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Do coherent structures organize scalar mixing in
a turbulent boundary layer?
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A scalar emanating from a point source in a turbulent boundary layer does not mix
homogeneously, but is organized in large regions with little variation of the concentration:
uniform concentration zones. We measure scalar concentration using laser-induced
fluorescence and, simultaneously, the three-dimensional velocity field using tomographic
particle image velocimetry in a water tunnel boundary layer. We identify uniform
concentration zones using both a simple histogram technique, and more advanced cluster
analysis. From the complete information on the turbulent velocity field, we compute
two candidate velocity structures that may form the boundaries between two uniform
concentration zones. One of these structures is related to the rate of point separation
along Lagrangian trajectories and the other one involves the magnitude of strong shear in
snapshots of the velocity field. Therefore, the first method allows for the history of the flow
field to be monitored, while the second method only looks at a snapshot. The separation of
fluid parcels in time was measured in two ways: the exponential growth of the separation
as time progresses (related to finite-time Lyapunov exponents and unstable manifolds in
the theory of dynamical systems), and the exponential growth as time moves backward
(stable manifolds). Of these two, a correlation with the edges of uniform concentration
zones was found for the past Lyapunov field but not with the time-forward future field.
The magnitude of the correlation is comparable to that of the regions of strong shear in
the instantaneous velocity field.

Key words: turbulent mixing, turbulent boundary layers

1. Introduction

A plume of pollutant that emanates from a point source in a turbulent flow spreads
mainly through turbulent diffusion. Turbulence widens its boundary and mixes scalar
concentration inside. Surprisingly, this inside mixing is not homogeneous. Inside the
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plume, large patches remain with little variation of the concentration, separated by
sharp boundaries across which the concentration jumps. We call these regions ‘uniform
concentration zones’ (UCZs). These regions are reminiscent of the regions of uniform
momentum in turbulent boundary layers (Meinhart & Adrian 1995; Hutchins et al.
2012; Eisma et al. 2015). This has inspired our nomenclature, but we will highlight the
connection with ramp–cliff structures below.

Recent work suggests that these large-scale motions strongly influence the dispersion
of air pollution in urban areas which are immersed in the atmospheric boundary layer
(Michioka & Sato 2012; Perret & Savory 2013). For instance, Michioka & Sato (2012)
showed that instantaneous large-scale low momentum regions passing over idealized street
canyons largely overlap with regions of high pollutant concentrations, while Perret &
Savory (2013) related these large-scale motions with the coupling or decoupling of the
flow within the canyon and the overlying flow.

The key question then is how zones of uniform concentration are related to structures
in the turbulent velocity field. This leads to two problems addressed in this paper: the first
problem is how to recognize UCZs, that is, how to devise an algorithm that reproduces
zones that can also be recognized by the eye. The second problem is what structures of the
velocity field make up the boundaries of UCZs.

UCZs, separated by edges, correspond to plateaus in the concentration field, separated
by cliffs. There is an obvious connection with the ramp–cliff structure of the scalar
field in shear flows (Warhaft 2000), and in isotropic turbulence with an imposed mean
concentration gradient (Holzer & Siggia 1994; Tong & Warhaft 1994) and more recently by
Iyer et al. (2018) and Buaria et al. (2021). As these cliffs also exist in isotropic turbulence,
large-scale structures, as observed in shear flows, are not necessary to generate scalar
cliffs. We use cluster analysis to search for scalar structures. It can find regions where
the concentration is (approximately) uniform, but it cannot find ramp–cliff structures.

Ramp–cliff structures have been linked to converging–diverging separatrices of the
instantaneous flow field (Warhaft 2000). Actually, this notion predates the concept of
local maximum ridges of the finite-time Lyapunov exponent (FTLE) field which are
currently thought to organize scalar concentration (Haller 2015), and which are candidate
coherent structures in the present article. Lyapunov exponents gauge the exponentially fast
spreading of fluid parcels that start close together. In three-dimensional (3-D) flow, the
three Lyapunov exponents add up to zero because of incompressibility. The connection
between the probability density functions (p.d.f.s) of the smallest Lyapunov exponent
(corresponding to compression) and the p.d.f. of local concentration has been discussed
by Götzfried et al. (2019), demonstrating the relevance of FTLE for the organization of
concentration in sheets. The width of these sheets has been related to the distribution of
FTLE (Kushnir, Schumacher & Brandt 2006). However, to the best of our knowledge, no
direct connection between concentration sheets and maximum ridges of the FTLE field in
3-D turbulence has been made.

The ramp–cliff structure of concentration is related to intermittency, reflected in the
scaling anomaly of high-order structure functions of scalar fluctuations (Iyer et al. 2018;
Buaria et al. 2021). This anomalous scaling has been proven in the case of random velocity
fields – a remarkable feat of turbulence theory (Shraiman & Siggia 2000).

We have done experiments on dispersion of a passive scalar from a point source in a
turbulent boundary layer in a water channel. Information about the complete 3-D velocity
field is obtained using tomographic particle image velocimetry (PIV). Simultaneously, the
concentration field of the released scalar is registered using laser-induced fluorescence
(LIF). Knowledge about the velocity field and its gradients allows the computation of
coherent flow structures.
929 A14-2
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Organization of scalar mixing in a turbulent boundary layer

The average p.d.f. of local scalar concentration in turbulence is a smooth near-Gaussian
function, but our interest is in snapshots of the concentration field with size comparable
to the boundary layer thickness. The associated p.d.f.s are marred by local maxima that
signify large regions with near-homogeneous concentration. Identifying these regions
starts with these p.d.f.s. We discuss two methods, of which cluster analysis is the preferred
one.

