On the Fourier coefficients of a discontinuous function
By S. P. BHATNAGAR.

(Received 29th May, 1940. Read 1st June, 1940.)

§1.

Introduction.

We suppose throughout that f(¢) is periodic with period 27, and
Lebesgue-integrable in (— =, 7).
We write

W) =3{flx+8) +f(z—1)
)=3{f(x+t) —f(z— )

and suppose that the Fourier series of ¢ (¢) and i () are respectively
;E A, cos nt and ¥ B, sin nt. Then the Fourier series and allied
n=0 n=1

series of f (t} at the point { = x are respectlvely E A, and Z B,

n=1
where 4, = a9, 4, = a,co8 nx + b,sinnz, B, = bncos nx — a,sin nx and
a,, b, are the Fourier coefficients of f (¢)
We write, for t > 0,

() = ir) ¥ () du,

ku K22

1

D, () = jt (¢t —u)*~! ¢ (u) du, (a>0),

I'(a)
®o (£) = ¢ (1),
$.(t) =T (a+1) 17> D (¢), (a=0),
and we define ¥, (¢), ¢, (¢), O, (1), 0. (¢), etc., in a similar way.
We also write s2, §2, 72, 7% for the n-th Cesiro means of order

a of the sequences s, = 5_‘. A, §, = E B, 7,=nd, =nAs, and

=1
7, == nB, = nAs§, respectlve]y a.nd §_.1=0,8§=8§_,=0.

' Here Apn = pn — pn—1, and &, =..§‘;L/A;, where S; and A4, arc defined formally
by

148

S S2an = (1 = w)-e—1 s By, xn and S A% wn = (1 - x)—2—L,

n=1 n=1 n=0Q
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232 S. P. BEATNAGAR
Finally we write!, for a = 0,

(@) =0 X (w—n) 4,
n<w

Folw) =w™ X (w0 —n) B,
n<w
Concerning the Cesaro summability of a Fourier series and its.
allied series at the point ¢ = z, the following two theorems of Hardy
and Littlewood are well known?.

- Theorem 4. A necessary and sufficient condition that s, should tend
to a limit s (C), is that ¢, (t) should tend to s as t—> + 0, for some
positive A.

Theorem B. A necessary and sufficient condition that 3, should tend
to a limit s (C), is that 6, (t) should tend to s as t - + 0, for some
positive A.

Concerning the existence of the Cesaro limits of the sequences
nd, and nB,, we have the following known results.

Theorem C. A mnecessary and sufficient condition® that nd,

should tend to a limit s (C), is that t% o (2) should tend to — s as

t — -+ 0, for some positive A.

Theorem D. A necessary and sufficient condition® that nB, should
tend to a limit s(C), is that o, (t) should tend to ims as t— + 0, for
some positive A, or what is the same thing that t (% 8, (t) should tend to
—sast— + 0,

We next observe that the condition that “nd, = nAs,= 1,
tends to a limit s (C, A),” or what is the same thing, that «“ 7}, = nAs?
tends to the limit s’ is equivalent® to the condition that

1 Here 7, (w), 7, (w) denote the Rieszian arithmetic means of order a of the-
Fourier series and allied series respectively.

2 Hardy and Littlewood, 14 and 14 (a). More precise results have been given by
other writers. For references see Bosanquet and Hyslop, 9, 491-2.

3 See Bosanquet, 7, where more precise results are given.

+ See Paley, 22. Though results of this type are not explicitly stated there, much
more precise results are implied by his analysis.

5 See Bosanquet, 4. This is stated there.
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A—1
A N <1—1l-> nd, —> s,
w

n<ao w
A
or wil z <1——1-"-> A,—> s,
dw n<w w
or -k 7, (@) > 5,
dw
as w—> .
a\} a\*
Regarding the sequences | w— ] 7g(w) and <w— 7g (W), B = A,
dw dw

we have the following two theorems of Bosanquet?.
Theorem E. If A is a non-negative integer, a mnecessary and
suffictent condition that

(wd(—i)}"rﬂ (w) =0 (1)

as w— o for some B = A, is that

(LY s w=0

in the interval (0, ) for some « = A, where ¢, (t) is a A-th integral except
at t =0.

Theorem F. If X is a mnon-negalive integer, a mnecessary and
sufficient condition that

(wd_”(l”)A 7y (w) = O (1)
as w-> o for some B = A, 18 that
d A
<tE> 6, (t) =0 (1)

tn the interval (0, m) for some x = A, where 6, (1) 18 a A-th integral except
at t = 0, or what is the same thing, if A= 1, that

) o w=0m

wn the interval (0, 7) for some « = A.
Theorem D is illustrated by the following examples.

(i) If 1 (0, m)
gt = 0 t=0
-1 (—m0)

L See Bosanquet, 7.
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then nB, = 3 (1 — cos nw), which tends to -2— (C, 8),6>0,a8n—> .
v m

(i) If nB, = 1, (n = 1) then
© . %("—t) (Os 77)
Sty = Z Sn;_m= 0 t=0
= —3 @ —1t) (—m0),

‘which tends to 4 was t = + 0.
To illustrate Theorem C, we may either take nd, =1, (n = 1),
in which case we have

$t) = X — log
=]

2sin%tt’

-or we may consider the function ¢ (¢) = log

%! in (—m, 7).

