G is soluble and abelian factors of 9?G are p-minimax groups; 1 is 
the only radical normal subgroup of G* = G/9ÎG. Abelian subgroups of G* 
are p-minimax groups. 

The last statement implies, in particular, that G* cannot contain infinite 
elementary abelian subgroups; see [7, p. 3, Lemma 1.2]. Thus G* cannot 
contain an infinite independent set of invariant subgroups, and since G* is 
an n*(r)-group, application of Corollary 1.6 yields: 

(2) G* = G/ÏÏG is an n-group. 
This proves the first part of the theorem. 
If the abelian accessible subgroups of G are p-minimax groups, application 

of [7, p. 35, Hauptsatz 7.1] yields: 
(3) The product sJi*G of all hyperabelian normal subgroups of G is a 

characteristic soluble poly-p-minimax group of G. 
This implies that 1 is the only abelian normal subgroup of G/3i*G. Applica

tion of the hypotheses of (b) and Corollary 1.6 now yield that G/9i*G is an 
n-group. Thus the theorem is proved. 

Theorem 2.1 may be used to give characterizations of various classes of 
groups as may be seen by the following corollary. The group theoretical 
property n is extension inherited if every group G is an n-group whenever the 
characteristic subgroup N of G and its quotient group G/N are n-groups. 

COROLLARY 2.2. Let n be an extension inherited formation which is inherited 
by abelian subgroups and such that for a set of primes p an abelian group is an 
n-group if and only if it is a p-minimax group. Then the following holds: 

(a) A group G is an n-group if and only if it is an n* (x)-group and its abelian 
subgroups are n-groups; 

(b) / / no epimorphic image of G modulo a characteristic subgroup possesses 
an infinite independent set of invariant subgroups, then G is an n-group 
if and only if it is an n*(a)-group and its abelian accessible subgroups 
are n-groups. 

Proof. If G is an n-group, then by (H) it is also an n*(r)-group and its 
abelian subgroups are n-groups by hypotheses. Conversely, if G is an n*(r)-
group whose abelian subgroups are n-groups, then its abelian subgroups are 
p-minimax groups for some set of primes p, and by Theorem 2.1, G is an 
extension of a soluble poly-p-minimax characteristic subgroup by an n-group. 
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Since abelian p-minimax groups are n-groups and n is extension inherited, 
G is an n-group. Thus (a) is proved. The proof of (b) is similar. 

Remark 2.3. Among the group theoretical properties n that satisfy the 
hypotheses of Corollary 2.2 are the following: 

(a) The class of (not necessarily soluble) polyminimax groups; 
(b) The class of (almost) soluble poly-p-minimax groups for any set of 

primes p ; 
(c) The class of groups in which every ascending [descending] chain of 

subgroups Ui has only finitely many finite indices \Ui+ii Ut\. 

Since all these classes are factor and direct product inherited, they are 
clearly formations. If p is the set of all primes, then an abelian group is a 
p-minimax group if and only if it is one of the classes under (c); see [7, p. 3, 
Lemma 1.2]. It is then evident that in all cases, Corollary 2.2 is applicable. 

Theorem 2.1 contains as a special case that a radical group whose abelian 
subgroups are p-minimax groups for a set of primes p is a poly-p-minimax 
group, since this property is extension inherited; see [7]. Thus it contains the 
theorem of Baer used essentially in its proof. Theorem 2.1 may therefore be 
regarded as another generalization of the theorem of Malcev and Baer that a 
radical group satisfies the maximum condition [is a polyminimax group] if all 
its abelian subgroups satisfy the maximum condition [are minimax groups]. 

Let m be one of the following six classes of groups: the classes of groups 
with minimum [maximum] condition on subgroups, subnormal subgroups, 
and normal subgroups, respectively. It is well known that a group G is an 
m-group if its normal subgroup N and the quotient group G/N are m-groups; 
see [9, p. 9, Lemma 1.31]. Since the classes of groups with minimum [maximum] 
condition on subgroups are also subgroup inherited, they are formations. 
That also the other four classes are formations follows from the following 
well-known lemma which may for example be proved by a generalization of 
[5, p. 167, the proof of Hilfssatz 2.1]. 