In this paper, we also explore the relevance of two different types of flow structures
for the organization of the concentration field. The first one is related to the rate at
which two close points separate in the velocity field. It involves an integration over a
time interval T using the velocity gradient field along a Lagrangian trajectory. A scalar
field is constructed from the logarithm of the spreading rate: the FTLE ΛT(x). Spreading
can also be tracked for backward time, then, the FTLE Λ−T(x) measures the rate of
convergence of two fluid parcels towards x. Ridges of local maxima of these scalar
fields are known as Lagrangian coherent structures (LCS) (Shadden, Lekien & Marsden
2005). In 2-D time-dependent chaotic flows, LCS are analogous to separatrices, in time-in
dependent chaotic fields, where they form impenetrable barriers for scalar transport.
In time-dependent two-dimensional flows, LCS form transient barriers of transport,
while they are advected almost passively. These objects offer the tantalizing prospect of
predicting the spread of contaminants from knowledge of large-scale coherent structures
only.

This concept has been applied in 2-D turbulence (Haller & Yuan 2000; Haller 2015) and
effectively 2-D geophysical flows; see Bettencourt, Lopez & Hernandez-Garcia (2012) and
references therein. Twardos et al. (2008) analysed an experiment on a weakly turbulent
2-D flow, using the related concept of stretching fields (Haller 2015). Line-shaped maxima
of the finite-time past Lyapunov field were found to act as barriers of scalar transport.
The finite-time Lyapunov field was measured in a turbulent boundary layer in a plane
perpendicular to the boundary by Chong, Wang & Zhang (2009). The relatively small main
velocity U∞ ≈ 9 × 10−2 m s−1 and small Reθ = 481 allowed the tracing of structures up
to 2 s, and allowed identification of hairpin-like structures in Λ−T(x). Wilson, Tutkun &
Cal (2013) identify LCS in a plane parallel to the boundary from the 2-D velocity field
measured in a turbulent boundary layer. By positioning the plane close to the boundary,
the relevant integration time T is the local eddy turnover time, which could be met in
the Eulerian frame. The observation time was further extended using Taylor’s frozen
turbulence hypothesis.

LCS may be a useful concept in fully developed 3-D turbulence. When they organize
as sheets, LCS structures may hinder scalar mixing and may thus be associated with
boundaries of UCZs. In this paper, we will explore this concept in an experiment of a
turbulent boundary layer that provides the full 3-D velocity field. Using this information,
we measure the finite-time Lyapunov field in a plane perpendicular to the boundary.
In addition, we identify the edges of UCZs, and perform a conditional average of the
finite-time Lyapunov field on these edges. The other flow structures studied in this paper
are regions of strong shear. These zones organize momentum transport, and correlate with
the boundaries of uniform momentum zones (Eisma et al. 2015). The question is whether
these regions are also correlated with the edges of the UCZs.

LCS became popular in the context of 2-D (geophysical) flows. The question is how
to fruitfully apply this interesting concept to scalar dispersion in fully developed 3-D
turbulence.

We will first describe our experimental methods in § 2. Next, we explain in § 3 how we
extracted UCZs, while the computation of finite-time Lyapunov fields and shear regions
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Figure 1. (a) Overview of the experimental set-up indicating the different components: four PCO Dimax PIV
cameras to measure the velocity field using tomographic PIV, a Photron Fastcam LIF camera, a high-speed
ND:YLF laser and the dye injection needle. The solid green line indicates the path of the laser beam/sheet.
(b) Schematic view: cyl indicates a cylinder lens, focal length, f = −25, 90 mm, sph is a spherical lens, f =
1500 mm.

are explained in §§ 4.1 and 4.2, respectively. With these preliminaries, we then describe in
§ 5 the relation between coherent structures of the velocity field and the edges of UCZs.

2. Experiment

In our experiment we inject dye from a point into a turbulent boundary layer in a water
channel. The set-up is illustrated in figure 1. The channel has a 5 m long experiment
section and cross-section of 0.6 × 0.6 m2. Fluorescent dye (Rhodamine B) is injected from
a point at the boundary, 0.75 m upstream from the measurement volume, with injection
velocity equal to the local mean velocity, 0.5 U∞, where U∞ is the free-stream velocity.
This ensured minimal perturbation of the velocity field. The measurement volume, located
3.5 m from the boundary layer tripping point, is at one of the sidewalls. The 3-D velocity
field in a box Lx × Ly × Lz = 5.72 × 6.29 × 0.57 cm3 was measured using tomographic
PIV. In terms of the boundary layer height δ99 = 3.81 cm the measurement volume is
1.5 × 1.65 × 0.15 δ3

99. Simultaneously, the 3-D concentration field was measured in five
slices spanning the Lz = 0.15 δ99 spanwise side of the measurement volume. Both fields
were registered using a scanning laser sheet at λ = 527 nm.

For the simultaneous measurement of the velocity and scalar concentration a scanning
tomographic PIV system was combined with scanning LIF. Four high-speed CMOS
cameras (Dimax, PCO) are used for tomographic PIV. Two cameras were equipped with
f = 200 mm objectives, whereas the others were equipped with f = 105 mm objectives,
all operating at f# = 11. This optics involved Scheimpflug adapters to allow for large
viewing angles while keeping the particle images in focus. The top two PIV cameras
were positioned at an angle of β = 30◦ with respect to the normal of the light sheet,
whereas both side-viewing PIV cameras were looking at an angle of β = 45◦. In order to
minimize astigmatic aberrations, water-filled prisms were employed for all PIV cameras.
LIF is performed using a single high-speed camera (Fastcam, Photron) equipped with a
f = 105 mm objective at f# = 8.

