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§1-
Introduction.

We suppose throughout that f(t) is periodic with period 2T7, and
Lebesgue-integrable in (— IT, TT).

We write

<t> (0 = \ {f (x + ') + / (x — *-)}>

4>(t)=h{f(* + t)-f(x-t)},
and suppose that the Fourier series of <j> (t) and ifi (t) are respectively

CO CO

2 An cos nt and S Bn sin nt. Then the Fourier series and allied
n=0 n= l

00 00

series of / (t) at the point t = x are respectively £ ^4n and S Bn)
n=0 n=3

where ^40 = J<zo> ^n = o«cos na; + 6resin nx, Bn = bncos nx — ansin nx and
•an, bn are the Fourier coefficients oif(t).

We write, for t > 0,
t i t \tu (u) ,

M

^(0 =r(a+i) <-<iuo, (a^°).
and we define Ta (0, ^a (0. ®̂  (0> ^ W> etc-» i n a similar way.

We also write s*, s^, T*, fj for the n-th Cesaro means of order
n n

a of the sequences sn = 2 -4,,, sw = S B,,, rn = w^,, = nAsn and

fn = 7i5n = ?iAsn respectively1, and s_x = 0, s0 = s_j = 0.

1 Here Ap« = pn — Pn-l, and s* = Sa/A^, where 6'a and A*n »ro defined formally

2 5^ re" == (1 - a ) - * - i f Bn x» and i ^ :i:n = (1 - x)——\
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232 S. P. BHATNAGAR

Finally we write1, for a ^ 0,

Concerning the Cesaro summability of a Fourier series and its
allied series at the point t = x. the following two theorems of Hardy
and Littlewood are well known2.

Theorem A. A necessary and sufficient condition that sn should tend
to a limit s (C), is that <£A (t) should tend to s as l-> + 0, for some
positive A.

Theorem B. A necessary and sufficient condition that sn should tend
to a limit s (C), is that 8X (t) should tend to s as t -> + 0, for some
positive A.

Concerning the existence of the Cesaro limits of the sequences
nAn and nBn, we have the following known results.

Theorem C. A necessary and sufficient condition2 that nAn,

should tend to a limit s (C), is that t— <j>x{t) should tend to — s as
dt

t -> + 0, for some positive A.
Theorem D. A necessary and sufficient condition* that nBn should

tend to a limit s (C), is that ifi^ (t) should tend to \TTS as t -*• + 0, for
some positive A, or what is the same thing that t — 6K (t) should tend to

dt
— s as t-¥ + 0.

We next observe that the condition that " nAn = nAsn = rn

tends to a limit s(G, A)," or what is the same thing, that " T£ =
tends to the limit s " is equivalent5 to the condition that

1 Here ra (0>)) ra (ID) denote the Rieszian arithmetic means of order a of the-
Fourier series and allied series respectively.

2 Hardy and Littlewood, 14 and 14 (a). More precise results have been given by
other writers. For references see Bosanquet and Hyslop, 9, 491-2.

3 See Bosanquet, 7, where more precise results are given.

* See Paley, 22. Though results of this type are not explicitly stated there, much
more precise results are implied by his analysis.

5 See Bosanquet, 4. This is stated there.
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ON THE FOURIER COEFFICIENTS OF A DISCONTINUOUS FUNCTION 23&

A S (l-IL)k~lnAn-»8,
co n<u> \ co J

or co-i- I ( 1 — —) A,,->s,
CO I

or

as co —> oo .

dco

d

f d V / d V
Regarding the sequences I to— ) r3(io) and I co-— ] fa (co), B ̂  X,.

\ dtoj \ dco)
we ha-ve the following two theorems of Bosanquet1.

Theorem E. If X is a non-negative integer, a necessary and
sufficient condition that

d

as co -> oo for some B^ X, is that

~)X ^ (0 = 0(1)

t» <Ae interval (0, 77) /or some K ̂  A, where cbK (t) is a X-th integral except
att = O.

Theorem F. If X is a non-negative integer, a necessary and
sufficient condition that

, J1J f, (co)=0(l)

as co -> oo for some ft —• X, is that

er it) = oii)

in the interval (0, TT) for some K ^ A, where 6K (I) is a X-th integral except
at t = 0, or M;AO< is the same thing, if A ^ 1,

,/JK (t) =0 (I)

in the interval (0, TT) /or some K ^ A.
Theorem D is illustrated by the following examples.

(i) If (• 1 (0, TT)

<£ (0 = { o * = o
1 - 1 (-7T, 0)

1 See Bosanquet, 7.
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234 S. P. BHATNAGAK.

2 2
then nBn = — (1 — cos n-n), which tends to — {C, 8), 8 > 0, asn-> <x>.