Finally to illustrate Theorems E and F, we may consider
respectively the following functions.

¢ (t) = log* %I in (—m, m)

and? ¢ (t) =sign ¢ log*~1 | — in (— 7, 7).

A
It is reasonable to suppose that the means <wdi> rs (w) and
w

. ,
<w di> g (w) in Theorems E and F can be replaced by (nA)* s and
w

(nA) 238 respectively, and also the O by o, or appropriate limits2,
The latter means have the advantage that they can be used when
A — 1 < B <A, whereas the former become infinite for integral values
of w.

For example if we consider the particular case of Theorem F
when A = 2 and suppose that in (— =, 7)

Y (t) = sign ¢ log —7;— ,

then (nA)%35, tends to the limit 2 as n —> .
ki

In fact, forn = 1,

"Signz:l—z—l—ifz + 0, and sign 0 = 0.

2 (nAY an = nA (RAPM—1 ap, A being a positive integer, (RAY an= un.
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2 (" T .
B, =" j log— sin nt dt
7 Jo t

=[£1—cosnzlogw7:|"+£rl—cosntdt,
0

T n T Jo nt
that is,
nw -
ku 0 t
and hence, for n = 2,
nmw —_—
(A §, =2 nj L—costy,
™ (rn—1)w

which tends to 3 as n—> o,
w™

Again, if we take nB, = 2 _!-, then (nA)2§, = 2 (n=1),and
m 14 ks

I M=

1

v

it can be proved that tZldT ¢ (t) tends to the limit — 1 as £ — 4 0.

To show this we consider the two functions

&) = § a, 8in nt, 7 () = § B, sin nt
n=1 n=1
such that in (0, =) £(2) =log %,
and nﬁn=3§"£‘) (n=1)
m =1 V

Then to prove that ¢ dilt_ 7 (¢) tends to — 1 as t — + 0, it is enough to-

show that ¢ —;—t {n (t) — £(t)} tends to zero as t - + 0.

We write

i M8

(B, — a,) 8in nt
1

n(t) —E@) =

= fl d—" sin nt.
n=1 N
If we now show that d, = C + C,, where C, is steadily decreasing and
tends to zero, it will follow that

t;—t{n(x)—g(t)}=—50t+ S C,tcos nt=o(l)

=1
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@
a8 t—> + 0, since X C, cos nt converges uniformly in any interval
n=]

..}
8=t1=27r—38,0<38<m while I C,tcosnt converges uniformly

nost<s .
We next write

n 1 N _
d,,=_2_ ) __1]‘ I- costdt’
T v=1 V ™ Jo
:80 that
nmw l l —
Ad”=3j {___ﬂ}d,
T Jn—-1)n \NT t
2 nmw :
< —éj cos t di
na (n—1)r
== 0’

‘which shows that d, is monotonic and steadily decreasing.
Also we have

2 4 2

Ady, > j (meost — 1) dt = — — =2 |
1) n{n—1)x=

ni{n—1)n%

:and hence d, —d;> — 3 <l — —l—> > — -2—, which shows that d, is

m n ™
bounded below and hence, being monotonic and decreasing, tends to
a finite limit. Thus d, is of the form required.

In §2 of this paper we give some general lemmas, which are
required in particular cases in the subsequent work. In §3 we
-.obtain some results related to Theorem D, which complete some of
the known results about the connection between the jump of a
function and its Fourier coefficients. Finally in §4 we consider
analogous problems related to Theorem F in the case A = 2, using
-Cesaro means instead of Rieszian means.

§2.
We write «* (n, t) and & (n, t) for the n-th Cesiro means of order
a (> — 1) of the series :

1 2 J

—_—+ — cos nl,

T T a=l 7 n=1
1,

o
4

I M5

sin nt

respectively and suppose that, fora > —
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2 1 etlintitia)—3tDrt

K+ (n,t ; Ko b)) = — — - 1
(n,t) +¢ K (n, t) ~ A @ em 1o (1)
where
Av — F'(n+1+0)
" I(r+1)T (o + 1)
Lemma 1. For0<t<m, and a >0 — 1, we have
(g;)" A" & (n, t)l < Ant+e=e, (2)
fdN 7 1 : 1o 4—2—
;<_>,Av 7 (n, t) — Ko (n, ) — L cot 3t} < An-1-0i-2-s, (3)
| dt [ m !
where p and o are non-negative integers and the A’s are independent of
n and t.

The inequalities (2) and (3) are well known for the case! o = 0,
and by the method of induction we now obtain the results for o = A,
where A is a positive integer.  Assuming the result of (2) for
0=20,1,2,.... A—1, we have? for a> A — 1 and n = J,

({%)"Ax R (n, 1) = <;_t>,, Ar-1 [i;_{za—l (n, t) — & (n, t)}]

which in turn® may be written in the form

Acl/d—1 a d\r
p__AA-P-1f 7 a1 - _— e —p,
= (oDt wr (L et ) = (=, 1)

= ’\il O (n—?-1) 0 (np+2+p—x.) _ Ail 0 (nt +p=2) = O (n+r—1).
-0 p=0

»
‘This proves (2).

