
J. Fluid Mech. (2023), vol. 975, A8, doi:10.1017/jfm.2023.841

Nonlinear deterministic reconstruction and
prediction of remotely measured ocean surface
waves

Nicolas Desmars1,2,†, Moritz Hartmann2,3, Jasper Behrendt4,
Norbert Hoffmann1,5 and Marco Klein1,2

1Dynamics Group, Hamburg University of Technology, 21073 Hamburg, Germany
2Ship Performance Department, Institute of Maritime Energy Systems, German Aerospace Center (DLR),
21502 Geesthacht, Germany
3Institute for Ship Structural Design and Analysis, Hamburg University of Technology, 21073 Hamburg,
Germany
4BHS Hamburg, 21073 Hamburg, Germany
5Mechanical Engineering, Imperial College London, SW7 2AZ London, UK

(Received 6 February 2023; revised 27 September 2023; accepted 30 September 2023)

Algorithms for reconstructing and predicting nonlinear ocean wave fields from
remote measurements are presented. Three types of synthetic observations are used
to quantify the influence of remote measurement modulation mechanisms on the
algorithms’ performance. First, the observations correspond to randomly distributed
surface elevations. Then, they are related to a marine radar model – the second type takes
the wave shadowing modulation into account whereas the third one also includes the tilt
modulation. The observations are numerically generated based on unidirectional waves
of various steepness values. Linear and weakly nonlinear prediction algorithms based on
analytical models are considered, as well as a highly nonlinear algorithm relying on the
high-order spectral (HOS) method. Reconstructing surfaces from shadowed observations
is found to have an impact limited to the non-visible regions, while tilt modulation affects
the reconstruction more generally due to the indirect, more complex extraction of wave
information. It is shown that the accuracy of the surface reconstruction mainly depends on
the correct modelling of the wave shape nonlinearities. Modelling the nonlinear correction
of the dispersion relation, in particular the frequency-dependent wave phase effects in
the case of irregular waves, substantially improves the prediction. The suitability of the
algorithms for severe wave conditions in finite depth and using non-perfect observations is
assessed through wave tank experiments. It shows that only the third-order HOS solution
predicts the right amplitude and phase of an emerging extreme wave, emphasizing the
relevance of the corresponding physical modelling.
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1. Introduction

The deterministic (i.e. phase-resolved) prediction of the incoming wave loads on marine
structures represents one of the main challenges towards more efficient and safer offshore
operations. The cost reduction of offshore wind through the extension of operational
time windows for the installation/maintenance of offshore wind turbines, the gain in
efficiency of marine energy devices through active control or the safety improvement of
aircraft takeoffs/landings are only a few examples of domains that could benefit from the
advance knowledge of wave-induced structure motions. Such predictions are performed by
means of the calculation of the ocean surface evolution from the analysis of surrounding
wave measurements. More specifically, they consist of three steps: (i) measuring some
wave-related quantities, (ii) reconstructing the underlying wave field (i.e. extracting wave
information from the measurements) and (iii) propagating the reconstructed wave field to
the area of interest.

Regardless of their well-characterized properties and proven suitability for deterministic
predictions, in situ wave measurements, such as made from wave buoys (e.g. Fisher,
Thomson & Schwendeman 2021) or acoustic Doppler current profilers (Huchet et al.
2021), are not adaptable to predictions over a region in motion, such as around a ship with
forward speed, due to the need to update the measured region according to the trajectory
of the area of interest. In that case, measurements are typically performed from remote
sensors mounted on a moving structure. Lidar cameras, for example, have recently been
developed for the measurement of ocean surface displacements at a distance (Belmont
et al. 2007; Kabel, Georgakis & Rod Zeeberg 2019), providing suitable data for wave
prediction (Grilli, Guérin & Goldstein 2011; Nouguier, Grilli & Guérin 2014). Stereovideo
systems are also able, through the mapping of the surface elevation, to give access
to sufficient information for short-term forecasts (Mérigaud & Tona 2022). However,
the real-time accessibility of wave data from stereo imaging is still constrained by the
‘significant computational time required to extract the three-dimensional elevation maps
from a pair of images’ (Guimarães et al. 2020), and subject to strong visibility limitations.
Moreover, both lidar cameras and stereovideo systems are limited to measurement
distances of ∼100 m, restraining the prediction horizon to a few characteristic wave
periods. Even if such prediction horizons are already valuable for applications such as
optimal control of marine energy harvesting systems (e.g. Li et al. 2012; Ma et al. 2018),
using sensors of higher measurement range could benefit a much larger variety of offshore
operations.