77 77
(ii) If

</> ( 0 = y B 1 D nt

n = 1, ( m ^ 1) t h e n

| ( 7 7 - 0 (0.77)

0
n = i

t) ( - 7 7 , 0 ) ,
which tends to \ -n as t -> + 0.

To illustrate Theorem C, we may either take nAn — 1, (w ̂  1),
in which case we have

1... " cos nt ,
(0 = 2 = log

n = i n 2 sin

-or we may consider the function <f> (t) = log
t

i n (— 77, 77).

Finally to illustrate Theorems E and F, we may consider
respectively the following functions.

<f>{t) = l o g A ; — in ( - 7 7 , 77)
' 1 I

and1 (t) = sign I log*"1
in (— 77, 77).

I t is reasonable to suppose that the means (on — j r? (w) and

d V
oo — ) fp (w) in Theorems E and F can be replaced by (nA)k s% and

da>J

(nA) xs^ respectively, and also the 0 by o, or appropriate limits2.
The latter means have the advantage that they can be used when
A — 1 < /3 < A, whereas the former become infinite for integral values
of to.

For example if we consider the particular case of Theorem F
when A = 2 and suppose that in (—77, 77)

(t) = sign t log

then (nA)2sn tends to the limit — as n -> <x>.
77

In fact, for n S: 1,

1 Sign z = I ~ . if z 4= 0, and sign 0 = 0 .
2 (nA)A an = "A (nA)*-1 «n, A being a positive integer, (nA)o nn= «„.
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2 fir ^

Bn = I log— sin nt dt
77 Jo t

f 2 1 — c o s nt . TT T 2 f ' l - c o s nt ,t= log — -\ dt,
L77 n t J o 77 Jo nt

that is,

77 J 0

and hence, for n ^ 2,

/ A \2 - 2 f"" 1 — COS « , .

(rcA)2 sn =— n\ dt,
•"• J(n-l)v t

o
which tends to — as n -> <x>.

77

2 n 1 2
Again, if we take nBn = — £ —, then (nA)2s,, = — (n ^ 1), and

77 „ = ! V 77

it can be proved that t — <fi (t) tends to the limit — 1 as t -> + 0.
(tt

To show this we consider the two functions
00 00

£ (t) = 2 an sin nt, -q (t) = 2 /3n sin n£
n = l n = l

such that in (0, 77) £ (t) = log —,
t

2 n 1
and TCjSn = — 2 —, (rz. ^ 1).

77 v = i v

Then to prove that t — 77 («) tends to — 1 as < ^^ + 0, it is enough to
at

show that I — {rj (t) — i (t)} tends to zero as t -> + 0.

We write

7, (<) - f (0 = 2 (£„ - an) sin n<
n = l

= 2 — sin nt.
n = l n

If we now show that dn = C + Cn, where Cn is steadily decreasing and
tends to zero, it will follow that

4 - £ « + 2 Cnt cos nt = 0 (1)
l
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236 S. P. BHATNAGAE

as t -» + 0, since 2 Cn cos n£ converges uniformly in any interval
n - l

8 ^ t ^ 2n — 8, 0 < 8 < IT, while E Cnt cos nt converges uniformly
n = l

i n 0 <: < ^ 77.

We next write

2 - 1 2 f" 1 - cos t ,.dn = — 2, — — — dt,
77 * = 1 V 77 J 0 t

;so that
— cos t)2 f"1 f ! != — ] —

2
< —= I cos t dt

= 0,

which shows that dn is monotonic and steadily decreasing.
Also we have

c o s t—

2 / 2 \ 2
and hence dn — dt> — — (1 )> , which shows that dn is

V \ nj 77

bounded below and hence, being monotonic and decreasing, tends to
a finite limit. Thus dn is of the form required.

In § 2 of this paper we give some general lemmas, which are
required in particular cases in the subsequent work. In § 3 we
obtain some results related to Theorem D, which complete some of
the known results about the connection between the jump of a
function and its Fourier coefficients. Finally in §4 we consider
analogous problems related to Theorem F in the case A = 2, using
•Cesaro means instead of Rieszian means.