1 See Zygmund, 27. Obrechkoft, 21, 86-93. Gergen, 13, 264-7.

2 It is easy to verify that for a > 0, we have the following identities.

a

E—Eﬂ-—l (n, ) = nA x* (0, £) = a {k2~1 (n, §) ~ x° (n, 8)}

wta df
d
- ﬁft'aﬁ ke=1 (n, t) = nA ke (n, t) = a {ze=1 (n, t) — %= (n, 1)}
n_:_a Edt.‘ Re=1(n, t) = nAR* (n, 8) = a {Ke=1(n, t) — K= (n, )}

d — _ —
- n__,ia 7 E*1(n, ) = nAKe (n, )= a {F==1 (n, t) — K= (n, t)}
The first two of these sets of identities follow from Lemma 5, and the last two

were pointed out to me by Dr Bosanquet.

3 Here we use the following result
m

m
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Following the same argument we can write

d d
<dt>Ah{ < (n, t) — K= (n,t)—lcotz} ()A"T“(nt)

_ (%) w1 Zqre=r (n, ) — T (0, 1))

_'s ("_ I)AP Ax—w("i)" (T~ (n —p, 8) — T* (n — p, £)}
0

»=
A=] A—-1
= X 0 (n~?-1y O (nP—2 t‘2"") = XY 0 (n—l—x t—2—p) =0 (’n"l“" t_2_p)>
»=0 P=0
This proves (3).
Lemma 2. ForO0<t<m a>0—1,p=20,0=0, we have
d \r

<d—t> (nA)° & (n, t)i < Anlte, (4)

,(Z) (nA)° { (n,t) — K= (n,t) — % cot %t}[ < An=1t-2-°, (5)

This lemma can be obtained from Lemma 1 and the relation
A
(nA) g (n,t) = T O (n?) A? g (n, 1).
p=1
Lemma 3. For0<t<ma>0c—1,p=0,0=0, we have

) s t)’ <dAn-omegre=l (nt £ 1)
< Anp—e fr—a-1 (nt > 1).

(6)

The result is easily proved when o =0. Assuming it for
c=20,1,2,.... 3 — 1, and using the argument of induction as before,
we can write

(Zt> A Ke (n, t) = <% >pA"*1 [%{I?""l (m, t). — K° (n, t)}]

A-l/x 1 _ A\, ma_ =
=2< >A1’nA"1’1<dt>{K (n —p,t) — K*(n — p, )}

=0 p

A—1 0 (nz)+l—)\—a t—p—a—l) (nt < 1)
— -p-1
_,EOO (n= ){0 (np+1=s p-p—a=1)  (ps>1)

AZ1(Q (pA—eg—re"l) (£ 1)
p=0 O (ne—e tr—e"1) (nt > 1).

This proves (6).
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Lemma 4. ForO<t<ma>0c—1,p=0,0=0, we have

A = | <An~eg=ee"l  (np < 1)
— Ay K@ (n,t =

<dt> (nd) (. ) < Aneto—e el (g > 1).

This lemma can be obtained! from Lemma 3 in the same way as
Lemma 2 was obtained from Lemma 1.
Lemma 5. If*v >0, then

v(§l — &) =nAs =7, (8)

(7)

Lemma 6. Ifv>0 and X is a positive integer, then

p{(RAP &7 — (AP 52} = (RAPHL &, = 7 (9)

n, A\?
where 7, , denotes the n-th Cesdro mean of order v of (nAY+1 3,
This follows from Lemma 5.

§3.

In this section we shall be concerned with a function f (t) which
possesses a simple discontinuity, or a discontinuity of a similar nature,
at the point 1 =z. If f(z + 0) — f (z — 0) exists, its value is called
the jump of the function f (¢) at t = z. Here we shall be dealing with
functions which possess & jump in a generalised sensed.

It is known* that if « == 0 and

1 Alternatively it can be obtained by repeated applications of the identities given
in the footnote on page 237.

2 See Kogbetliantz, 20, 23 and 30, and also 19.

8 For example when (10) is satisfied, the number 2s may be called the jump of the
function f(t) at the point ¢ = x in a generalised sense. The expression generalised jump
has been used by Szdsz, 24, 362.

4 The relation between the limit of the sequence nBr and the jump of the function
f (t) was first pointed out by Fejér for a function satisfying Dirichlet’s conditions ; Fejér,
12, and later Young in 1916 proved that for a function of bounded variation nB, tends

to _;rl_{f (€ +0) - f(x - 0)}; Young, 26, 44. 1In 1918 this result was also given by

‘Csillag, 10. Later Szidon proved that nBn tends to the limit 7];_- {r (x+0)—f(x-0)}(C, 2),
whenever this limit exists ; Szidon, 23 ; and Paley showed that ifa = 0, and y (¢) tends
to a limit s (C, o), then n B» tends to the limit %3 (Ca+1+38),8>0; Paley, 22,
184-9. Also Jacob showed that if a = 0 and (10) holds, then nB, tends to the limit
727.9 (C, 1 + 8); Jacob, 18; and the general result stated ahove was given by Bosanquet,
4, 23.9.
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t
g @ —sldw =0 (10)
0
as { —> + 0, or more generally, if