The most commonly used remote sensors for the analysis of the ocean surface
surrounding an offshore structure are non-coherent X-band marine radars, which are
capable of measuring ocean surfaces over a much larger spatial domain, that is within a
radius of ∼3 km around the antenna. Surface wave identification from non-coherent radar
data relies on the interpretation of the backscattered intensity which depends, through
Bragg resonance, on the slope modulations of short ripples (gravity–capillary waves) by
longer gravity waves (e.g. Alpers & Hasselmann 1978; Alpers, Ross & Rufenach 1981).
In addition, both the radars and the aforementioned remote sensing instruments located
onboard a structure acquire data at grazing incidence. They are thus subject to wave
shadowing that creates spatial gaps in the measured data sets. Two main approaches are
used to retrieve the wave field from radar measurements (see the extensive review of
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Nonlinear prediction of remotely measured ocean waves

Huang, Liu & Gill 2017). The traditional method employs a semi-empirical modulation
transfer function that relates the modal amplitudes of radar intensity to those of surface
elevation in the frequency–wavenumber space (Young, Rosenthal & Ziemer 1985; Nieto
Borge et al. 2004). Because this method identifies gravity wave components by choosing
those which satisfy the linear dispersion relation, nonlinearities are disregarded. The
alternative approach relies on the direct resolution of the modulation mechanisms of the
radar backscattered intensity by assuming its proportionality to the surface slope. In that
case, the linear wave theory is also assumed to facilitate data processing (Dankert &
Rosenthal 2004; Naaijen et al. 2018; Simpson et al. 2020).

Nevertheless, the linear wave assumptions have been shown to limit the prediction
accuracy as the wave steepness and prediction horizon increase. To overcome this issue,
second-order wave models that better represent the steep waves’ sharpness have been
investigated (e.g. Hlophe et al. 2021), albeit with a limited impact on the prediction
accuracy because they miss nonlinear phase effects. Including corrections of the dispersion
relation, appearing at third order, was shown to significantly help improve predictions (e.g.
Blondel-Couprie, Bonnefoy & Ferrant 2013; Desmars et al. 2020; Meisner et al. 2023), as
well as using higher-order models based on the modified nonlinear Schrödinger equation
(e.g. Trulsen 2007; Simanesew et al. 2017). For large wave steepness, the high-order
spectral (HOS) method theoretically outperforms the aforementioned wave models (Klein
et al. 2020) by considering the evolution of the surface dynamics up to any arbitrary
order of nonlinearity, with a relatively high computational efficiency. However, despite
the rather large number of studies on HOS predictions, either based on sequential (Yoon,
Kim & Choi 2016; Wang & Pan 2021; Wang et al. 2022) or variational (Aragh & Nwogu
2008; Blondel, Bonnefoy & Ferrant 2010; Qi et al. 2018a; Fujimoto & Waseda 2020; Wu,
Hao & Shen 2022) assimilation strategies, the compatibility of the developed algorithms
with remote measurement techniques must be further evaluated. Indeed, previous works
suppose that the measurements (i) provide direct access to the surface elevation and (ii)
are uniformly sampled in space and time. These two assumptions are not verified by
non-coherent X-band radars in realistic conditions, for which the measurements take the
form of return intensities subject to (a priori unknown) wave shadowing. Moreover, rather
than a generally assumed sequence of spatial snapshots, radar data describe a space/time
helix (Al-Ani et al. 2019). The available data are thus indirectly related to surface elevation
and distributed in space and time in a non-trivial manner. It is expected that both of these
features have an influence on the capacity of the methods to access information about the
surface dynamics and predict the wave field.