§2-

We write K° (n, t) and K° (n, t) for the n-th Cesaro means of order
a (> — 1) of the series

1 2 °° 2 '"°
1 £ cos nt, — S sin nt

77 77 n = l If n = l

respectively and suppose that, for a > — 1,
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ON THE FOURIER COEFFICIENTS OF A DISCONTINUOUS FUNCTION 237

— 2 1 e<K»+l+4«»-K»+lW
K«(n, t) + i K"(n, t) = — — (1)

' 7T A* (2 sin ' " 1 J - v

where
. r (n 4- 1 + CT)

r(n + i) r (a 4-1)'
Lemma 1. .For 0 < t < n, and a > cr- — 1, we

(2)

-^-) A" \K* (TI, <) - if" (7i, 0 - — cot lt\ < An-1-" t~2-", (3)

where p and o are non-negative integers and the A's are independent of
n and t.

The inequalities (2) and (3) are well known for the case1 a = 0,
and by the method of induction we now obtain the results for a = A,
where A is a positive integer. Assuming the result of (2) for
a = 0, 1, 2, . . . . A — 1, we have8 for a > A — 1 and n S; A,

which in turn3 may be written in the form

( ) f { („ _ p, t) - /? (n - ^,

= ^ 0 (n-P-1) 0 (nP+2+"-K) = E O (n1+"~x) = 0

This proves (2).

3 See Zygmund, 27. Obrechkoff, 21, 86-93. Gergen, 13, 264-7.
2 It is easy to verify that for a > 0, we have the following identities.

a d _
K a - 1 (n, t) = »i/A K" (?i, t) = a IK"--1 {n, t) - K

a (n,
" + a dt l

d
— K * - I (n, t) = nA K» (n, t) = a {^-1 (n, t) - «* (n, «)}

n, {) = reAZa (n, t) = a { l f - 1 (w, t) — Ka (•"•. *)}

n + a dt

— — K
n + a dt

The first two of these sets of identities follow from Lemma 5, and the last two
were pointed out to me by Dr Bosanquet.

s Here we use the following result
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238 S. P. BHATNAGAK

Following the same argument we can write

dl (n, t) - K« (n, t) - — cot $t\ = (—)" Ax T* (n, t)
7T I (XV I

p = 0

= S 0 (n~i>-1) 0 (nP~* «-2-P) =
P=0

-ij JL{y«-i (n,«) _ y-(», t

T*-l(n-p,t) — Ta(n — p, t)}

This proves (3).
Lemma 2. For 0 <t < TT, a > a - l , ^ O , f f ^ O , we

d_y
\dt

(tt, I) < An1+P,

fY — — cot J

(4)

". (5).

This lemma can be obtained from Lemma 1 and the relation

Lemma 3.

)x g(n,t)= S 0 (n»>) A^ gr (n, *)•

0 < 2 < TT, a > a — 1, p ^ 0, a 2^ 0, we have

< An"-" i'-*-1 (nt > 1).
(6)

The result is easily proved when a = 0. Assuming i t for
a = 0, 1, 2, . . . . A — 1, and using the argument of induction as before,,
we can write

)
=O\ V I n

- " s 1 0 (n-»-

4z
(nt ^ 1)
(%<> 1)

1).

This proves (6).
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Lemma 4. For 0 <t < n, a> a— 1, pTjt Q, o-i§:0, we Aove

<^w-a<-p-a-1 (w< <, 1)~) (nA)°K°{n, t) (7)<An"+a-a t"-a~l (nt> 1).
This lemma can be obtained1 from Lemma 3 in the same way as

Lemma 2 was obtained from Lemma 1.
Lemma 5. If2 v > 0, then

v^-l-K) = n*K = *l- (8)
Lemma 6. If v > 0 and A is a positive integer, then

v{(nAf «;-i - (nA)* 5;} = (wA)^1 s'n = f; x, (9)

where Tv
nX denotes the n-lh Cesaro mean of order v of (nA)x+1 sn.

This follows from Lemma 5.

§3.
In this section we shall be concerned with a function / (<) which

possesses a simple discontinuity, or a discontinuity of a similar nature,
at the point t = x. If f (x + 0) — f (x — 0) exists, its value is called
the jump of the function / (t) at t = x. Here we shall be dealing with
functions which possess a jump in a generalised sense3.

It is known4 that if a 2i 0 and

1 Alternatively it can be obtained by repeated applications of the identities given
in the footnote on page 237.

2 See Kogbetliantz, 20, 23 and 30, and also 19.
3 For example when (10) is satisfied, the number 2s may be called the jump of the

function f(t) at the point t = x in a generalised sense. The expression gene7-alised jump
has been used by Szdsz, 24, 362.