1 t
lim ——j ™ |dW¥eiq (w)]| =0 (1) (11)

e~> 40 e
in an interval (0, 9), » > 0 and y(t) tends to a limit s (C) as t—> + O,
then nB, tends to the limit 3 s(C,a+1+8),8>0a8ns .
kis

Both these results break down! when — 1 <a <0, even if the
integral in (10) is replaced by & Stieltjes integral. The second result
remains true?, however, if (11) holds throughout the whole interval (0, ).
In this section we shall show more generally that if we makean additional
bhypothesis that B, =0 (n*), — 1 <a < 0, the above result will remain
true even if condition (11) holds only in an interval (0, 1), 0 <n <.
We give this result in Theorem 3 and apply it to obtain the result
stated in Theorem 4. In order to prove Theorem 3 we first obtain
necessary and sufficient conditions that nB, should tend to a limit
(C, v), 0 <v <1, depending only upon the properties of the function
near the point ¢ = 2 and give the result in Theorem 2.

We first prove the following theorem.

Theorem 1. If —1<a <0, 8>a and (11) holds in the interval
(0, m), and ¢ (t) tends to a limit s (C) as t—> + 0, then nB, tends to the

limit%s (C, B+ 1) as n—> .

Proof. It will be enough to show that nB,=0 (1) (C,a+1+-8),8>0.
For since, by Theorem D, nB, tends to the limit %s (C), it will
follow by a well-known theorem that nB, tends to the limit

2 e (Coat14+8+5),8>0.
s

1 The reason for the failure is that the existence of the Cesaro limit of order
v, 0 < v < 1, of nB, depends upon the nature of the function throughout the whole
interval (0, 7). This can be illustrated by the following example. We can construct a
function i (t) which is zero in (0, 4 7) and such that Bn + o (nv—1), so that nBn does
not tend to a limit (C, v). Thus the (C, v)limit of nBr may be destroyed by altering
Y (t) in the range (47, 7). See Titchnarsh, 25. We simply integrate his series.

2 See Theorem 1.
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We writel

—a41+5 — Firl4s
7 = nAS§,;

- j"¢ () nA &+1+8 (n, 1) dt
0

T t
1 j nA jer1+8 (n, 1) dtj (t—wu)y~* "t d¥, 1 (u)
0

- r (—a)dy
—_ f‘(lj;) K AV a1 (u) j: (t — u)~°"nA 2148 (n, t) dt
= | L) 0¥y ),
where
1 - -
L (n, u) = I‘(———aj. (¢t —u)~e~1 nA got1+8 (q, t) di.

We next state the following inequalities?.
ForO<u<m

< Anl+u

l L (n, w) < An—% y—1-e-3,

‘We now have

1/n T
.;:+1+5 = {J-O + j } L (n, u) dW¥ai1 (u) = Ly + Ly,

1/n
where?

1/n
L] < ane |, @ =0 ),

and
T

| Ly | < A'n“‘j w28 4o | A%, ., (u) |

1/n

=0 (1),

on integration by parts.
This completes the proof.

1 The various steps in this argument can easily be justified. See Bosanquet, 5, 114 ;
7, 196-7.

%z To obtain these inequalities we use (4) and (5) and follow the method used by
Bosanquet, 7, 197.

8 Bosanquet, 5, 114.
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Theorem 2. Necessary and sufficient conditions that nB, should
tend to a limit s (C, v) for t = x, where 0 <v < 1, are that (i) B, = o (n*~1)
as n-> w, and (ii)

s —
j0{¢ (t) — &ms} n A{r¥ (n, t) — -?2 K* (n, )} dt =0 (1), (12)

as n—> o, where 0 <8 < .
Proof. A necessary and sufficient condition that nB, should

tend to the limit s (C, v) is that
rgb (t) n A’ (n, £) dt — s (13)
0

as n — .
It can easily be seen that (13) can be replaced by!

”Z + K} () —dms} nAier (n,8)dt =1, + I, = o (1) (14)

as n—> .
We now observe that I, can be replaced by

r { (t) — ms} n AK” (n, t) dt. (15)
3
For, on integration by parts, we have by (5)

j:{x,b (t) — 37} n A{r® (n, t) — K’ (n, t)} dt =0 (1).

Now, since (i) is a necessary condition? that nB, should tend to
a limit s (C, v), it can be assumed to be fulfilled.
We next prove that

j: { (t) — 47s} —St;nA K (n,t)dt + K{x,b (t) — dms} nAK* (n, t)dt = o (1) (16)

as n— w.

1 Here we use the fact that if ¢ () =1 in (0. ), then nBp tends to the limit

3—(0, 8,8 >0, asn—> .

2 Dienes, 11, 427.
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Next let
12 1
[ o st (0=t=Z3)
2 2 ¥
B =) ( 81;1 i)
—— < 7).

Then we have to show that

| — 3 1 acos{nt i)t —dvm}
I _L (6 () — 4} B (0) s A e dt = o (1).

We can now write

r=-7 j:{sb (t) — 4ms) b (t)-ﬁ%y cos {(n — 4 + §v) t — dvm} dt
- Zv jwo{t/' (8) — %78} A (1) sin {(n + §v) t — vm} dt
=1, — ;4’-}7 I,.

Then I} = 0(1), by the Riemann Lebesgue theorem, and so it
remains to prove that I, = o (n*~1), which can be done by following
an argument given by Bosanquet and Offord®.