Illumination was provided using a 50 mJ double pulsed Nd:YLF laser (Darwin Duo
80M, Quantronix). The laser beam was focused with a spherical lens (f = 1500 mm), and
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Organization of scalar mixing in a turbulent boundary layer

a 90 mm wide and 1.4 mm thick light sheet was subsequently formed by two cylindrical
lenses with focal lengths of −25 and 90 mm. This light sheet spans the streamwise (x)
and the wall-normal direction (y) of the turbulent boundary layer, while the scanning is
performed in the spanwise direction (z). The measurement volume is scanned with five
thin laser sheets of 1.4 mm thickness each, with an overlap of approximately 30 %. A
scanning frequency fs of 640 Hz results in a recording frequency of the full measurement
volume of 128 Hz.

The flow is seeded with 10 µm diameter tracer particles (Sphericell) which are nearly
neutrally buoyant. The seeding density in the tomographic particle image velocimetry
(TPIV) images is around 0.025 particles per pixel. The excitation of the used dye
(Rhodamine B) matches the 527 nm operating wavelength of the laser. Separation of the
PIV and LIF signals is obtained by employing lowpass filters (PIV cameras) and a highpass
filter (LIF camera).

Calibration of the distorted LIF and PIV images was performed using a 3-D calibration
plate (Type 11, LaVision). The mapping of the distorted images was done using third-order
polynomials in the x- and y-directions, whereas linear interpolation is used in the
z-direction. Self-calibration, as proposed by Wieneke (2005), was performed to enhance
the accuracy of the particle reconstruction. After several refinements, the remaining
disparities were typically of the order of 0.1–0.2 pixels.

The particle volumes were reconstructed from the PIV images using five iterations
of the fast-MART algorithm (Elsinga et al. 2006). The particle volumes were 3-D
cross-correlated using an iterative multi-grid scheme reaching a final interrogation box
size of 323 voxels. This yields a spatial resolution of approximately 1.1 mm, corresponding
to 34 wall units in each direction. From the relation for the Kolmogorov length η, η+ =
(κy+)1/4, with κ = 0.41 (Stanislas, Perret & Foucaut 2008) we estimate η ≈ 0.2 mm at our
largest distance from the wall. Our velocity resolution is ≈ 5 η; resolving η is probably not
possible in TPIV. However, our interest is in large-scale structures. Velocity gradients were
obtained by employing a second-order spatial regression filter (Elsinga et al. 2010) with a
filter size of 1.5 times the dimension of the interrogation box in each direction.

Care was taken to ensure that the concentration in the LIF images is sufficiently low for
the fluid to be optically thin (Crimaldi 2008). In order to convert the local light intensity
to a local dye concentration, a calibration procedure was performed. For this purpose, a
small container with a known uniform concentration is positioned inside the measurement
domain, after which images were recorded. This procedure was repeated for a few different
known concentrations, resulting in a calibration curve for each pixel. Linear interpolation
was employed to obtain the dye concentration from intensities at each pixel location. After
calibration small negative concentrations were present in the free-stream region of the
flow, which is a result of the finite accuracy of the LIF calibration. In order to remove
these negative concentrations, the mean value of the concentration in the free-stream part
of the flow is set to zero by subtracting it from the concentration field.

The turbulent characteristics of the boundary layer were measured with the TPIV set-up,
with results shown in figure 2(a,b). Stereo PIV at a sampling rate of 40 Hz and collecting a
total of 6 × 103 samples was used to check the results. Good agreement was found between
the two methods. As figure 2 illustrates, the tomographic PIV results also agreed well with
the data from DeGraaf & Eaton (2000).

At the measurement location the main stream velocity is U∞ = 0.74 m s−1, the
boundary layer thickness is δ99 = 38 mm. The resulting momentum and displacement
thicknesses are θ = 4.0 mm and δ∗ = 5.2 mm, respectively, and the friction velocity is
uτ = 31 mm s−1. The momentum thickness Reynolds number is Reθ = 3050.
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Figure 2. (a) The mean velocity profile in inner scaling units. The dashed line shows the data from DeGraaf &
Eaton (2000) at Reθ = 2900. The full line is the law of the wall, U+ = (1/κ) ln y+ + B, with the von Kármán
constant κ = 0.41 and offset B = 5. (b) The profiles of the root-mean-square fluctuations of the three velocity
components, they have been normalized with the free-stream velocity U∞ = 0.74 m s−1, and are also compared
with data at Reθ = 2900 from DeGraaf & Eaton (2000) (dashed lines). (c) Mean concentration profile across the
boundary layer. The maximum concentration cm = 0.074 mg l−1 is used for normalization of the concentration
statistics.

The mean scalar concentration c̄ profile across the boundary layer is shown in
figure 2(c). The maximum concentration is found around y/δ99 = 0.1. The concentration
approaches zero in the free-stream part of the flow, as expected. The maximum value of
the mean concentration profile cm = 0.074 mg l−1.

The 3-D velocity field in the Lx × Ly × Lz = 1.5 × 1.65 × 0.15 δ3
99 measurement

volume was stitched together from the TPIV data in each of the 5 z-positions of the 1.4 mm
thick laser sheet. The velocity field was corrected for the advection of the mean flow in
the time interval (≈ 1.5 ms) between two subsequent laser sheet positions. The quality of
the measured velocity field was assessed by computing its divergence. The true velocity
field has zero divergence; for the experimental data we compute the normalized divergence
computed over the entire velocity field

ζ = ∇ · u/
[
∇u : (∇u)†

]1/2
, (2.1)

which has zero mean and mean square variation 〈ζ 2〉1/2 = 0.21. The value of this quality
measure is comparable to that in Casey, Sakakibara & Thoroddsen (2013), and references
therein.

The z-resolution of the LIF images is determined by the width of the scanned laser
sheet. In the present paper we focus on the concentration field in the central z = 0 plane.
Therefore, this concentration field is an average over the 1.4 mm wide laser sheet. Much
as for the scanned velocity field, also the concentration field has been corrected for the
streamwise advection by the mean flow during a scan cycle.