4 The relation between the limit of the sequence nBn and the jump of the function
./ (') w a s n r s ' ; pointed out by Fejer for a function satisfying Dirichlet's conditions ; FejeT)
12, and later Young in 1916 proved that for a function of bounded variation nBn tends

to — { / ( x + 0) - f(x - 0)} ; Young, 26, 44. In 1918 this result was also given by

7T

•Csillag, 10. Later Szidon proved that nBn tends to the limit — {f(x + 0)-f(x - 0)} (0, 2),

whenever this limit exists ; Szidon, 23 ; and Paley showed that if o > 0, and \f> (t) tends
2

to a limit s (0, a), then n Bn tends to the limit — s (0, a + 1 + S), S > 0 ; Paley, 22,
7T

184-9. Also Jacob showed that if o = 0 and (10) holds, then nJBn tends to the limit
2
— s (0, 1 + S) ; Jacob, 18 ; and the general result stated above was given by Bosanquet,
jr

4, 23-9.
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- s \ d u = o ( l ) (10)

as t -> + 0, or more generally, if

[ | i Y . + 1 ( « ) | = 0 ( l ) (11)
+0 J

in an interval (0, TJ), -q > 0 and t/r(<) tends to a limit s (C) as t -> + 0,
2

then nBn tends to the limit — s (C, a + 1 + 8), S > 0 as n—> oo.
77

Both these results break down1 when — 1 < a < 0, even if the
integral in (10) is replaced by a Stieltjes integral. The second result
remains true*, however, if (11) holds throughout the whole interval (0, n).
In this section we shall show more generally that if we make an additional
hypothesis that Bn = o (na), — 1 < a < 0, the above result will remain
true even if condition (11) holds only in an interval (0, 77), 0 < rj < n.
We give this result in Theorem 3 and apply it to obtain the result
stated in Theorem 4. In order to prove Theorem 3 we first obtain
necessary and sufficient conditions that nBn should tend to a limit
(C, v), 0 < v < 1, depending only upon the properties of the function
near the point t = x and give the result in Theorem 2.

We first prove the following theorem.
Theorem 1. / / — l < a < 0 , / S > a and (11) holds in the interval

(0, 77), and tfj (t) tends to a limit s (C) as t-> + 0, then nBn tends to the
2

limit — s (C, [3 + 1) as n -> 00.
77"

Proof. It will bo enough to show that rafin= 0(1) (C, a+1 + 8), 8>0.
2

For since, by Theorem D, nBn tends to the limit — 5 (C), it will
77

follow by a well-known theorem that nBn tends to the limit

— s (C, a + 1 + S + S'), S '>0 .
77

1 The reason for the failure is that the existence of the Cesaro limit of order
i', 0 < v < 1, of nBn depends upon the nature of the function throughout the whole
interval (0, 77). This can be illustrated by the following example. We can construct a
function xj/{t) which is zero in (0, iir) and such that Bn =*= o (B»-I ) , SO that nBn does
not tend to a limit (0, v). Thus the (C, v) limit of nBn may be destroyed by altering
xf/(t) in the range (£77, TT). See Titchmarsh, 25. We simply integrate his series.

a See Theorem 1.
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We write1

rt n

= I if, (t)

— a ) J o

(n, t) dt

(«) T(< - tt)—» nA ̂ +1+^ (», 0 dt

where

- »••' - ' r ( - c . _

We next state the following inequalities2.
For 0 < u < 7T

L (n, u)

We now have

, « (f1/n (
" I I I

I Jn J-l/n
(n, u)

where3

and

f

J

1/n

0

Jl/n

= 0(1) ,

(tt) |

on integration by parts.
This completes the proof.

1 The various steps in this argument can easily be justified. See Bosanquet, 5, 114 ;
7, 195-7.

2 To obtain these inequalities we use (4) and (5) and follow the method used by
Bosanquet, 7, 197.

8 Bosanquet, 5, 114.
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Theorem 2. Necessary and sufficient conditions that nBn should
tend to a limit s(C, v) for t = x, where 0 < v < 1, are that (i) Bn= o (n'"1)
as n-> x, and (ii)

f W (0 - i*«> » A{«- (n , 0 - i -K' (». 0 ) <*< = o (1), (12)

as n-> oo , where 0 < S < w.
Proof. A necessary and sufficient condition that «.£„ should

tend to the limit s (C, v) is that

ifi(t) nAic' (n, t) dt-^s (13)
Jo

as n -> oo.
I t can easily be seen that (13) can be replaced by1

as n —> 6o.
We now observe that I2 can be replaced by

f" ('A (0 -

For, on integration by parts, we have by (5)

["{,/, It) — ins} n A{K" (n, t) — K" (n, t)} dt = o (1).

Now, since (i) is a necessary condition2 that nBn should tend to
a limit s (C, v), it can be assumed to be fulfilled.