From (14), (15) and (16), we obtain (12).

Theorem 3. If —1<a<0,8>a and (i) B, =0 (nf) as n—>w?
and (ii) condition (11) holds in an interval (0, ), 7 > 0, then either nB,
tends to a limit (C, B + 1) or does not tend to a limit (4). A mnecessary
and sufficient condition that it should tend to the limit s (C) s that i (1)
should tend to the limit {ms as t — + 0.

Proof. Without any loss of generality we can assume® that
¥.,1(+0)=0, so that now from condition (ii) we have
Y. ()= 0 (t=+), e, y (£)=0(1) (C,a+1). Also if nB, tends
to the limit s (C), ¢ (¢) tends? to the limit }ms (C), and therefore®
¢ (t) tends to the limit 4ms (C, a 4+ 1 + 3), and so in particular ¢, (¢)
tends to the limit {»s as t— + 0. Thus the necessary condition is

! Bosanquet and Offord, 8, 276-7.

2 It is interesting to observe that if (11) holds in the whole interval (0, xr), then
Ban= 0 (n2). See Bosanquet, 5.

3 See Bosanquet, 5, 114.
¢ See Theorem D.
5 Bosanquet, 3, 103.
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established, and for the rest of the proof there will be no loss of
generality if we take it to be satisfied.
Let us now define two functions p (¢) and g () such that
— ¥ (t) in (0, 1)
p(”_{ 0 in (5, =)
and ¢ (t) = ¢ (t) — p(¢), and let their Fourier series be denoted
respectively by

o] . @
Z c,sinntand X d, sin nt.

n=1 n=1
Then since!
t
lim _H u=® |dP,., (w)| = O (1) (17)
e=>+-0 ¢

in the interval (0, #), we see by Theorem 1 that nc, tends to the
limit 2 8 (C, B+ 1) and hence? that ¢, =o{(nf) as n-—>ox .
mw

Also since ¢ (t) = 0 in (0, 9) and d, = B, — ¢, = o (nf), it follows
from Theorem 2 that nd, tends to the limit 0 (C, B8 + 1), and hence

that nB, tends to the limit 2 s (C, B+ 1). This completes the proof.
w

1 In the interval (0, n) (17) is the same as (11). If » =t = u we have,

¢ ‘1 d
j' u=a | dPay1 (u) | St-ﬂj ’a—u'Pa+1(u) [du
n n

= t—a r _l_jn(u—'u)a—l p (v) dv
n T (a) Jo
=t j‘: IT_:C"_)_“Z(U/*”;Q-IP?E a) j:’ (”—w)—u—l dPa+l (u‘) du
t—a t » » . .
< I—IWI‘—(_—a;J.ndu jo(u—v)a—ld'v Io(m—w) 1| dPayy(w) |
t—a

T IT@Iil(-a)

j"| dPay1(w) | jn(v—w)—u-l dvr (w—vp=1du
(1] w n

t—a ] ) . .
< 5 s N P @) [l - wya-t g

—t-a J"' | dPas1 (w) |
0

= 0 (1)
by (11). See Bosanquet, 5, 114. This proof was pointed out by Dr Bosanquet.

= This is a necessary condition that nen should tend to a limit (C, B +1) as

n—>x.
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In virtue of the well-known result! that a necessary and
sufficient condition that a series X a, be summable (C, v), v> — 1, is
that it should be summable (4) and the sequence na, = o (1) (C, v + 1),
we obtain the following theorem.

Theorem 4. If* — 1l <a<0,B>a and (i) B,=o0 (nf) as n— w0,
and (ii) condition (11) holds in an interval (0, ), n > 0, then the allied
series of f(t)at t = x is summable (C, B), if it is summable (A4).

We here state the following lemma.

Lemma 7. If3nB, tends to a limit s (C, a), a > 0, as n— «, then
Y (t) lends to the limit kns (C, a 4 8), 8> 0, ast—> + 0.

Remark. 1t is of independent interest to show that in Theorem
2, condition (ii) can be replaced by one of much simpler form?, if we
assume an extra condition (iii) that ¢, (¢) tends to the limit }=s
as t—> -+ 0, which has been shown in Lemma 7 to be a necessary
condition that nB, should tend to the limit s (C, v}, 0 <v < 1.

We first observe that (12) can be replaced by

ji {$ () — dns} n A{r” (n, t) — ;—221_(" (n, t)} dt = o0(1) (18)

as n->w .
For, on integration by parts, we have by (iii), (4) and (7)

1/n 2
[ @) — gmh m A2 m, ) — 5 B (n, ) dt = 0 1),
0
Now in virtue of the identities given in the footnote on page
237, condition (18) can be replaced by
1 d 1 & d
- — — K 2 3) — —=—K1(n, =o(l). (1
~ L @) gns}{dtx (1) — 5 S K2 (n t)} dt=o(1). (19)
Next (19) can be replaced by

1 ? t2 d »— —_ ¢
——J-I/" { () — dms} <1 - ?)EK t(m, t) dt =0(1). (20)

n

1 Hardy and Littlewood, 15, 283. See also Kogbetliantz, 19, 238.

3 This result can also be obtained by an application of Theorem 1 of my paper, 1,
318. A corresponding result for Fourier series has been given by Bosanquet, 5, 115.