Summarizing, the outcome of our experiment is a completely resolved 3-D velocity
field together with a concentration field that is approximately resolved in slices of the 3-D
measurement volume. This information is illustrated in figure 3. In the following sections
we will quantify the relation between coherent structures of the concentration field and
those of the velocity field.

3. Uniform concentration zones

Figure 4 shows three snapshots of the concentration field, taken one large-eddy turnover
time δ99/U∞ apart. In these snapshots, UCZs can be recognized as large regions where
the variation of the concentration is small, bordered by sharp gradients. The concentration
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Figure 3. An illustration of the information gathered in the present experiment. Iso-surfaces of the shear
vorticity (defined in (4.5) in § 4.2) are shown in green, with ωsh = 2.8 U∞/δ99 whereas vortical structures
are show by the blue iso-surfaces with constant Q = 0.95 U2∞/δ2

99. The concentration field is shown together
with the in-plane velocity vectors viewed in a frame of reference convecting at Uc = 0.9 U∞.
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Figure 4. Snapshots of the concentration field in the central z = 0 plane of the measurement volume. The
snapshots are taken one large-eddy turnover time δ99/U∞ apart.

fields are from a 1.4 mm thick slice, centred in the spanwise extent of the 0.57 cm thick
measurement volume.

The idea of UCZs is intuitively appealing, but methods to find them must be well
defined. Here, we follow the well-established methods of cluster analysis (Bezdek 1980),
which were recently introduced in turbulence (Fan et al. 2019). We will compare our
results with the method used by de Silva, Hutchins & Marusic (2016), Adrian, Meinhart &
Tomkins (2000) and Eisma et al. (2015).
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The starting point is the histogram Phis(c) of concentrations. In the case of nzones
clustered concentration values (which may still be spread over the observation plane), this
histogram is characterized by nzones well-separated peaks. Each cluster corresponds to a
peaked distribution. The concentrations in each of those still vary, but the variation is much
smaller than that in the entire snapshot. In practice, clusters are not so well defined and the
art becomes estimating the number nzones of clusters and to decompose the histogram into
a sum of peaked distributions that are centred on nzones distinct concentration values. The
first task is done using the statistical technique of kernel density estimation (Silverman
1986), while the tessellation of the concentration field in zones is done using the fuzzy
cluster method (Bezdek 1980).

The histogram Phis(c) is a discrete estimation of the underlying p.d.f. P(c). The number
of clusters is the number of local maxima of P(c). A standard statistical procedure exists
to overcome ambiguity associated with the width and placement of the discrete histogram
bins (Silverman 1986). The trick is to endow each pixel value with a Gaussian distribution
of concentrations with width h, and sum them. A question is the choice of the smoothing
factor h. It can be proven that, for a Gaussian probability distribution function P(c), the
optimum h is h ≈ σP n−1/5, where σP is the standard deviation of P(c). Of course, in our
case P(c) is not a Gaussian (we are counting its local maxima), but experience teaches us
that this choice for h is adequate.

Cluster analysis to find UCZs can be compared with the ad hoc method for
finding uniform momentum zones described by de Silva et al. (2016), Adrian et al.
(2000) and Eisma et al. (2015). Let us now briefly describe this method. For each
concentration snapshot c(x, t) a histogram Phis(ci) is constructed of nhis = 32 equally
spaced concentrations ci, i = 1, . . . , nhis that span the dynamic range of c(x, t). The
number nhis is chosen small enough to counter noise, but large enough to distinguish
peaks. Then, (i) the maximum cmax

i of Phis is found. (ii) This maximum is represented
by a Gaussian PG(ci) = Pc(cmax

i ) exp(−(ci − cmax
i )2/σ 2), while its width σ is determined

in a least squares procedure. (iii) This peak is deleted from the histogram: Phis(ci) →
max(Phis(ci) − PG(ci), 0), after which steps (i) through (iii) are repeated nzones times.
(iv) After sorting the Gaussians with respect to their peak position, the intersections
of neighbouring Gaussians are found. These intersections constitute the boundaries of
the UCZs. Notice that this assignment of zones differs from that in the cluster analysis:
concentration in the tail of a Gaussian is now associated with another cluster. No such
ambiguity exists in the cluster analysis, which is also insensitive to the choice of discrete
histogram bins. The two methods described will find different zone edges, and will find a
different association with flow structures.

The average number of zones from the kernel density estimate is nzones = 3.7 ± 0.9,
with 0.9 the root-mean-square variation. Therefore, we fixed the number of zones to four.
An estimate of the number of zones from the discrete histogram is fraught with uncertainty.
We will always rank the zones according to their area. Thus, the ‘blue sky’ in figure 5 has
rank 1, and the neighbouring (green) zone has rank 3.

The outcome of both methods for a selected concentration snapshot is illustrated in
figure 5; both methods find approximately the same zones, but there are differences. Below
we will argue that the cluster method is superior, as it can discriminate more acutely
between flow structures.

Apart from the technique of kernel density estimation, we believe that there does
not exist an objective way to estimate the number of uniform zones. Moreover, as has
been argued by Fan et al. (2019) in the context of uniform momentum zones, adding or
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Figure 5. (a) Snapshot of tracer concentration c(x, t) in the centre plane of the measurement volume. (b) The
concentration field of (a), coarse grained into nzones = 4 UCZs using the simple histogram method. (c) Same as
(b), but using the cluster method. (d) Histogram method: the thick grey line is the histogram of concentrations
c, with the range of c in (a) binned into 32 concentration levels. The lines are four Gaussian concentration
profiles. The grey dashed vertical lines, the intersections of adjacent Gaussians, indicate the boundaries of
the uniform concentration zones in (b). The dashed line is the sum of the Gaussians. This method results
in clear discrepancies between the measured and reconstructed histograms. (e) Same as (d), but now for the
cluster method. The lines are the histograms of the four clusters. The dots are now the reconstructed histogram,
they perfectly coincide with the measured histogram. In (b,d) the zones are numbered according to their area.
( f ) Kernel density estimation: the dots are the measured histogram, the full line is its reconstruction through
Gaussian smoothing. The number of local maxima of the smooth curve is nzones = 4; the maxima are indicated
by the arrows.

subtracting 1 from the number of zones did not change their identification of interfacial
layers.