We next prove tha t

f {</> V) - h"s} Sr nA & (n,l)dt+ \ {tf> (t) - \irs} nAK; (n, t) dt = o (1) (16)
Jo o- Js

as n -s- oo.

1 Here we use the fact that if xp (t) = 1 in (0, ir), then nBn tends to the limit
2
- (0, 8), S > 0, as n-» oo .

2 Dienes, 11, 427.

https://doi.org/10.1017/S0013091500027206 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027206


ON THE FOURIER COEFFICIENTS OF A DISCONTINUOUS FUNCTION 243

Next let

-.— — (§ < t <, 77).
[ (2 sin JO' ~ ~

Then we have to show that

r = f {̂  (t) - w *(0 ^ - ^ -A 2?»«!L±-* + W ' - *-} * = 0
o

r = f" {̂  (t) - w *(0 ^-
Jo (^ S l n P) n
We can now write

} h (t) - S - ^ - T J cos {(n - \ + *•/) * - \vv} dt
6 Bin f

= ii - jV r2-
Then Ii = o(l), by the Riemann Lebesgue theorem, and so it

remains to prove that I'2 = o (n""1), which can be done by following
an argument given by Bosanquet and Offord1.

From (14), (15) and (16), we obtain (12).
Theorem 3. / / — 1 < a < 0, fi > a and (i) Bn = o {n?) as n-»oo 2,

and (ii) condition (11) holds in an interval (0, 77), 17 > 0, then either nBn

tends to a limit (C, /? + 1) or does not tend to a limit (A). A necessary
and sufficient condition that it should tend to the limit s (C) is that fa (t)
should tend to the limit \-ns as t -> + 0.

Proof. Without any loss of generality we can assume3 that
T a + 1 ( + 0) = 0, so that now from condition (ii) we have
f«+i (t) = O {la+1), i.e., tf> {t) = O (1) (C, a + 1). Also if nBn tends
to the limit s (C), tp (t) tends4 to the limit ^TTS (C), and therefore6

ifi (t) tends to the limit \ITS (C, a -\- 1 -f- S), and so in particular fa (t)
tends to the limit \ns as t -> + 0. Thus the necessary condition is

1 Bosanquet and Offord, 8, 276-7.

* I t is interesting to observe that if (11) holds in the whole interval (0, IT), then
Hn— 0 (na). See Bosanquet, 5.

3 See Bosanquet, 5, 114.

* See Theorem D.
6 Bosanquet, 3, 103.

https://doi.org/10.1017/S0013091500027206 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027206


244 S. P. BHATNAGAR

established, and for the rest of the proof there will be no loss of
generality if we take it to be satisfied.

Let us now define two functions p (t) and q (t) such that

U ^ i M O , , )
1 \ 0 in (V, n)

and q (t) = ifi {t) — p(t), and let their Fourier series be denoted
respectively by

£ cn sin nt and 2 dn sin nt.

Then since1
n = l

lira

n = l

ira 4T«~al<*P.+1(tt)| =
>+0 f Je

<17)

in the interval (0, TT), we see by Theorem 1 that ncn tends to the
2

limit — « (C, /3 + 1) and hence3 that cn = o (np) as « - > « .

Also since q (t) = 0 in (0, 17) and dn = Bn — cn = o (n"), it foliows-
from Theorem 2 that ndn tends to the limit 0 (C, j3 + 1), and hence

2
that nBn tends to the limit — s (C, fi + 1)- This completes the proof.

1 In the interval (0, 77) (17) is the same as (11). If r) S t < u we have,

J^ Pa+l («)

= t~a

= t— f

- i r ( a ) i r ( - a ) \ f u J 0
( r i " " ) a "

du

-to)-'-! I

| dPa+1 (w) |

"0(1)

by (11). See Bosanquet, 5, 114. This proof was pointed out by Dr Bosanquet.
2 This is a necessary condition that ncn should tend to a limit (0, ji + 1) as-
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In virtue of the well-known result1 that a necessary and
sufficient condition that a series 2 a,, be summable (C, v), v > — 1, is
that it should be summable (A) and the sequence na,, = o (1) (C, v + 1),
we obtain the following theorem.

Theorem 4. / /* — l < a < 0 , /9 > a and (i) Bn = o (n1*) as n-> co ,
and (ii) condition (11) holds in an interval (0, TJ), -q > 0, then the allied
series of f(t)at t = x is summable (C, /?), if it is summable (A).

