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EXISTENCE OF INVARIANT WEAK UNITS 
IN BANACH LATTICES: COUNTABLY GENERATED 

LEFT AMENABLE SEMIGROUP OF OPERATORS 

K. PRABAHARAN 

ABSTRACT. Let S be a countably generated left amenable semigroup and {T„ \ 
a £ X} be a representation of I as a semigroup of positive linear operators on a 
weakly sequentially complete Banach lattice E with a weak unit e. It is assumed Ta 

are uniformly bounded. It is shown that a necessary and sufficient condition for the 
existence of a weak unit invariant under {Ta | a G X} is that mfae^ H(Tae) > 0 for all 
nonzero H in the positive dual cone of E. 

1. Introduction. The first asymptotic conditions for the existence of an equivalent 
invariant measure were given for a nonsingular point-transformation r on a probability 
space (X,F,p). The following result was proved, independently, by Y. N. Dowker [8] 
and A. Calderon [4]. 

THEOREM 1.1. Let (X, F, p) be a probability space. Let rbea nonsingular measurable 
mapping from X into X. Then the following conditions are equivalent: 

(i) There exists an equivalent finite invariant measure, 
(ii) limingp(r""A) > 0 ifp(A) > 0. 

E. Granirer [10] extended the above result to the case of (left) amenable semigroup 
of point-transformations. 

If T is a nonsingular transformation on (X, F, p) then r generates a positive contraction 
T on Li(X, F,/?); with each/ = d<\> /dp where 0 is a finite measure, one associates 
Tf = g given by g = d((j)or~x)l dp. Thus the problem of existence of equivalent invariant 
measures in (X, F,/?) generalizes to the problem of existence of strictly positive fixed 
points in Li(X,F,/?). 

U. Sachdeva [16] obtained the following result in the case of a left amenable semigroup 
of positive linear contractions on L\ (X, F, p). 

THEOREM 1.2. Let S be a left amenable semigroup and {Ta \ a G Z} be positive 
linear contractions on L\ (X, F, p). Then the following conditions are equivalent: 

(i) There exists a strictly positive f G L\ such that Taf =f, Va G Z. 
(ii) inf,Gl JA Ta\dp> 0, V/?(A) > 0. 
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Now we consider the generalization of the above result in a different direction. 
Consider a weakly sequentially complete Banach lattice E with a weak unit e, i.e., an 
element e G E+ such that e A \f\ = 0 for/ G £ implies/ = 0. 

P. C. Shields [17] proved the result: 

THEOREM 1.3. Let T be a bounded positive linear operator on E. The following 
conditions are equivalent: 

(i) There exists an invariant weak unit v in E, i.e., weak unit v such that Tv = v. 
(ii) infn H(Te) > 0, V// G E*++. 

The usual argument that uses construction of a countably additive measure in proving 
similar results in the case of a point transformation on a probability space or a contraction 
on Li(X, F,p) does not work in the above case. Shields used the concept of countably 
additive functional instead. 

For all our results we consider a countably generated left amenable semigroup £ and 
for the operators on E, we consider a positive linear operator representation {Ta : a G X} 
of Z with sup{||r«j|| : a G X} = K < oo. We obtain a result similar to the above results 
in our general setting. More precisely, we have the following: 

THEOREM 1.4. Let E be a weakly sequentially complete Banach lattice with a weak 
unit e. Let {Ta : a G £} be a representation of a countably generated left amenable 
semigroup as a semigroup of uniformly bounded positive linear operators on E. Then 
the following conditions are equivalent: 

(i) There exists an invariant weak unit v in E, i.e., 3 a weak unit v G E+ such that 
Tav = v, Va G X. 

(ii) infa G z / / ( 7 » > 0, MH G E*++. 

In our proof we use the concept of countably additive functional as P. C. Shields [17] 
did. But, instead of the Theorem 4 of [ 17] we use a weaker result from our main reference 
[14]. Once a sub-invariant weak unit is found, our proof differs entirely as the approach 
in [17] will not work in our case. 

It shall be noted that in the case of cyclic semigroup of operators generated by a positive 
linear contraction T, there are equivalent conditions for the existence of invariant weak 
units derived in terms of the Cesàro Averages of the operator T ([9], [4], [18] and [3]). 
As there is no straight forward generalization of such averages to our case, we do not 
deal with similar conditions in this paper. 