3 This result, though not explicitly stated, isimplied by Paley’s results; Paley, 22,
195-9. See also Bosanquet, 2, 162-3. The lemma can be proved from his analysis on
pages 162-3. |

4 Condition (19) below.
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For, on integrating by parts and using (iii), and the inequalities® for
x and K analogous to (5) and (7), we have

'
s [ w@ =i & et (0, ) — Ko~ (n, 0} dt = 0 (1),

Alternatively, (20) can be replaced by?

lim lim

=P 2\ d sin(n;t)
v t) — ] — V= N7 = 21
S .[,,,,{lﬁ() §1rs}< 82> dt (2sin«}t)’dt 0. (21)
‘where (n; t) is written for (n + 4v)t 4+ 3 (1 —v) =.
§ 4.
In this section we consider functions ¢ () such that tg_t P (1)

tends to a limit, and more general functions of the same type. We
prove results giving precise relations between the existence of Cesaro

limits of t% s (¢) and of the sequence (nA)2 §,.

We first state the following inequalities which will be used in the
proof of the next theorem.
ForO<t<m a>0—1,p=0,0=0, we have

d\e < Antte
<’d‘t> (nA)” & (m, 1) | < Awrtomer=el (aSo+p+1)  (22)
< An~1t-2-» {(a >0+p+1).

These inequalities can easily be obtained from Lemmas 2 and 4.
Theorem 5. IfSa>—1,8>aand

L atdpen @ =0 (23)
0

-4n the interval (0, n), then (nA)25, =0 (1) (C, B+ 2) as n—> .

1FRor0<t<m a>oc-1 p20, c=>0, we have

(@) oy ] < anon

|<-‘% )" (nA) {xa (n, £)- Ka (n, ) < An=1 t-2-5, (20a)

s d N\ < An-at—p-a-1 (nt<1)
|<E> (2 K20 B) | gppro-ato-a—1 (nt> 1),

2 Here we use condition (iii) and follow an argument similar to one given by
Bosanquet and Offord, 8, 277.

3 It can also be obtained from the same analysis thatif « 20, 8 > a and (20) holds in
an interval (0, 5), 7 > 0, then (nd)* 3, = 0(1) (C, B+2asn—o.
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Proof. Let h be the greatest integer not greater than a«, and
suppose, as we may without any loss of generality, that S <h + 1.
The n-th Cesaro mean of order (8 + 2) of (nA)?§, can be written in
the form!? '

(nAY? §8+2 — r (£) (nA) @8+ (n, 1) dt
- bl d \p-1 -
(- -1 A)? gBt2 , b
[ Ti-rY, (z)( ) (nA) (n )]0

fr d A )
+(~ 1>"“L‘I’h+1 O (2)"" @ay & @, 0 d

A 1
_ 1 he Yl X
EIO(n )+ O (nt=8) + (— 1) TQ+h—a)

w 1 d REL t
(2" mayeoss gt J ¢ = 0= )

1
=0 (n"1) + O (nh—8) 4 (— 1)1 Ay — X
.4 .4 k41
L AWV, (u) L(t — y)h-e <ad?> v (nA)? 82 (n, t) dt

=0 (nh=F) + jJ (n, u) d¥ oy (1),

where
k41

J (n,w) = (— 1)4+1 mlh___a—) j (t —u)h=e (;-lt) (A)? 78+2 (n, t) dL.

We next state the following inequalities?.

For 0 <u <=,

< Anl+e

< An*—P 4B 1, (24)

!J(n,u)’

' See Lemma 6. The various steps below can easily be justified. See Bosanquet,
5,114 7, 195.7.

? To obtain these inequalities we use (22) and (20a) and follow the method used by
Bosanquet, 7, 197.
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.Assuming these we now have

(n8)2 3812 = 0 (1) + [ Worn () T (m, )|

- 0

1 L d
- mL%H (u) wott Tn J (n, u) du

"

=0 (n8+0 (na_ﬁ)—ITal—}—-f) [nﬁaﬂ (u) J: ?)"“(% J (n,v) dv]

0
a0 ] ot LT (0, 0) a0
Tlar2)d, Wert ] 0 gy = 10

= 0 (n°~F) — [¢.a+1 () V (n, u)]: + J.: V (n, u) dipay (w),
“where

1 u d
v (n: ’ll«) = j 'Ua""ld—v J (n, ’U) dv.

I'(a+2)Jp
We next obtain the following inequalities
For 0 < u < 7,

< Antte ylta
< An°—8 yo—8,

‘ V (n, u)

(25) -

The first inequality (25) follows, on integration by parts, from
the first inequality (24).

To obtain the second inequality we first observe that if  (¢) = 1
in (0, #), then ,,, (!) =1 in (0, #) and it can be shown that, with
this particular ¢ (f),

gia [0 (o)
ot = oGty (52 o)

88 7 — oo,

To prove this we write

T . 2
nB,,=nA§,,=E n sin nt dt = — (1 — cos nx).
™I ™
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Now following an argument given by Hyslop!, we can write?