It is thus proposed in the present paper to assess the impact of the modulation
mechanisms that non-coherent radar measurements are subject to on the performance
of linear, weakly nonlinear and highly nonlinear prediction algorithms. With this aim,
three types of measurements (also called observations) with different levels of modulation
are considered as input for the prediction of unidirectional wave fields with various
wave steepness values. First, the observations correspond to surface elevations randomly
distributed in space and time. Then, they are related to a radar model – the second
type takes the shadowing modulation into account whereas the third one also includes
the tilt modulation that makes the observed quantity mainly dependent on the surface
slope. Regarding the prediction algorithms, two approaches are employed. The first
one, based on the inversion of analytical wave models, extends the linear and weakly
nonlinear approaches proposed by Desmars et al. (2020) to radar observations and
to the assessment of the reconstructed/predicted surface potential. The second one
relies on the HOS method and extends the numerical basis of Desmars et al. (2022)

975 A8-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.841


N. Desmars and others

to irregular waves and to radar observations. It follows a rather classical iterative
optimization procedure that seeks the optimal variables (here, the HOS model parameters)
by fitting the observations during a predefined time interval, such as done by variational
assimilation, but presents some interesting numerical properties that are detailed later
in the paper. By inter-comparison of the performance pertaining to each algorithm, the
important hydrodynamic properties are highlighted for either the wave field reconstruction
or prediction, which are independently evaluated. The case of regular waves is first
considered to clearly identify the characteristics of each modelling method, then irregular
waves are investigated. High-fidelity synthetic wave data are first used, before applying the
methods to experimental wave tank data.

The paper is structured as follows. The theoretical aspects of non-coherent radar
measurements, followed by those of the algorithms used for the wave field reconstructions,
are presented in § 2. Section 3 details the numerical set-up that is used to evaluate
the performance of the surface reconstructions and discusses the results. Likewise, § 4
describes the chosen configuration to study the methods’ prediction performance, before
analysing the results. In § 5, the reconstruction/prediction methods are evaluated against
wave tank experiments. Finally, § 6 presents the overall conclusions.

2. Theoretical background

Predicting surface waves deterministically implies going through three major steps. The
first one is the measurement of the quantities that contain relevant information about the
wave field for its prediction over a specific area of interest. The second step, referred to
as surface reconstruction, is the extraction of wave information from the measurements
to initialize the physical model that is used for the propagation of the wave field. The
last step is the propagation of the reconstructed surface, giving access to the prediction.
Considering that the ocean surface has to be predicted around a potentially mobile
structure (e.g. a ship with forward speed), measurements are assumed to be done at a
distance by a sensor mounted onboard the structure. The particularities of such remote
measurements are detailed in this section, emphasizing their spatial non-uniformity and
indirect relationship with surface fields. Then the investigated linear, weakly nonlinear
and highly nonlinear methods for surface reconstruction are presented. For the sake of
completeness, the theoretical aspects of the methods detailed in this paper describe the
general case of directional wave fields, although the applications presented later are
restricted to unidirectional waves.

2.1. Remote measurements
The prediction of the wave field around a mobile structure has to rely on measurements
whose locations adapt to the structure’s trajectory. X-band marine radars are considered in
the subsequent developments. In contrast to coherent radars that can provide an estimation
of the waves’ orbital velocities through the measurement of the Doppler frequency of the
backscattered signal (e.g. Lyzenga et al. 2015; Støle-Hentschel et al. 2018), the considered
sensor in the following applications is the much more common non-coherent radar, i.e. it
only gives access to the backscattered signal intensity.