LEMMA 2.4. If X and Y are normal subgroups of the group G, then for any of 
the above classes of groups m, G/ {X C\ Y) is an m-group if and only if G/X 
and G/Y are m-groups. 

Proof. By the above remark we may assume that in is the class of groups 
with maximum [minimum] condition on subnormal or on normal subgroups, 
respectively. Let © be the set of all subnormal subgroups or, in the second 
case, the set of all normal subgroups of G. Then G/J is an m-group if and only 
if the subgroups in © containing J satisfy the maximum [minimum] condition. 
In particular, this remark implies the necessity of our condition. 

Assume now that G/X and G/ Y are m-groups. Let 9J? be a non-empty set 
of subgroups in © containing X C\ Y. Then the set of all AX with A in 5DÎ is 
a non-empty set of subgroups in © containing X. Since G/X is an m-group, 
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there exists a maximal [minimal] element M in 9DÎ. Then the set %l of all 
subgroups N in 9JÎ such that M = XN is non-empty. 

Also the set of all ©-subgroups Y(XC\B) with B in 5ft is non-empty. 
Since GIY is an m-group, there exists a maximal [minimal] element in 9Î. This 
is an ©-subgroup W such that 

iV = Y(X P WO with IF in SU. 

Since IF is in 2ft, X P Y C IF. Let F be an element of 3JÎ such that 
WQ V[V Q W].Then 

M = XJF C I F [ I F C X I F = ilf] 

and the maximality [minimality] of i f implies XW = I F , so that F is in 91. 
Furthermore, 

N = F(i n w) c F(i p F) [F(i n F) ç F(X n wo = N] 

and the maximality [minimality] of N implies that Y(X Pi IF) = Y(X Pi F) . 
Application of Dedekind's Modular Law to the relations 

X r\WQX P F Ç Y(X r\W),WQVQ XW, 

[Y(x r\w)Qxr\VQxr\w, xw QVQW] 
yields 

X C\V = (X P W)(Y P X P F) = I P IF, 

since X P F C X n T F [X H ÏT C X H F]. Furthermore, 

F = JF(X P F) = IF(X r\W) = W, 

so that IF is maximal [minimal] in Wl. Thus G/(X P F) is an m-group. 

Remark 2.5. The proof of Lemma 2.4 may still be exploited to yield similar 
results for other finiteness conditions, for example for the maximum condition 
on accessible subgroups or the maximum condition for accessible subgroups 
of at most a certain defect. Also the following is proved in the same way: 

/ / X and Y are characteristic subgroups of the group G, then G/(X P F) 
satisfies the maximum [minimum] condition on characteristic subgroups if and 
only if G/X and G/ Y satisfy the maximum [minimum] condition on characteristic 
subgroups. 

THEOREM 2.6. Let n be an extension inherited formation such that Abelian 
groups with minimum [maximum] condition are n-groups. Then the following 
properties of the n* (r) -group G are equivalent: 

(I) G is an n-group; 
(II) If G is not an n-group, then the abelian subgroups of G satisfy the 

minimum [maximum] condition. 
( I l l ) If G is not an n-group, then the normal subgroups of any characteristic 

subgroup of G satisfy the minimum condition [maximum condition or 
are finitely generated]. 
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Proof. The equivalence of (I) and (II) is a special case of Theorem 2.1. 
If (III) is satisfied, then it follows from [1, p. 348, Satz A; 2, p. 9, Theorem] 
that the radical 9ÎG of G satisfies the minimum [maximum] condition. Also 1 
is the only abelian invariant subgroup of G* = G/9ÎG, and by (III), G* cannot 
possess an infinite independent set of invariant subgroups. Application of 
Corollary 1.6 implies that G* is an n-group. Since n is extension inherited, 
G is an n-group, and the equivalence of (I) and (III) is shown. 

Remark 2.7. Among the group theoretical properties that may be charac
terized by Theorem 2.6 are the following: 

(a) The classes of groups with minimum [maximum] condition on sub
groups, subnormal subgroups, and normal subgroups respectively 
(see Lemma 2.5).f 

(b) The classes of almost abelian groups with minimum condition, the class 
of (almost) polycyclic groups, and the class of finite groups. 
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