We here state the following lemma.
Lemma 7. If3 nBn tends to a limit s (0, a), a > 0, as n -> oo , then

ifi (t) tends to the limit \ns (C, a + 8), S > 0, as t-> + 0.
Remark. I t is of independent interest to show that in Theorem

2, condition (ii) can be replaced by one of much simpler form4, if we
assume an extra condition (iii) that ip! (t) tends to the limit %ns
as t -=>• + 0. which has been shown in Lemma 7 to be a necessary
condition that nBn should tend to the limit s (C, v), 0 < v < 1.

We first observe that (12) can be replaced by

f - frs} n A{K- (n, t) - ^K* (n, t)} dt = o(l) (18)
l.n b

as w->oo .
For, on integration by parts, we have by (iii), (4) and (7)

pl/n t2 -
W (t) - frs} n A{*' (n, I) - -^ K* (n, t)} dt = o (1).

Jo o

Now in virtue of the identities given in the footnote on page
237, condition (18) can be replaced by

1 £ n (0(0 - w > { £ * - * C 0 - Y*TtK'-X<"•l)) d t - ° ( 1 ) - (19)

Next (19) can be replaced by

• ^ - f ("A (0 - i"«J ( l ~ ^ ) ^ i r " " 1 (TC- 0 * = o (1). (20)

Hardy and Littlewood, 15, 283. See also Kogbetliantz, 19, 238.
3 This result can also be obtained by an application of Theorem 1 of my paper, 1,

318. A corresponding result for Fourier series has been given by Bosanquet, 5, 115.
3 This result, though not explicitly stated, is implied by Paley's results ; Paley, 22f

195-0. See also Bosanquet, 2, 162-3. The lemma can be proved from his analysis on.
pages 1G2-3. ,

* Condition (19) below.
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For, on integrating by parts and using (iii), and the inequalities1 for
K and K analogous to (5) and (7), we have

- f
71 Jl/n

- ^8} A fr-i („, t) - K-1 («, <)} * = o (1).
US

Alternatively, (20) can be replaced by2

lim lim
T - > oo n -=• GO m

= 0, (21)

where (n; i) is written for (n + £ v) t + \ (1 — v) n.

In this section we consider functions ip (t) such that t —- \fi (t)

tends to a limit, and more general functions of the same type. We
prove results giving precise relations between the existence of Cesaro

limits of t — i/r (t) and of the sequence (wA)2 sn.
CtL

We first state the following inequalities which will be used in the
proof of the next theorem.

For 0 <t <n, a>a — l . p S t O , CT^O, we have

An1+P

dt
(nA)" Ka (n, t) < An?+°-a f-a~x (a gl a + p + 1) (22)

< An'1 t-*-' (a>a+p+l).

These inequalities can easily be obtained from Lemmas 2 and 4.
Theorem 5. If3 a > — 1, /? > a and

t Jo

interval (0, n), then (r sn — O (1) (C, /? + 2) as n -* 00 .

(23)

?- 0 < t < IT, a > cr -1, p > 0, a- > 0, we

-Y (nA)" Ka (n, t)

if—Y

(20a)

a t<r-a-l („,£ > 1).

2 Here we use condition (iii) and follow an argument similar to one given by
Bosanquet and Offord, 8, 277.

3 I t can also be obtained from the same analysis that if a > 0, /6 > a and (20) holds in
an interval (0, 7,), TJ > 0, then (7iA)a sn = 0(1) (0, /? + 2) as n-+ <x>.
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Proof. Let h be the greatest integer not greater than a, and
suppose, as we may without any loss of generality, that fi<h-\- 1.
The %-th Cesaro mean of order (/3 + 2) of (nAfsn can be written in
the form1

(nA)2s£+2 = T i/r (t) (nA}» /?"+2 (n, t) dt
Jo

hi\- I)"-1 Tp (t) ( - ^ p (nAf #•+* (n,

_ ) (nA)2
 KS

1 (1 + h — a)

(V / ^ A+i Ct

(-rr) (nA)2
 K"+2 (n, t) dt \ (t -

J o \ at / Jo

= 0 (ra-1) + 0 (n*-*) + ( - 1)A+1 ^ _ X

Ju \dt I

= 0 (ra*-̂ ) + f J (», «)
Jo

where

We next state the following inequalities2.

For 0 < u < n,

J (n, u) < (24)

1 See Lemma 6. The various steps below can easily be justified. See Bosanquet,
5, 114 ; 7, 195-7.

55 To obtain these inequalities we use (22) and (20a) and follow the method used by
Bosanquet, 7, 197.
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Assuming these we now have

= 0 (u) J (n,

If
1 (a + 2) J(a + 2) Jo

= 0 (rf-

aw

| - J (n,

dv

= 0 (»—/») - («) F (n, «)7 + f* F (n, «) # a + 1 («),Jo Jo

where

We next obtain the following inequalities
For 0 < u < 77,

F («, u)
Anl+a u1+a

(2b)-

The first inequality (25) follows, on integration by parts, from
the first inequality (24).