In Section 2, we have some preliminary results. 

In Section 3, we define operator averages that would generalize Cesàro Averages to 
the case of countably generated left amenable semigroup of operators. Then we prove a 
crucial asymptotic invariant property of the averages. 

In Section 4, we give the proof of Theorem 1.4. The operator averages defined in 
Section 3 are used in the construction of an invariant weak unit in Section 4. 
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2. Preliminary results. 

2.1. On Banach lattices. Let E be a Banach lattice. We denote the set all elements/ G £ 

such tha t / > 0 by E+ and we define E++ = E+\{0}. 

The dual of the Banach lattice E is denoted by E*. 

We consider a Banach lattice E satisfying the following conditions: 
(A) E has a weak unit e, /.<?., there exists e G £+ such that for a n y / G £, e A [/"| = 0 => 

/ = o. 
(B) Any norm bounded increasing sequence in E has a strong limit. 

The condition (B) is equivalent to weak sequential completeness ([ 14], p. 34). The 

condition (B) implies order continuity of the lattice norm (OCN): 

(OCN) For every downwards directed net (/, / G I) with A^fi = 0, one has lim/1|/ | | = 0 

Another condition that is equivalent to (OCN) is that every order interval [/*, g] = 

{h : / < h < g} in £ i s weakly compact. ([14], p. 28). 

We denote strong convergence in E by —> and weak convergence in E by >. We 

denote order convergence of monotone nets by j or [. 

DEFINITION 2.1. An ideal in a Banach lattice E is a linear subspace D for which j e D 

whenever \y\ < \x\ for some x G D. 

We have the following result from Lindenstrauss ([14], p. 28). 

THEOREM 2.2. A Banach lattice E is order continuous if and only if the canonical 

image ofE into its second dual E** is an ideal ofE**. 

Now consider the following theorem which is due to H. Nakano [15]. This result 

assumes only the condition (B). 

THEOREM 2.3. If {aa}a^\ is an increasing net of bounded norm in E+, then \/aa exists 

in E. Furthermore there exists a sequence {an} G A such that 

Vaa = Vnaan. 

2.2. On countably additive functional. Now we consider some results on countably 

additive functionals. These results are based on the work of P. C. Shields [17] and 

these results generalize the corresponding results on countably additive measures by 

L. Sucheston [18]. 

Let L be a Banach lattice satisfying the following condition (a-completeness in order): 

(SC) Suppose that {xn} is an increasing sequence in L and for some x G L one has 

xn <x,n= 1,2, Then Vxn exists. 
Note that the condition (SC) follows from condition (B). 

Let F and G be in L*. Then F A G and F V G are given by 

(FAG)(b)= inf [F(bx) + G(b2)], VZ?GL,Z?>0 
b=bl+b2,b^b2>0 

and 

(FVG)(b)= sup [F(fci) + G(fc2)l, VbeL,b>0. 
b=b\+b2,bub2>Ç> 
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and also it follows that for any Banach lattice L, L* is a Banach lattice satisfying the 
condition (SC) ([14], p. 3). 

DEFINITION 2.4. We say that a positive linear functional G on L is countably additive 
if any sequence {yn} in L is such that yn [ 0 then G(yn) [ 0. 

One has the following result, (see [17] for the proof.) 

LEMMA 2.5. Let F, G be positive linear functionals on L, and let G be countably 
additive. 

Ifb > 0 and (F A G)(b) = 0, then we can find a^ > 0, k - 0, 1, 2 , . . . such that 

oo 

b = ^ak and 
k=\ 

0 = G(a0)=F(al) = F(a2) = "'. 

2.3. On amenable semigroups. Let Z be a semigroup and /oo(Z) denote the Banach 
space of bounded real-valued functions on Z, with the supremum norm. 

A linear functional <j> on /oo(^) is called a mean if 

inf h(a) < (j)(h) < sup h(a) 
° a 

for any h G /oo(£)-
Let la, a G Z be the evaluation functional given by \Gh = h(a). 
With each linear functional <j> on /oo(Z) of the form </> = £™=1 A U*, where £™=j |ft I < 

oo, we associate the /i-norm 11 <̂ 11/, = E™=1 |ft|. 
A mean </> is called di finite mean if 

for some ft > 0 such that EJ^ A = 1 and o> G Z. 
Let La, a G Z be the left shift defined on /oo(Z) by 

Lah{p) = Kap), Vfc G /oo(Z). 