2.1.1. Marine radar model
Raw marine radar data are given in a polar coordinate system (r, β, z). As depicted in
figure 1, r denotes the range distance, i.e. the distance between the antenna and the
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Figure 1. Geometrical parameters used for the representation of the shadowing and tilt modulations of
marine radar beams.

horizontal location of the ocean surface whose elevation is referred to as η, and β is the
azimuth angle of the radar look direction.

The r-axis is located at the mean surface level and points towards the radar look
direction, while the z-axis is vertical and positive upward. The range resolution is constant
and decided by the radar beam’s pulse period, and the azimuth resolution is determined
by the antenna beamwidth. For convenience, the ocean surface dynamics is described in
a Cartesian system (x, y, z) = (xa + r cosβ, ya + r sinβ, z), with (xa, ya) the horizontal
coordinates of the radar antenna. Even though many studies consider radar data to be
a sequence of instantaneous two-dimensional spatial snapshots (usually called ‘radar
images’), the spatio-temporal distribution of the radar data actually describes a helix
(Al-Ani et al. 2019). For unidirectional waves, however, the helix structure of the data does
not apply, and they are modelled as a sequence of one-dimensional snapshots separated by
a time step that corresponds to the antenna rotation period.

Among the different modulation mechanisms of the backscattered signal by the ocean
surface, the shadowing and tilt modulations are considered prominent (e.g. Naaijen &
Wijaya 2014; Salcedo-Sanz et al. 2015) and their respective impact on wave prediction
is studied in the present paper. The shadowing modulation describes the impact of
obstructing waves in the region illuminated by the radar. Although the actual wave
shadowing follows complex diffraction processes (Plant & Farquharson 2012), it can
be conveniently approximated by a geometrical approach (see figure 1): a point on the
ocean surface is shadowed if a continuous straight line between that point and the radar
antenna cannot be drawn without crossing the ocean surface. Practically, the shadowing
modulation produces gaps in the spatial distribution of the radar measurements, as shown
in figure 2(a). Because shadowing is stronger for larger angles of incidence Θ (defined
in figure 1), the number and size of the gaps increase with the measurement distance and
decrease with the sensor’s height za. The tilt modulation modifies the intensity σ of the
backscattered signal according to the local angle of incidence of the radar beam on the
surface. A geometrical approach can also be used to express this intensity (Nieto Borge
et al. 2004) and reads

σ = c1
u · n
|u| |n| + c2, (2.1)

where n and u are the surface-normal and radar-beam vectors (see figure 1), respectively,
and |u| (|n|) denotes the Euclidean norm of u (n). Here, c1 is a scaling factor and c2
an offset, which both depend on the calibration of the radar system and environmental
conditions. The determination of these scaling coefficients is an active field of research. To
name the most common methods, they can be found based on the signal-to-noise ratio of
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t

r r

(a) (b)

Figure 2. (a) Typical spatio-temporal distribution of observations from a marine radar scanning irregular
unidirectional waves travelling from the left to the right. (b) Random spatio-temporal distribution using the
same number of observations.

Data type Observed quantity Distribution

1 η Random
2 η Radar like
3 σ Radar like

Table 1. Definition of the three investigated types of observations.

the backscattered signal (e.g. Lund et al. 2014), on the shadowing (e.g. Ludeno & Serafino
2019) or statistical (e.g. Gangeskar 2000) properties of radar images or on an external
reference measurement (e.g. Naaijen et al. 2018). The determination of these coefficients
is outside of the scope of the present paper, hence they are here assumed to be known.

To study the influence of the modulation mechanisms on the wave prediction
accuracy, surface reconstructions are systematically performed using three types of wave
measurements, referred to as data types. Data type 1 corresponds to a set of randomly
distributed surface elevations. Data type 2 refers to surface elevations that are subject to
shadowing modulation. Both distributions are depicted in figure 2 with the same number
of points. Finally, data type 3 designates radar intensities calculated from (2.1). All data
types are summarized in table 1. The influence of the shadowing modulation or of the tilt
modulation is studied by comparing results obtained with data types 1 and 2 or 2 and 3,
respectively.