To obtain the second inequality we first observe that if ifi (t) = 1
in (0, n), then i/ra+1 (t) = 1 in (0, n) and it can be shown that, with
this particular ip (t),

f 0 in'1)
( J8<o)

-as /i -> oo .
To prove this we write

nB,
2 f" 2

= wA sn = — n sin nt dt = — (1 — cos rivr).
7T J n 7T
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Now following an argument given by Hyslop1, we can write2

O 1 n l l u
d T 2 u y J / 3 A 2 Ah + 3 v I P *

1 1 1 " 1 1 1 "

n 2 A^\t0 " - ' " • • «• 2A+M£+2t n - "

2 1 A&+ ^ ~\ A& 1

77 77 A^'- 77 Z APT'- 77
n n

l l l ^,.3-A-2

whence we have

S 4gl*- 2 (1 +COSV77),.
77 V^* A1^" v^c.

0 (n-e-1) ( j 3 < o ) .

Now repeating the first part of the argument with ip (/) replaced
by the special function I/J (t) = 1 in (0, 77), we find that

0 (TO-1) + 0 (n-P-1) = 0 (n«-^) - F (n, 77),

Hence observing that

F (», 77) - F (., u) = r i - l _ f ^ t I- J {n, v) dv,

and using the second inequality (24) after integrating by parts,
obtain3 the second inequality (25).

Now returning to the original function ijj (t), we have

(?iA)2s£+2= 0 (n"-?) + i V"1 + f" } V (n, u) # a + 1 (»)
I J 0 J l/n J

= 0 (n«-") + I2 + I2)
where

fl/n
I Ii I ̂  ^7 l^ a tia I « # a + 1 («) I = 0 (1),

J 0

and
I I 2 I ^ An"-* \" W-e-1 I « # a + 1 («) 1 = 0 ( 1 ) .

1 Hyslop, 17, 185.
2 See Lemma 5.
3 See Bosanquet, 7, 199.
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This completes the proof of the theorem.
We next consider the converse problem.
We first give the following inequalities and a lemma which will

be used in the proof of the next theorem.
For a > 0, t > 0, n > 0, we have

(A ̂  0, p ^ 0)
1 (p + \<,o-l) (26)

(p + x > a — 1 ) ,

where, for a > 0,

ya (x) + iya (x) = \ (1 - u)"'1 eixu du,

and

V/(n) =/(») - / ( n 4- 1), V»/(») = V-V'"-1/^), V°/(») =/(»)•

These inequalities can be obtained in the same way as those
I d\x

obtained for Ap (— I y<r (nt) by Bosanquet1.
\dt I

Lemma 8. / / (nA)2sn tends to a limit s (C,v + 1), v > 0, asn

Since (nA)2s^+1 tends to s as B - * M , we obtain from the con-
sistency theorem for Cesaro limits and Lemma 6 that (nA)3 s^+2 = o (1)
as n -> co . Whence by an argument given by Dienes2, we have
(nA)3 s% — o (n") and this gives (nAf s% = o {%"). Now applying Lemma
6 we get (nA)2 <s* = o (w). This in turn gives nA s}h = o (n") and then
again applying Lemma 6 we obtain the required result that
nA sn = o (w").

Theorem 6. / / a > 0, fl > a + 1 emd (nA)2 sre (ends to a limit s

(C, a + 1) as n-> cc , iAew t — ipp (t) tends to the limit — ^TTS as t-> + 0.

Proof. We again assume that A is the greatest integer not
greater than a and also suppose, as we may without any loss of
generality, that a is not an integer, that3 5 = 0 and that /3 < h -}- 2.

1 See Bosaoquet, 6, 519-20. See also Bosanquet and Hyslop, 9, 495.

- Dienes, 11, 427.

3 Here we use the fact tha t if \p {t) = lirs log - in (0, ?r), then t -r,tp {t) = - ^^

a n d («A) 2 s n tends to the limit -s as n -> oo . See § 1.
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If j8 2g 2, we can write1

=P \^~ r c - ̂ ~2 * (*)du —i f
==i8{(Je_ l) [ ' ( l -uf-24i(ut) du — ]8 [ (1 —uy-itfi {ut)duy

J o Jo

= j3E Bnt*yf(nt).

If 1 < /3 < 2, the same result follows from the formula

lM*)=|8 2 Bny,(nt)
n = l

by term by term differentiation, since the resulting series is uniformly
convergent2 for t ̂  e, e > 0.