4. Coherent structures of the velocity field

4.1. Finite-time Lyapunov exponents
FTLEs gauge the exponentially fast spreading of nearby points. They were computed
from the measured velocity field u(x, t) and strain field A(x, t), (A = ∇u, components
Ai,j = ∂ui/∂xj), by integrating the evolution of small separations δ(t) along a Lagrangian
trajectory,

dδ

dt
= A(x(t), t) · δ(t), with

dx(t)
dt

= u(x, t). (4.1)
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The time integration of (4.1) over a time interval [t0, t] defines the evolution matrix
M t

t0 as δ(t) = M t
t0 · δ(t0). This matrix was computed on a 2-D grid of initial points

x0 = x(t0) in the central (z = 0) plane of the measurement volume. As time progresses,
fluid parcels may leave this plane and explore other z values; these parcels are tracked
in our 3-D velocity field. Therefore, the full 3-D measured velocity field was used in the
computation of Λ±T . Choosing the central plane minimizes the loss of fluid parcels exiting
in the spanwise direction. The resulting Lyapunov field at z = 0 is compared with the
concentration field of the central slice; the information in the other four slices was not
used. The Lyapunov exponent is related to the separation of infinitesimally close points.
When a computation is done using actual points advected by the velocity field u(x, t), their
separation has to remain small, which necessitates their replacement when their separation
grows too large. If not, the advected points which started near x0 may move to completely
uncorrelated regions of the velocity field and no longer reflect the Lyapunov exponent for
the Lagrangian trajectory that started at x0. This is irrelevant if instead the gradient field
A is used, but the statistical noise of A is larger than that of u. The accuracy of measuring
gradients of the velocity field in our experiment has been addressed through the divergence
error (2.1). The integration of (4.1) was done using a simple forward Euler scheme, and
the fields at x(t) were computed from the measured 3-D PIV velocity fields using trilinear
interpolation.

The largest eigenvalue λ3 of the positive Cauchy–Green tensor

C t
t0 = M t

t0

(
M t

t0

)†
, (4.2)

with † the adjoint, defines the finite-time future Lyapunov exponent ΛT as

Λt
t0(x0) = 1

2T
ln(λ3), (4.3)

with T = t − t0. Our measurements of the velocity field are Eulerian, which means that
the time interval T is restricted by the advection of fluid parcels until they exit the field of
view. Consequently, there is a distribution of Lagrangian times T over the field of view.
Most of the time, trajectories leave the downstream side of the field of view, but they may
also exit a z-boundary of the measurement volume. In figure 6 we show these times for one
snapshot of Λ−T . (Throughout we use the shorthand ΛT for Λ

t0+T
t0 and Λ−T for Λ

t0−T
t0 .)

Backward in time moves us upstream, so that the integration times are shortest for the left
part of the frame. With increasing integration times structures of Λ±T become narrower.

The Lyapunov field ΛT(x) measures the spreading of nearby fluid parcels in the future.
However, the boundaries of UCZs were formed in the past. The past of fluid structures
can be studied by starting Lagrangian trajectories at x0 in the field of view, and integrating
equation (4.1) backward in time. The corresponding Lyapunov field Λ

t0−T
t0 (x) is then again

defined in terms of the eigenvalue λ3.

Λ−T(x0) = − 1
2T

ln(λ3). (4.4)

Note that the smallest eigenvalue of C t0−T
t0 is comparable to the forward-time Lyapunov

exponent at time t0 − T . Local maxima of this field indicate regions in the flow where
points were separated in the past, but have converged to x0 at the instant of observation. On
the other hand, structures are advected, so that future Lyapunov exponents already existed
in the past and then may have organized the concentration distribution. The question then
is whether it is the past or future Lyapunov field that is most relevant for boundaries of
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Figure 6. (a) Snapshot of the past Lyapunov field Λ−T , which is obtained from the measured velocity field
and its gradient field by integrating (4.1) backward in time, t : 0 → −T . (b) Because of the mean velocity
in the turbulent boundary layer, there is a distribution of the maximum integration times T available for the
computation in (a); it is shown in (b). Since the mean flow is from left to right, the integration time is longest
for the rightmost part of the snapshot shown in (a). In the lower right corner, the integration time is limited by
fluid parcels exiting through a lateral (z) boundary of the measurement volume.

the UCZs. Another question concerns the time t′ at which the scalar field c(x, t′) should
be compared with structures of C t+T

t or C t−T
t : should t′ be chosen t or a later or earlier

time?
When computing statistics, we restrict field coordinates (x, y) to the upstream half of the

observation window for past Lyapunov exponents, and the downstream half of the future
Lyapunov exponents. This corresponds to integration times |T| � 0.05 s. In finding the
correlation of Λ±T with the edges of UCZs we only include points where Λ±T is convex
in the direction of the eigenvector ξ3 corresponding to the largest eigenvalue λ3 of Ct±T

t ,
ξ̃3 · H · ξ̃3 < 0, with the Hessian H ij = ∂2Λ±T(x)/∂xi∂xj, and ξ̃3 the projection of ξ3 on
the xy-plane. More steps to refine the FTLE field to ridges were mentioned by Farazmand
& Haller (2012). We finally impose a threshold Λ±T > 4 s−1. This threshold corresponds
to the noise level of Λ−T in the ‘blue sky’ outside the boundary layer (zone 1 in figure 5).