2.1.2. Linear tilt modulation
The radar intensity model described by (2.1) is related to the surface elevation and
slope in a nonlinear manner. Instead of inverting this nonlinear model during the surface
reconstruction, a simplified linear model is used. Linearizing the intensity with respect to
the surface slope and elevation (see details in Appendix A), (2.1) reduces to

σ = c1

(
cosΘ + ηr sinΘ − η

sin2Θ

R

)
+ c2, (2.2)

where the index notation represents the corresponding derivative. Since the surface
elevation in (2.2) is multiplied by the factor sin2Θ/R � sinΘ , the dominant part of σ
is proportional to the surface radial slope ηr. Because the slope contains less information
than the surface elevation (i.e. loss of an integration constant), using σ as observations
instead of η is expected to impact the performance of the reconstruction methods.

It should be noted that the simplified approach leading to (2.1) and (2.2) does not
consider the full complexity of non-coherent radar measurements, whose deterministic
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relationship with the surface elevation has yet to be empirically identified. Using real
radar data instead of data type 3 is thus expected to have a negative effect on the surface
reconstruction accuracy. Nevertheless, algorithms based on this model have been shown
to yield sound results using field measurements (Dankert & Rosenthal 2004; Naaijen et al.
2018).

2.2. Highly nonlinear surface reconstruction
The spatial and temporal scales of the problem allow us to use the potential flow theory,
which assumes that the flow is irrotational and the fluid inviscid and incompressible.
The flow is then described by the Laplace equation Δφ = 0 in the fluid domain, with
φ the velocity potential, and by a non-penetration condition φz = 0 on the seabed, i.e.
at z = −h with h the water depth. On the free surface, and using the surface velocity
potential φs (x, y, t) = φ (x, y, z = η, t), the dynamic and kinematic free surface boundary
conditions (FSBCs) yield (Zakharov 1968)

φs
t = −gη − 1

2

∣∣∇φs∣∣2 + 1
2

(
1 + |∇η|2

)
W,

ηt =
(

1 + |∇η|2
)

W − ∇φs · ∇η,

⎫⎪⎬⎪⎭ (2.3)

where W = φz|z=η is the vertical velocity on the free surface, ∇ = {
∂x, ∂y

}T is the
horizontal gradient, t is the time and g is the gravitational acceleration.

2.2.1. The HOS method
The HOS method is employed for both the generation of the reference ocean surface and
its reconstruction. The core of the HOS method is the expression of the potential as a
power series of η to a given arbitrary order M ≥ 1, allowing the formulation of W as a
Taylor series involving η and φs (Dommermuth & Yue 1987; West et al. 1987). Following
the order-consistent formulation from West et al. (1987), the HOS FSBCs, expressed on
the free surface, read

φs
t + gη = −1

2

∣∣∇φs∣∣2 + 1
2

[(
W2

)
M

+ |∇η|2
(

W2
)

M−2

]
,

ηt − φs
z = Wnl

M + |∇η|2 WM−2 − ∇φs · ∇η,

⎫⎪⎬⎪⎭ (2.4)

in which the linear terms have all been moved to the left-hand side, the subscript of
the terms involving W denotes the order of expansion and Wnl

M = WM − W1 = WM − φs
z .

The calculations are performed using a pseudo-spectral approach, in which the physical
quantities are expressed by means of basis functions that satisfy the Laplace equation, the
seabed condition and the horizontal boundary conditions of the computational domain.
Here, the latter boundary conditions are assumed periodic so the velocity potential reads

φ (x, z, t) = Re

⎧⎨⎩
+∞∑

i=−∞

+∞∑
j=−∞

Aφij (t) exp(ikij · x)
cosh

[∣∣kij
∣∣ (z + h)

]
cosh

(∣∣kij
∣∣ h

)
⎫⎬⎭ , (2.5)

in which Aφij (t) are the complex spectral coordinates of φ, x = {x, y}T and kij ={
kxi, kyj

}T
, where kxi = i2π/Lx and kyj = j2π/Ly with Lx and Ly the lengths of the
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(x0, y0, t0)
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Lx
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Ly

x̂

ŷ

Figure 3. Characteristics of the Cartesian computational domain used to perform the surface reconstruction
with HOS–OCM.

computational domain along the x- and y-directions, respectively. The surface elevation
has a similar expression without the z-dependent term. In practice, the sums in (2.5)
are truncated to finite numbers Nx and Ny. This approach allows the spatial-derivative
operations to be performed efficiently due to the use of fast Fourier transforms (FFTs).