Hence for /3 > 1, we now have

= j8 2 (BA) 2 «„ • -L 2 — t — j7-
n = l TO „ = » fj, dt

= p i i , !/„(«),
where Jfn = (?iA)2 sn,

1 °° 1 d _ .
and t/,, (2) = — 2 — i — y« (M )̂>

provided the partial summation can be justified.
To show this we observe by (26) and Lemma 8 that for a fixed

t > 0,

M=n fi dt p [ o (n) 0 (n-1) (a 2: 1),

using the fact that Bn = o (1) in the case a ^ 1.

1 For amplification of this argument see Bosanquet and Hyslop, 9, 496.

- This can easily be shown, since by (26) and Lemma 8 we have
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Now again applying partial summations (h + 2) times, we have

I xU U\=.Q 2 Xh+i VA+2 U (t)
dt n = i "

where Jf£ denotes the A-th partial sum of the sequence Xn, provided
that these steps can be justified.

To show this we first obtain the following inequalities.
For 0<t<ir, q^O,fi>l,we have

• (27)
• O(n-^t-^+1) (£ < 2, 3 = 0)

•> (nt > ^

^ 2, q = 0)

I t is easy to verify that if ifi (t) = £ (77 — 1) in (0, 77), then nA sn = 1

t — ijip (t) = — £ . Now using these values for this special

function ip (t) in the above reasoning, we obtain that

2 1 . <i . , „ , t

so that, for nt ^ 1, we have

" 1 . d .
= S -

n - l

We can now obtain (27) from (26), (28) and the identity

1 I q'

(28)

The partial summations can now be justified.
For, since rn = nA sn = o (n), we have f£ = nA ŝ  = o («.) and hence

using Lemma 6, we obtain (nA)2 s\ = o (n). Thus we have X^ = o (n2)
and this gives X* = o (w"+1), while, i f 0 < a < l , Z i = o (na+1).

Now we observe from (27) that, if j3 ̂  2,

XI V*-1 Un (t) = 0 (»»+i) O (n-*-1),

for p = 1, 2, 3 (h + 1), while, if a + 1 < |8 < 2,

* i Un (t) = 0 (n-1) O (»-*).

Also for j) = A + 2, we have

7n («) = 0 (nA+2) 0 (Tl-P-1).
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For, since by hypothesis we have (wA)2 s*+° = o (1), we obtain by
Lemma 6 and the consistency theorem for Cesaro limits that

^+ 2 = o(l) and hence XA,+2 = o{nh+2).
This justifies the partial summations.
Now we know that

= o

and

Therefore,

(0 = i

, ,=1

where F , (t) = I ^ * ; « V A + 2 E7, (<),

provided the inversion of the order of summation can be justified.
To show this it is enough to prove that

\-_l VA+2 Un (t)

exists and tends to zero as JV -> oo .
We observe that for a fixed t > 0, we have

n=JV+l
J:° VA+2 Un(t) = 0 - v+

X}+aO{(N -

max

as N -> cc , since ^ > 7i + 1.
Thus the inversion is justified.

https://doi.org/10.1017/S0013091500027206 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027206


254 S. P. BHATNAGAE

We shall next show that

uniformly in v and t.
We write, for t > 0,

v+p 00

where p is the greatest integer not greater than —.
z

Now
00

2* = 2 A*-

(0 + £ V*+i Un+l (t) A>-_X\

which satisfies the inequality (29).
In Sj we use the inequalities

and we obtain

_

which also satisfies (29).
Thus (29) is proved.
Finally by using (29), we obtain

t^-6, (t) = O{t°~k) S o(^-1-A) + O(<1+°^) S o (v°-?) = o (1),

since a > h and j3 > a + 1, which completes the proof of the theorem.
If we observe that Theorem 5 remains true when 0 is replaced by

o, and use one of the examples given in § 1, we obtain the following
analogue of Theorem F.
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Theorem 7. A necessary and sufficient condition that (nA)2 sn should

tend to a limit s (C) as n -•> oo is that t — diK (t) should tend to the limit
dt

— ITTS as t-> + 0 for some K jS: 2.
We also have the following result, analogous to Theorem 1.
Theorem 8. If — 1 < a < 0, /3 > a, and (23) holds in the interval

(0, n), and t — ipK (t) tends to a limit s as t-> + 0, for some K ̂  2, then
drti

2
(nA)2*n tends to the limit s (C, j3 -f- 2) asn ->» .

Finally I should like to express my best thanks to Br L. S.
Bosanquet for his valuable suggestions and criticisms.
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