4.2. Shear vorticity ωsh

As a second velocity field candidate for the edges of UCZs, we consider regions of
strong shear. In order to isolate those, the 2-D (u, v) projection of the velocity field was
decomposed into three parts (Kolár 2007). This decomposition was introduced originally
to provide a more robust description of vortices in turbulent flows, but is now used to
detect shear layers (Maciel, Robitaille & Rahgozar 2012).

With this aim, the velocity gradient ∇u is separated into components representing
rigid-body rotation, elongation and the desired true shear. The shear vorticity ωsh is then
defined as

ωsh =
∣∣∣∣∂ ũ
∂ ỹ

− ∂ṽ

∂ x̃
−

{
sgn

(
∂ ũ
∂ ỹ

)
· min

(∣∣∣∣∂ ũ
∂ ỹ

∣∣∣∣ ,
∣∣∣∣∂ṽ

∂ x̃

∣∣∣∣
)

− sgn
(

∂ṽ

∂ x̃

)
· min

(∣∣∣∣∂ ũ
∂ ỹ

∣∣∣∣ ,
∣∣∣∣∂ṽ

∂ x̃

∣∣∣∣
)}∣∣∣∣ ,

(4.5)

where ũ and x̃ refer to a coordinate system formed by the principal axes of ∇u, rotated over
45◦. Local maxima of this field are the shear layers found by Meinhart & Adrian (1995),
which separate regions with nearly uniform velocity (Eisma et al. 2015). A generalization
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Figure 7. A snapshot from the measured time series of scalar concentration and 3-D velocity field. (a)
Concentration, coarse grained into four UCZs, (b) past Lyapunov field Λ−T , (c) shear vorticity ωsh. In
collecting statistics, a narrow region near the wall (indicated by the grey region) was excluded. The field Λ−T
has been filtered to show only regions with negative curvature in the direction of the eigenvector ξ3. For clarity,
only values Λ−T , ωsh > 20 are shown.

of (4.5) does not exist, but an alternative way to find shear layers, but now using the full
3-D velocity field, has been proposed by Horiuti & Takagi (2005). We also would like to
point to Haller & Beron-Vera (2012), who propose quantifying shear using the eigenvectors
of the Cauchy–Green tensor (4.2).

Summarizing, our measurement of the space–time velocity field in a 3-D volume allows
us to compare three candidate velocity structures. The past Lyapunov field Λ−T(x), which
relates to the past organization of the concentration field and attracting structures, the
2-D shear vorticity ωsh(x), which refers to the instantaneous velocity field and the future
Lyapunov field ΛT(x) which corresponds to repelling structures.

5. Results

Figure 7 shows the concentration, the finite-time Lyapunov exponent, and the shear
vorticity in a snapshot of the xy plane centred in the measurement volume. We register time
series at a frequency of 128 Hz (≈ 6 U∞/δ99), lasting 6.5 s, corresponding to 1.2 × 102

large-eddy turnover times δ99/U∞. In collecting statistics, a narrow region near the wall,
where gradients are large, was excluded. This region is indicated in figure 7; its width is
150 y+ (4.73 mm), which includes the peak in u′ in figure 2. Our experiments are in the
Eulerian reference frame. Due to limitations on the integration time, the field Λ−T in the
left side of figure 7(b) is more diffuse than in the right side of the figure.

We will now discuss the relation between the Λ−T and ωsh fields, and finally present
our main result, that is the relation between maxima of the finite-time Lyapunov field and
edges of UCZs.

5.1. Statistics of Λ±T and ωsh

Loosely speaking, Λ±T is the time average of the largest stretching induced by the strain
A over a Lagrangian trajectory, while ωsh is the instantaneous value of the strongest shear
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Figure 8. (a) Full lines: probability density function of Λ−T (black), ΛT (grey), and ωsh (dashed). (b) Joint
histogram of Λ−T and ωsh; the colour scale of the histogram is logarithmic. The full line indicates 〈Λ−T 〉 as a
function of ωsh.

that it induces. The p.d.f.s of Λ−T and ΛT in figure 8(a) are remarkably similar, but that of
ωsh has a long tail. Local maxima of all three fields are candidate structures organizing the
distribution of passive scalar. Still, their nature is very different. Not surprising, the fields
Λ−T and ωsh are not strongly correlated, as is illustrated in figure 8: for each ωsh, Λ−T has
a broad distribution, with the average Λ−T increasing very slightly with increasing ωsh.

The regions of large ωsh in figure 7 are diffuse blobs, so are those of Λ−T . Sharp line-like
structures of Λ±T are only expected for long enough integration times T , which should be
of the order of the large-scale turnover time. On average, our maximum integration time
T ≈ 0.1 s, while the typical eddy turnover time δ99/urms ≈ 1 s. Clearly, sharply defined
structure of Λ±T needs a true Lagrangian measurement. Nevertheless, it is possible to
measure the statistics of blobs with large Λ±T and ωsh. By computing the second-order
moment matrix of these regions and finding the eigenvector with the largest eigenvalue,
the orientation of these structures can be found. As figure 9 illustrates, patches of large
Λ±T ≥ 20 s−1 are inclined at an angle of ϕ ≈ 20◦, which agrees with Chong et al. (2009)
who identified these regions with hairpin vortices. Patches of large ΛT do not have a
preferential orientation whereas the shear field ωsh appears to be oriented parallel to the
boundary. As will be argued below, edges of concentration zones correspond to Λ−T ,
and much less to ΛT and the association of Λ−T (and not ΛT ) with genuine structures is
tempting.