2 1 1
$B+2 _ z8+ +
nA G2 = 7972 = Aﬂ“ §Aﬂ h=2 g 3_____ABT2 ZOA,s “h-2 gh+e
11 1 1 1 =z
- B—h—2 Ah+1 _ s B~kh—2 A1
T 2 Aﬁ+2,§ AT A T 7 2841 Aﬁ+2.§oA"_v 4
1 1 1
- EAB”2(1+cos:m)
m 2h+2 4B+2 T,
2 1 45+ 11 A48 1 1 A8-*
B Y R v I T
1 1 1 7 ez
_ ;*2’”2“1?250 ABh=2 (1 4 cos vr),.

whence we have
(nA)2 §£+2 =0 <i> + 0 (712> +....4+0 <,;ZTI+—2) + 0 (7'151'1,_—1) + 0 <7L31+2>

_[O0@Y)  (Bzo)
0( ~#-1) (B <o).
Now repeatlng the first part of the argument with i () replaced
by the special function ¢ {¢) =1 in (0, =), we find that
O 1+4+0 (n“’“) =0 (n*=f) =V (n, m),
Hence observing tha.t

Vin,m)—V (n, u)= (1+2)'[” +‘(%J(n,v)dv,

and using the second inequality (24) after integrating by parts, we

obtain?® the second inequality (25).
Now returning to the original function i (¢), we have

(nA)? 5842 = O (ne=?) +{j + 1y o w ders )
l/nJ .

—O(na ﬂ)+Il+I2)
where
1/n
L= An”"J' u® | udsyy (u) | = O (1),
0

and
| L = An“‘f’r w1 | ud,, ; (w) | = O (1).

1'n

1 Hyslop, 17, 185.
2 See Llemma 5.
3 See Bosanquet, 7, 199,
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This completes the proof of the theorem.

We next consider the converse problem.

We first give the following inequalities and a lemma which will
be used in the proof of the next theorem.

Foro>0,t>0,n >0, we have

d\ < Anr+1 g+l A=0,p=0)
A% <d_t> Vo (nt) | < An=P2-1¢-2-1 (p L A< o—1) (26)
! < An*—c tp-c (p+ArA>0—1),

where, for o > 0,

. 1
Yo @ + 7, @ = | (1~ et e a,
0
and
Vim)=fn)—f(n+1), V"f(n) =V-V"=1f(n), VOf(n) = f (n).
These inequalities can be obtained in the same way as those

A
-obtained for A? <Z§ZZ> Y. (nt) by Bosanquet!.

Lemma 8. If (nA)2§, tends to a limits (C,v+1),v>0,asn— »,
then B, =0 (n~1) as n— w0,

Since (nA)2&+! tends to s as n— », we obtain from the con-
sistency theorem for Cesaro limits and Lemma 6 that (nA)3§7+2 = o (1)
as n—>o. Whence by an argument given by Dienes?, we have
(nA)® 52 = o0 (n*) and this gives (nA)? 52 = o (n*). Now applying Lemma
6 we get (nA)? 3! = o (n*). This in turn gives nA 5! = o (n*) and then
again applying Lemma 6 we obtain the required result that
nA§, = o (n*).

Theorem 6. If a>0,8>a+ 1 and (rA)2§, tends (o a limit s

(C, a+1)as n—> o, then t% g (t) tends to the limit — ms as t—> + 0.

Proof. We again assume that A is the greatest integer not
greater than a and also suppose, as we may without any loss of
generality, that a is not an integer, that® s = 0 and that B < A + 2.

1 See Bosanquet, 6, 519-20. See also Bosanquet and Hyslop, 9, 495.
2 Dienes, 11, 427.

i d
3 Here we use the fact that if  (f) = 4ws log 1—. in (0, ), then ¢ It Y (t) = — s

and (nA)?2 3, tends to the limit sasn —> o0 . See § 1.
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If B = 2, we can write!
£ g (0) = Bithpr () — s (1)
— t t
= N e IO NI
=B{B—1) jl(l — uw)f~24 (ut) du — B Il(l — )Yy (ut) du}
0 ]
=.3n§1 B, {(B—1) ys_1 (nt) — Byg (nt)}
=B E 1B, {ya () — Yar1 (nt)

=BE Byt S (u0)

n=1
If 1 < B <2, the same result follows from the formula

4o () =B B, 7 (ul)

by term by term differentiation, since the resulting series is uniformly
convergent? for t = ¢, e > 0.
Hence for > 1, we now have

d 1 .,d
t%%( =B EnAsn ﬁt[it v (nt)
® .- 1 = 1 d
= A 2 .- —_— Y]
BEI (nA)? 8y — E " b= Vs (1)
= :B § Xn Un (t)>
n=1
where X, = (nA)?§,,
1 = 1 ,.d
U = Bl By
and n (t) n an w tdt s (F’t)’

provided the partial summation can be justified.
To show this we observe by (26) and Lemma 8 that for a fixed
t>0,
d o(n*) O(n'~f) (a<l)
A§, —t— 1) =
nA s, 2 dt yﬂ (F’) lo (n) 0 (n_l) (a z 1)’

w=n M

using the fact that B, = 0 (1) in the case a = 1.

1 For amplification of this argument see Bosanquet and Hyslop, 9, 496.

2 This can easily be shown, since by (26) and Llemma 8 we have

B, t— Vs (nt) = o (ne—1) O (n1-8).
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Now again applying partial summations (A + 2) times, we have
Ly b =F T XERUHT,0),
n=1

where X7 denotes the A-th partial sum of the sequence X,, provided
that these steps can be justified.