2.2.2. The HOS–observation coupling method
The highly nonlinear surface reconstruction is performed using the HOS–observation
coupling method (HOS–OCM), which numerical basis follows that of Desmars et al.
(2022). It consists of the inversion of a system that couples the equations describing the
evolution of the ocean surface to a set of observation constraints having the form

M (
φs, η

) = ζ, (2.6)

in which ζ is the observed quantity (here, either the surface elevation or the radar
intensity), and M is the observation-mapping function. This function both maps the
physical quantities of interest (η and φs) to the observation space and interpolates them
to the spatio-temporal location of the observations. The wave equations are solved on a
computational domain that has spatial lengths Lx and Ly and a duration Ta (also called
assimilation period). It is discretized with constant steps Δx and Δy in space and Δt in
time (see figure 3). It contains Nx and Ny points along the spatial dimensions and Nt points
along the temporal dimension, leading to Np = NxNyNt grid points in total. The reference
point in space (x0, y0) corresponds to the beginning of the computational domain, and the
reference point in time t0 corresponds to its first time (see figure 3).

The evolution equations (2.4) are coupled to (2.6) to form the inverse problem that is to
be solved for the surface reconstruction. By recasting the resulting system in matrix form,
it leads to

A ·
[
φs

η

]
= b ⇐⇒

⎡⎣ A∂t gI
−A∂z A∂t

AM

⎤⎦ ·
[
φs

η

]
=

⎡⎣bd

bk

ζ

⎤⎦ , (2.7)

where A∂t corresponds to the time-derivative operator matrix, A∂z to the vertical-derivative
operator matrix and I to the identity matrix, all being Np-by-Np matrices. The No-by-2Np

(with No the number of observations) matrix AM corresponds to the observation-mapping
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function matrix. Vectors φs and η contain the Np unknown grid values of surface potential
and elevation, respectively. The right-hand side terms bd and bk correspond to the
nonlinear parts of the dynamic and kinematic HOS FSBCs, respectively, and yield

bd = −1
2

[(
A∂x · φs

)2 +
(

A∂y · φs
)2

]
+ 1

2

{(
W 2

)
M

+
[(

A∂x · η
)2 +

(
A∂y · η

)2
] (

W 2
)

M−2

}
, (2.8)

bk = W nl
M +

[(
A∂x · η

)2 +
(

A∂y · η
)2

]
W M−2

−
[(

A∂x · η
) (

A∂x · φs
)

+
(

A∂y · η
) (

A∂y · φs
)]
, (2.9)

where A∂x and A∂y are the horizontal-derivative operator matrices, and W M is a vector
whose elements are the vertical velocities WM . Finally, the vector ζ contains the
observations. When not specified by a distinctive mathematical symbol, operations on
vectors are performed element-wise. The formulation of the matrices is detailed in
Appendix B. The solution vectors φs and η are found by minimizing, with the loose
generalized minimum residual (LGMRES) algorithm (Baker, Jessup & Manteuffel 2005),
the norm of the residual function

F = AT · A ·
[
φs

η

]
− AT · b. (2.10)

For M = 1, bd and bk are full of zeros. For M > 1, the solutions are obtained by
inverting the system order by order, evaluating bd and bk from the lower-order solution. In
the following, the first- and third-order solutions, referred to as HOSM1 and HOSM3,
respectively, are investigated. The tolerances and restart parameter of the LGMRES
iterative process have been fixed in such a way that they lead to converged results in terms
of reconstruction accuracy.