For V = ££=! ft la, e /^(Z), we define 

m 

L^h = J2PkL(Jkh. 
k=\ 

Furthermore, if we choose ip to be a finite mean then L^ will be a contraction on Z^. 
Indeed, if T/> = E^i A 1 ^ with E£=1 ft = 1 and ft > 0 then for any h G /oo(Z) we have 

Il m y m m 

11 ̂ -"0^11 oo = VLPkKM < Eft-II oo — | | " | | oo -
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A mean <j> is said to be a left invariant mean if 

(j)(LGh) = <t>{h\ V/i G /oo(I), Va G X. 

Note that for every left invariant mean <j> and for every finite mean 1/7, we have ^(L^h) = 

<Kh). 
Similarly we define right invariant means. A mean which is left invariant as well as 

right invariant is called an invariant mean. 
A semigroup X is called left amenable if there exists a left invariant mean. A semigroup 

X is called right amenable if there exists a right invariant mean. A semigroup X is called 
amenable if there exists an invariant mean. 

Obviously under the abelian assumption on the semigroup X, the concepts of left 
amenability, right amenability and amenability all coincide. It is also known that all the 
abelian semigroups are amenable ([6]). 

Day [6] proved the following result on a left amenable semigroup: 

THEOREM 2.6 (DAY). Let Hbea left amenable semigroup. Then there exists a net ̂ a of 
finite means such that ïpa converges in norm to left invariance, i.e., lima 11 ipaLa — V7** 11/, = 

0, Va G I 

In the case of countably generated left amenable semigroups, by a diagonal argument 
we have the following consequence, which is due to Sachdeva [16]. 

THEOREM 2.7. Let X be a countably generated left amenable semigroup. Then there 
exists a sequence ifjn of finite means such that ^n converges in norm to left invariance, 
i.e., lim„ \\4nLa - ^ J / , = 0, Va G X 

3. Existence of operator averages converging in norm to left invariance. Con
sider any finite mean of the form 

m m 

(1) 4 = £ P k U , where X > = 1, ft > 0 and ak G X. 
k=\ k=\ 

With this finite mean we associate the operator averages A^ given by 
m 

(2) A^EA^-
*=1 

Also, it follows that for any/ G E and for any F G £*, if we define h G /oo(£) by 

h(a) = F(Taf) 

then we have 
(3) F[A^(f)] = 4(h). 

Indeed, both expressions above are equal to £™=1 /3kF(Takf). 
We construct our sequence of operator averages {A^n} from the sequence of finite 

means {V n̂}, which converges in mean to left invariance. Note that the Theorem 2.7 
guarantees the existence of such sequences of finite means. 

First we shall show that the averages A^n asymptotically satisfy the left invariant 
property. 
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DEFINITION 3.1. Consider the operator averages A^n, n = 1,2,..., of the form A^n = 
£/£i PnkTan , where E™=i (3nk = 1. We say that the operator averages converge in norm to 
the left invariance if 

|| TaA^n — A^n || —» 0, as n —-> oo for each cr G X. 

THEOREM 3.2. L r̂ H be a countably generated left amenable semigroup, with {ipn} 
&emg a sequence of finite means which converges in norm to left invariance. Let A^n 

be the operator averages associated with ipn, as described above. Assume sup{||ra|| : 
a G X} = K < oo. Then operator averages A^n converge in norm to the left invariance. 

PROOF. Let T G I be fixed. 

Let F G £* and/ G E. Define /i G /oo® by 

h(a) = F(Taf), a G I . 

Let 

( 4 ) Vn = J2Pnk \(Jnk
 w h e r e E ^ t = ^ Pnk > 0 a n d Crn, G I . 

£=1 Jfc=l 

Then it follows that 
xl>n(h) = F(A^J) 

and 

4>n(Lrh) = Y,PnkF(TT(JJ) 
k=\ 

,mn x 

(rTF)(A^j). 