To show this we first obtain the following inequalities.
For0<t<m q=0,B>1, we have

70 (n (¢ 0) (1)~

P O(n-Bt-p+l)  (B< 2 g=0)

O (n1-si) (Bag41,g21)
0 (n=1-2¢-1) (B2 g+ 1l,¢=21)

_0(nm2tmY) B=2¢=0 _

It is easy to verify that if ¢ ({) = § (# —¢) in (0, =), then nA §, = 1

[

ViU (0= (nt > 1) (27)

:and t;_t"bﬂ tH=-—1% E—_tr—l Now using these values for this special
function ¢ (£) in the above reasoning, we obtain that
© 1, d
T —t— yg ()
L gy
so that, for nt =< 1, we have
© 1  d f ® " 1 (l
pen p di 5(}“' . w=1 ulj ‘yB“
=0 () + 2 O (t) = O (nt). (28)
w=1

We can now obtain (27) from (26), (28) and the identity'
V' a, b, = é}o <§) V't VO by
‘The partial summations can now be justified.

For, since 7, = nA 5, = o (n), we have 7} = nA 5} = o0 (n) and hence
using Lemma 6, we obtain (nA)25! = o (n). Thus we have X} = o (n?)
-and this gives X2 = o (n?*1), while, if 0 <a <1, XL =0 (n**}).

Now we observe from (27) that, if § = 2,

X? -1 U, (t) = o0 (n?+!) O (n=?-}),
for p =1, 2, 3, .... (b + 1), while, if « +1<8<2,
XL U, (t)=0(n*1) O (n"?).
Also for p =k + 2, we have
Xa+2 VAl [ (1) = o (n*+2) O (n-F-1).
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For, since by hypothesis we have (nA)25l*®=0(1), we obtain by
Lemma 6 and the consistency theorem for Cesaro limits that
(nA)? %42 = 0 (1) and hence X*+% = o (n#+2).

ThlS justifies the partial summations.

Now we know that

X)+e = Alve(nA)ES§lte = o (n!*?),
and e 3 e xe
v=1
Therefore,
¢4y =B £ v U, ) £ Aby Xive
dt n=1 v=1
=g E X+ B AV U, ()
v=1 n=y
=B = XV, (),
v=1
where V,(t) = 5 Arze VA2 [, (1),

N=yp

provided the inversion of the order of summation can be justified.
To show this it is enough to prove that

N 0
L Xite X Ah-e VA2 U, ()

v=1 n=yN+1

exists and tends to zero as N — .
We observe that for a fixed ¢ > 0, we have

§ Az:: Vh+2 U"(t) =0 { (N__ v + l)h_a max

n=N+1 m>N

5 VM2U40“

n=N+1

(N — vy 4 1)te
0{——%1—}'

and
1 N
Fim B X0 —v+1)h-°}=0{zvs+1,§l e (V=1
_ol_1 )
=0\ g5 |

=o(1)
as N—> »,since B> h + 1.
Thus the inversion is justified.
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We shall next show that

V, () = {
uniformly in v and ¢.
We write, for ¢ > 0,

O t2i-hy  (m=1)
O (v-1-P (1+2°8) (vt > 1), (29)

v+4-p @0
Vv (l) = 2 _+' 2

= 5+ I
ne=y n=vip4l
where p is the greatest integer not greater than —1—
Now
o= 3 Ah-e ymz U, (4

n=riptl

—ANE VMU, )+ B VML U, () 4her)

+1
n=vip+l
o MM fey 3 )]
= -a - 1 -—a-
(1 + vt)'g_h{P +n=y+p+l(n v ) }
v-h-l tl+a-h
- 0[(1 R ]
which satisfies the inequality (29).
In ¥, we use the inequalities

V4+2 U,, (t) — 0{ n-h-2¢ ]

A+ np |’
and we obtain

—h-zt v4p
= O{Tfm)g——ﬁ ”Ev (n—v+ 1)”“"}

~h-2 fa-h
—0ol-rXr_ "' _
{ (1 +w)p-r1 [’
which also satisfies (29).
Thus (29) is proved.
Finally by using (29), we obtain

tL Ps (1) =0 (77 S 0 M) 4 0@F) £ o () =o0 (1),
dt =1 w>1
since a >k and B> a + 1, which completes the proof of the theorem.

If we observe that Theorem 5 remains true when O is replaced by

0, and use one of the examples given in § 1, we obtain the following
analogue of Theorem F.
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Theorem 7. A necessary and sufficient condition that (nA)? 5, should

tend to a limit s (C) as n— o s thatt gi . () should tend to the limit

— dws as t—> 4- 0 for some « = 2.
We also have the following result, analogous to Theorem 1.
Theorem 8. If —1<a <0, B> a, and (23) kolds in the interval

(0, =), and ¢ % Y. (t) tends to a limit s as t— + 0, for some x = 2, then

(nA)2 8, tends to the limit — 2 s(C,B+2)asn—»w.
ke

Finally 1 should like to express my best thanks to Dr L. S.
Bosanquet for his valuable suggestions and criticisms.
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