5.2. Conditional averages
In finding a connection between the edges of uniform scalar concentration zones and
regions of large Λ±T we follow the procedure of Bisset, Hunt & Rogers (2002), but with
an important caveat. The procedure is to compute the conditionally averaged function
〈Λ±T(x, y − y0; t)〉x,t, with y0 the vertical (wall-normal) coordinate of an edge of a
uniform concentration zone. The caveat is that we compute conditional averages relative to
those where y0 is chosen randomly. Specifically, we show the ratio of the average function
〈Λ±T(x, y − y0; t)〉x,t, with y0 the true zone edge over the average function with y0 taken
randomly. When this ratio is one, no distinction can be made between the true and random
y0, and zone edges are not correlated with Λ±T . The random choice of y0 is such that its
p.d.f. is the same as that of the true y0. We will denote the relative averages as Λ̃−T,T and
ω̃sh. Further details are in the Appendix.
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Figure 9. The orientation ϕ of (unconnected) regions Λ±T ≥ 20 s−1 and ωsh ≥ 20 s−1. (a) The angle ϕ is
defined as the angle of the longest principal axis of the region with the horizontal. (b,c) The p.d.f.s of ϕ.
Regions of ωsh are mostly oriented parallel to the boundary; those of Λ−T are inclined at an angle of ϕ ≈ 20◦.

Conditional averages are shown in figure 10. We have computed relative conditionally
averaged vertical profiles of Λ±T and ωsh on the boundaries of the second largest UCZ
shown in figure 10(d), which corresponds the green zone in figures 5(b,c) and 7(a), but
the conclusions are comparable to those involving all boundaries. In addition, we have
removed small isolated patches (relative area < 5 × 10−3 of the full frame) of this zone
and zones of other rank. Finally, we recall that we only consider Λ−T for the right half of
the frame, and vice versa for ΛT .

The central result of this paper, shown in figure 10, involves the conditional statistics of
Λ±T and ωsh on zone edges. Those edges are determined in two ways: using the cluster
method (figure 10b,c,e, f,g) and using the simple histogram method (figure 10d). In the case
of the cluster method, the correlation of the past Lyapunov field Λ−T with concentration
edges is much larger than that of the future ΛT (figure 10b,c). This agrees with the result
of Twardos et al. (2008) in weakly turbulent 2-D flow who found that contours of an
advected scalar field follow the past stretching field, and that of Kushnir et al. (2006) in
numerical turbulence (Reλ = 24) who conclude that gradient sheets of the dissipation field
are formed by the contracting eigenvalue of M T . A similar correlation with edges of the
concentration zones is seen for the relative shear vorticity ω̃sh in figure 10(e).

The increase at a zone edge of the past FTLE field Λ−T is a mere 0.05 (5 %) above the
random background Λ̃−T = 1, and a similar amount above the future Λ̃T . The significance
of this enhancement should be compared with the concentration of ω̃sh on edges of uniform
momentum zones (regions of uniform u(x, t)), ω̃sh ≈ 1.3 (30 %), shown in figure 10(g).
It was derived from the present data using the same cluster analysis. The linkage of these
two structures – both derived from the velocity field – has been discussed in Eisma et al.
(2015), Christensen & Adrian (2001) and Elsinga & Marusic (2010).

The significance of our result is further illustrated in figure 10(b,c) where the correlation
is seen to depend sensitively on the time delay �t between the FTLE field and the
concentration zone edges. Specifically, we correlate edges of the concentration field
c(x, t + �t) with the FTLE fields Λ̃t+T

t and Λ̃t−T
t for �t increasing from −0.023 s to 0 s.

Although the field Λ̃t−T
t explores the past, the conditional average peaks at the present.

The cluster method needs the number of zones nzones as input. Throughout, we have
fixed it to the averaged kernel density estimate, nzones = 4, both for the cluster and the
histogram method. Figure 10( f ) shows the conditional average Λ̃−T

t for nzones = 3, 4 and
5. There is no significant effect of setting nzones = 5, but there is for nzones = 3. We always
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Figure 10. Conditional averages of the finite-time Lyapunov fields 〈Λ±T (x, y − y0; t)〉x,t, and shear vorticity
〈ωsh(x, y − y0; t)〉x,t on the vertical (wall-normal) coordinates y0 of UCZs, relative to those conditioned on
randomly picked coordinates y0. (a) Illustration of conditional averaging on the edge of the zones with ranks 2
and 3 (zone 3 is the green zone in figures 5b,c and 7a). For the past Lyapunov field Λ−T , averages are restricted
to the right half of a frame, since fluid parcels there have the longest observation history. The left half (grey
region) is used for ΛT . (b,c) Relative conditional averages Λ̃−T,T as a function of the time delay �t of the
concentration field; �t increases from �t = −0.023 s to �t = 0 s. The edges of the concentration field were
found with the cluster method. (d) Same as (b,c) but for �t = 0, and edges found with the histogram method.
(e) Relative shear vorticity ω̃sh, conditionally averaged on concentration edges found with the cluster method.
( f ) Averages Λ̃−T for �t = 0, with zone edges found from the cluster method, with nzones = 3, 4 and 5. (g)
Values of Λ̃−T and ω̃sh conditionally averaged on edges of uniform momentum zones, found with the cluster
method. Notice the change of the vertical scale.
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count the blue sky as a zone, and take conditional averages on the edges of the zone with
rank 2. Therefore, fixing nzones = 3 almost always amounts to averaging with respect to
the turbulent–non-turbulent interface.

For the edges found with the histogram method (figure 10d) there is almost no distinction
between past and future Lyapunov exponents; perhaps illustrating the superiority of the
cluster method.

Summarizing, we find a small but significant correlation between the edges of UCZs,
and both the past-time Lyapunov field and the shear vorticity field.