Therefore we can write 

\F(TTA^J - A,J)\ = \{rTF){A„J) - F(AitJ)\ 

= \lPttLr(h)-xl>„(h)\ 

< H^nLr-Vnll/, ' 11 ̂  11 oo 

< W^Lr-^-WFW-K-WfW 

< WnLr - ll>n\\,, • K • \\f\\, i f | | F | | < l . 

Since F € E* is arbitrary, we have 

sup |F(7VAV ; / -A0 / ) | < H^L.-Vnll/, •«•• 
I|F||<1 
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Therefore we have 

\\{TTA^ -AV ;J/ | | = WTrA^J-A^JW < W^nLr-^nW^K-Wfl 

The above result being true for each/ G E, we obtain 

\\TTA4)n -A.^\\ <\\xl)nLr-^n\\ix K. 

But, by assumption 

\\ijjnLr - ^nll/, —• 0 as n —> oo. 

Therefore we have 
||r rA^ — A^J| —>0, as « —̂  oo. 

This concludes the proof of Theorem 3.2. 

4. Existence of invariant weak units. In this section, we give the proof of Theo
rem 1.4. 

First we prove the following lemma. 

LEMMA 4.1. Let e be any weak unit in E and H E E^+. Suppose we have uniformly 
bounded linear operators, TPnln = 1,2,..., such that sup„ | |rpJ| < K < oo. Assume 
lim„ H(TPne) = 0. Then lim„ H(TPnu) = Ofor any u in E+. 

PROOF. Let u be any element in E+. Given any e > 0, there exists an integer k and 
w G E+ such that 

u = u Ake + wand ||w|| < e/2K\\H\\. 

Since limn H(TPne) = 0 , we can choose a positive integer N such that forn>N 

H(TPne)<e/2k. 

Thus, for n > TV, we get 

7 / ( 7 » <k-H(TPne) + H(TPnw) 

< ^•//(rp^) + ||//||-sup||ra|| • |H| 
a 

< k • H(TPae) + \\H\\ K- \\w\\ 

< k-e/2k + e/2 = e. 

Since e > 0 is arbitrary, the result follows. 

PROOF OF THEOREM 1.4. Assume that there exists an invariant weak unit v in E+. 
Suppose (ii) does not hold. Then there exists H G E^+ such that 

i n f / / (7» = 0. 

By Lemma 4.1, it follows 
in f / / (7» = 0. 
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But Tav = v for any a G Z; this implies 

0 = inf H ( 7 » = inf H{v) = H(v). 
(7 (J 

Since v is a weak unit this leads to H = 0, a contradiction. Thus we have (i) => (ii). 
Now we prove that (i) =» (ii). Assume inf«j//(7» > 0, V// G E*++. Let </> be a left 

invariant mean on loo(L). Define À G Z *̂ by 

(5) A(//) = </>[//(7»], tfe£^. 

Then we have 

(6) A(/ / )>0, V / / G ^ + . 

For any / / G £* and r G I , we have 

(7?*A)// = A(7;//) 

= </>[7?//(7»] 

= <i>{H{TTTaè)-\ 

= </>[//(7»] 

= A(//). 

Therefore for any a G X 
(7) O = A. 

Now, define 
(8) w = sup{wG E\ 0 < w< A}. 

Theorem 2.3 guarantees that u e E. Also we have 

0 < 7 > = 7̂ *w < T?\ = A. 

Therefore, by equation (8) it follows that 

(9) TGu < u 

Now, we shall show that u is a weak unit. Consider (A — u) A e. By Theorem 2.2, we get 

(A — u) Ae G £+. 

Thus, from equation (8) it follows that 

(10) (\-u)Ae = 0. 

Indeed, since u + (A — u) A e < u + (A — u) = A, the above result follows from the 
maximality of u as given by equation (8). 
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Now, suppose H(u) = 0 for some H G E*+. Equation (10) implies that 

( ( À - w ) A é ? , # ) = 0. 

Therefore, by Lemma 2.5 applied with L = £*, there exists a sequence {Hk} in E*+ such 
that 

oo 

// = £//„, 
k=0 

((A - w), Hk) = 0, for it = 0 ,1 ,2 , . . . and 

(*,tfo>=0. 

But, H(u) = 0md0<Hk<H implies 

Hk(u) = 0, for ifc = 0 ,1 ,2 , . . . ; 

this result, together with ((A — w), //#) = 0, k = 0,1, 2 , . . . implies 

\(Hk) = 0, for&= 1,2,.... 

Therefore, by equation( 6), we get 

Hk = 0, forifc= 1,2,.... 

Also, (e, Ho) =0 implies HQ = 0. Therefore we have 

oo 

//=£//, = 0. 
£=0 

Thus we have shown for an arbitrary H G El that H(u) = 0 implies H = 0; hence w is a 
weak unit. Thus, we have a weak unit w such that Tau < u, for any a G X. 

To complete the proof, it remains to find a weak unit v such that Tav = v for all 
a G Z. Consider a sequence {A^w} of operator averages which converge in norm to left 
invariance. Since 0 < Tau < u, we have 

0 < A^nu < u. 

Recall that order continuity (hence a fortiori condition (B)) implies that each order 
interval is weakly compact ([14], p. 28), and hence we have a subsequence {ipHk} of 
{ipn} such that {A,pn u} converges weakly to some element v in E+. 

CLAIM, v is a weak unit. 

https://doi.org/10.4153/CJM-1993-073-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-073-1


1308 K. PRABAHARAN 

PROOF. Suppose the opposite. Then there exists an H G E*++ such that Hv = 0. Thus 
we obtain 

H{A% u) -> H(v) = 0. 

This will imply 
i n f / / ( / » = 0. 

Indeed, suppose infer H(Tau) = e > 0 then for any ipn given by 

we have 

</>/! = I]Pnk \onk, where /?„, > 0 and XI Pnk = 1, 
Jfc=l k=\ 

Since infer H(Tau) = 0 and u is a weak unit, from Lemma 4.1 it follows that 
info- H(TGe) = 0. This contradicts our assumption. 

CLAIM, V is such that Tav = v, Ver G I . 

PROOF. Take any a G £. Since A.^ w —> v, as n̂  —> oo, for any H G E*++ we have, 

(11) lim //(Aw, u) = Hv. 

Also for each / / G £!. we have, 

\im (raH)(A, u) = (raH)v 

and hence, 
(12) lim H(TaA^u) = H(Tav). 

nk—>oo vnk 

But, 
(13) lim | / / ( /yU u)-H{A^ u)\ = 0. 

Indeed, by Theorem (3.2), we have 

(//(r^A^ w) — //(A^ M)| < \\H\\ • H^A^ — A^n \\.\\u\\ —• 0, as rc* —+ oo. 

Equations (11), (12) and ( 13) imply 

/ / ( / » = //v. 

Therefore H(Tav — v) = 0; this result being true for any / / G F£+, we get 

7 > = v. 

This completes the proof of (i) ^ (ii) of Theorem 1.4. 
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5. Illustrations. Let us consider a few special cases of our results. 

EXAMPLE 5.1. Let E = {1, 2,3, . . .} with addition. Then any x G /oo(^) is a bounded 
sequence of the form (xj,X2,...) with xn = x{n) and ||JC|| = sup |jcn| < oo. Given 
* = (JCI, JC2,*3,...), for any positive integer k define the sequence obtained by shifting 
the elements of the sequence x to the left by k places by x(k) = (%+1)? JC(&+2),.. •)• Then 
left shift operators Lk on loo(X) are given by Lk(x) = xik\ 

Consider the finite means on /oo(£) defined by 

n i = l 

We have 

I n i n 
ïpn(x) = - J ] li(x) = - J2xi 

n i=i n i=l 

(iPnLk)(x) = -±h(/k)) = -£/k\i) 
n i=i n i=i 

Therefore for any k, 1 < k < n we have 

1 n \ n 

\d)n - il>nLk)(x)\ = | - X>/ - - X>i+*| 
« ,=i n /=1 

_ ! | i 
- -\X\ +X2 + ' ' ' +Xk — Xn+i — Xn+2 — • • • — Xn+k\ 

n 
< - -2k- \\x\\ 

n 

Thus we have 

||t/>n — ^n^H/, < 2k/n —> 0, as « —̂  oo. 