6. Conclusion

We have quantified the large-scale organization of scalar concentration in a turbulent
boundary layer. In analogy with uniform momentum zones in turbulent boundary layers
(Meinhart & Adrian 1995; Hutchins et al. 2012; Eisma et al. 2015) we have used the term
‘uniform concentration zones’, but we emphasize the strong connection with ramp–cliff
structures (Warhaft 2000; Iyer et al. 2018; Buaria et al. 2021). Two different procedures
were described for the identification of UCZs, with superior results being obtained by
the cluster method. Still, it can miss zones, or can find zones which are not obvious to the
eye. After all, the concentration inside a zone is not strictly uniform. Ramp–cliff structures
share the sudden change of concentration (cliffs) with the edges of UCZs. However, cluster
analysis cannot identify ramp–cliff structures.

Next, we considered structures of the velocity field as candidate zone edges. From the
measured 3-D velocity field and its gradients we compute the intersection of the 3-D
finite-time Lyapunov field Λ±T with the central plane of the measurement volume. Due to
the advection by the mean velocity, the longest time interval over which trajectories could
be integrated is T ≈ 2 δ99/U∞. This may be too short to see a clear development of a
Lagrangian coherent structure. Further refinement of the Λ−T field to its local maximum
ridges may decrease the random background of the measured correlations.

Concentration edges found with the cluster method only correlate with the past
finite-time Lyapunov field Λ−T . They select converging rather than diverging flow
structures. No such distinction between past and future can be made for concentration
edges found with the histogram method. Perhaps this points to the superiority of the cluster
method.

The concentration of both Λ−T and ωsh fields on the edges of UCZs is quite small
compared with the random background. Using our techniques, it is a mere 5 %. This value
can be compared with the concentration of shear vorticity on edges of uniform momentum
zones, which is well established in the literature; it is 30 % using the same techniques.

Our conclusion is that the question as to which large-scale velocity structures organize
the scalar concentration is still open.
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Figure 11. Conditional averages of finite-time Lyapunov exponents 〈Λ±T (x, y − y0; t)〉x,t, and shear vorticity
〈ωsh(x, y − y0; t)〉x,t on both randomly picked y0 and true vertical (wall-normal) coordinates y0 of UCZs.
The figure illustrates the necessity of relative conditional averages. (a) Compares conditional averages with
respect on the true edges y0 (black lines) with those on the randomly picked y0 (grey lines). For ωsh, the
displacement of this structure from y − y0 = 0 is roughly the correlation length. (b) Profiles of 〈Λ−T (x, y; t)〉x,t
and 〈ΛT (x, y; t)〉x,t (full lines) and 〈ωsh(x, y; t)〉x,t (dashed line). (c) Profile P( y0) of zone edges; it is obscured
by its randomized version.

Appendix. Accidental conditional averages

We demonstrate that conditional averages may show a non-trivial dependence on y − y0,
even for randomly picked y0. The reason is that the ordinary averages 〈Λ±T(x, y; t)〉x,t and
〈ωsh(x, y; t)〉x,t strongly depend on the height y in a turbulent boundary layer.

Conditional averages on the genuine edges y0 should, therefore, be taken relative to ones
using randomly picked y0. Because also the distribution of edges y0 is inhomogeneous, the
randomly picked coordinates y0 should have the same p.d.f. as the genuine ones. This can
trivially be achieved by using a weighted pseudo-random number generator. Although
further refinements on this ‘null hypothesis’ are possible, we believe that this approach
suffices to discriminate real from accidental correlations in our experiment.

Figure 11(a) compares conditional averages with respect to real and random vertical
coordinates of edges y0. Clearly, the random conditional averages show structure
(steps), which is due both to the correlation properties of Λ±T and ωsh, and to the
non-homogeneous distribution of the averages 〈Λ±T(x, y; t)〉x,t and 〈ωsh(x, y; t)〉x,t, which
are shown in figure 11(b). Conditional averages with respect to the true edge locations
y0 involve the p.d.f. of y0, as do the averages with respect to the randomly picked y0.
Both p.d.f.s are shown in figure 11(c). The p.d.f. of the edge locations is proportional to
the mean concentration gradient 〈|∂c(x, y; t)/∂y|〉x,t. To the best of our knowledge, the
statistical bias of conditional averages seems to have been ignored in the literature so far
(Bisset et al. 2002; de Silva et al. 2017).

The emergence of non-trivial conditional averages can be understood using a simple
analytical argument. We demonstrate that a conditional average of random functions on
random points shows structure, even though the points and functions are completely
uncorrelated. This is the case when the average function itself has a non-trivial dependence
on its argument.

Imagine we sample random functions fi( y) at random points y0. In our case these
random functions are Λ±T(x, y) and ωsh(x, y) at different x and snapshots t, while they
are conditioned on the vertical coordinate y0 of edges.
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We first do the average over i at fixed y0. Then, for a (small) interval around
y0, we Taylor expand with respect to y′ = y − y0. The average function is 〈fi( y0)〉 +
〈( d/ dy0)fi( y0)〉 y′ + 1

2 〈( d2/ dy2
0)fi( y0)〉 y′2 + . . ., where 〈 〉 denotes the average over

realizations of the function fi( y). Since differentiation is a linear operation, we may
switch averaging and differentiation, so that the average over realizations is 〈fi( y0)〉 +
( d/ dy0)〈fi( y0)〉 y′ + 1

2( d2/ dy2
0)〈fi( y0)〉 y′2 + . . .. We next average over randomly picked

points y0. Now, the polynomial representation of the conditionally average involves
〈( y − y0)

n( dn/ dyn
0)〈fi( y0)〉〉y0 . If the average function 〈fi( y0)〉 is not flat and has a few

non-zero derivatives, the conditional average has structure.
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