Therefore {^n} is indeed a sequence of finite means on IOQ(L) converging in norm to left 
invariance. 

By our definition, the operator averages associated with ^n - \ Eg?! 1/ are given by 

1 n 

n i=i 

which are the Cesàro Averages of the operator T. Thus in the case of cyclic group, the 
results of Theorem 1.4 reduces to the results in [17]. 

Furthermore by Theorem 3.2 we obtain that if T is power bounded then 

117"nA„ — A„ 11 —̂  0, as n —> oo 

This is a well-known result; in fact this result holds under a weaker condition, namely T 
is mean bounded and ||T"||/n converges to zero. 

1 n 

n /=i 
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EXAMPLE 5.2. Consider an abelian semigroup Z generated by finitely many elements 
a i , cr2, . . .,<7d. 

Define^ el^ÇL) for k = l , 2 , . . . , d b y 

n i=\ k 

We have ||V>nl|/, = 1- Define the multiplication i/;* • i/jl
n by 

1 n n 

« 2 i=\ ,-=i * ' 
€-€ = -2HY:K^-

Clearly the multiplication defined above is commutative. Let \jjn - ty\ • ipl ipd
n. For 

any given o> in Z we have 

||-0n -^n^aJI/, 

< Wrih • U% • • • IIC111/, • ll^+111/, HVtfIk • IIM* - V ^ ) | l / , 
= 1 1 ( ^ - ^ ^ ) 1 1 / , - 0 , asrc-cx) . 

Note that the last step above follows by the same approach as in the previous example. 
Now consider two elements pi, P2 such that for k = 1,2 one has 

lim | | ( ^ - ^ ^ ) | | / , =0 . 

Consider the product p = pi • p2> We have 

HVVz - ^nLp\\i} = Ĥ n - ^nLp, +^nLPx - i)nLp^P2\\h 

< \\%l)n - V^p,||/, + HVv̂ p, - ^nLpx.Pl\\ix 

< ||V>n -^nLp,\\i, + \\iin-4)nLP2\\h • HLp.il/, —>0, asrc-^oo. 

Now consider any arbitrary element cr G Z. Then a is given by a finite product of ak, 
k = 1,2,..., d. By repeating the above argument for the finite product of crk, we obtain 

l imiK^-^Mk =0. 
n 

Hence 

1 n 

= ~t? ^ , V ' ̂ ? ^ r 
^ i\Ji h=\ • 2 d 

are sequences of finite means converging in norm to left invariance. 
By our definition, the corresponding operator averages are given by 

\ n 

A — V^ T'1 • Tl2 Tld 

U iiJ2 i* = l 
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By Theorem 3.2, if the operators are uniformly bounded, then the above averages 

satisfy the condition 

limllA/, — TaAj, II = 0, & = 1 , 2 , ...,d. 

For example, in the case of operators generated by two commutative operators S and 

T the operator averages are given by 

Also in this case Theorem 1.4 takes the following form: 

THEOREM 5.3. Let Ebea Banach lattice satisfying conditions (A) and (B). Let S, T be 

power bounded commutative operators. Then the following conditions are equivalent: 

(i) There exists an invariant weak unit v in E such that Tv = v = Sv. 

(ii) MijHi&Ve) > 0, \/H G E*++ 

Now let us consider an example of an amenable group which is not abelian. 

EXAMPLE 5.4. Consider a group Z generated by two elements o\ and 02 such that 

Gi - oJx, z = 1,2. Dixmier [7] proved that such a group is amenable. Therefore from 

Theorem 1.4, the following result follows: 

PROPOSITION 5.5. Let Ebea Banach lattice satisfying conditions (A) and (B). Let T\ 

and 72 be positive linear contractions on E such that ff = I, i = 1, 2. Then the following 

conditions are equivalent: 

(i) There exists a weak unit v in E such that T\ v - v = T2 v. 

(ii) infr HiTe) > 0, V// E E*++. 

Here the infimum is taken over all T, where T denotes a finite product of the operators 

T\ and T2. 

In the case of point transformations acting on a probability space, a similar result was 

proved by Blum and Friedman [2]. 

Groups generated by more than two elements are not amenable (see Dixmier [7]). 

Therefore, the results of the above proposition do not readily extend to cases involving 

more than two elements. 
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