Note that the computational cost of HOS–OCM is not related to that of a large
dense matrix inversion as one might initially assume. Indeed, the chosen iterative solver
for the minimization of (2.10) allows matrix-free calculations: A is not assembled,
only matrix–vector products involving its submatrices are performed. These submatrices
exhibit a high level of sparsity that leads them to have a product cost O

(
NpNs

)
for

derivation or O (NoNs) for interpolation with Ns � Np the number of stencils to perform
the considered operation. Matrix–vector products involving the spatial-derivative operator
matrices A∂x,y,z are accelerated with FFTs resulting in a cost O

(
Np log Ns

)
. The transpose

operations require the exact same computational effort. In fact, there is no additional
cost coming from the matrix formulation of the problem, and the resulting number of
operations is of the same order of magnitude as that of other HOS-based prediction
algorithms relying on variational assimilation.

However, in contrast to variational approaches that control the HOS variables (namely
the surface elevation and potential) at only one time step and propagate the solution
over the assimilation period with a classical time-stepping procedure (typically using
an explicit fourth-order Runge–Kutta scheme), HOS–OCM controls the variables at all
time steps simultaneously. This formulation has two interesting numerical properties.
First, no sequential time propagation of the solution is required, making possible the time
parallelization of the model evaluation in the optimization process. This parallelization in
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time offers a greater impact on the computational time reduction than the parallelization
in space whose effect is limited by the relatively small domain used for such surface
reconstructions. Second, the embedded time integration of the wave equations has the
properties of implicit schemes at no additional cost. More specifically, it exhibits high
numerical stability – no evidence of instability was observed even for very large time
steps – without the need to perform the additional system inversion that is required when
the solution is sequentially propagated with implicit schemes. This gives flexibility in the
choice of the time-step size, thus in the management of the computational time.

2.3. Parameterization of analytical wave models
The other investigated surface reconstruction method relies on the parameterization of
analytical wave models. Besides a linear model that represents the water surface as
the superposition of independent sine waves subject to the linear dispersion relation,
two weakly nonlinear models are investigated. Based on a Lagrangian description of
the surface motion, the improved choppy wave model catches nonlinear effects on both
shape, i.e. sharper crests and flatter troughs, and phase, i.e. higher wave velocity (Guérin
et al. 2019). In contrast, the second weakly nonlinear model considered here includes the
correction of the dispersion relation pertaining to the improved choppy wave model, but
no shape correction.

For these models, detailed below, the surface reconstruction is based on a least-squares
algorithm that minimizes a quadratic cost function, similar to the approaches investigated
by Desmars et al. (2020). The cost function that is minimized reads

C = 1
2

∣∣Λ (p)− Λo∣∣2 , (2.11)

where the vector Λ contains the wave model estimates of the observations, p contains
the parameters of the wave model and Λo contains either observed elevations (ηo) or
radar intensities (σ o) depending on the chosen data type. The optimal wave model
parameters are obtained by applying the Levenberg–Marquardt algorithm (Moré 1978)
with explicit formulations of the Jacobian matrices that allow the procedure to be
performed efficiently. The Jacobian matrices depend on the considered wave model and
data type. Their expression for each configuration is given in Appendix C. In the rest of
the paper, and in contrast to HOS–OCM, this reconstruction algorithm is referred to as the
analytical-model-based method (AMBM).

2.3.1. Linear wave theory
The linear wave theory (LWT) gives the surface velocity potential and corresponding
elevation according to

φs
LWT (x, t) =

N∑
n=1

ωn

kn
(an sinψn − bn cosψn) , (2.12)

ηLWT (x, t) =
N∑

n=1

(an cosψn + bn sinψn) , (2.13)

in which ψn = kn · x − ωnt, with kn = {
kxn, kyn

}T, and an and bn are the model
parameters related to the amplitude and phase of N individual wave components of
predefined wavenumbers kn = |kn| related to angular frequencies ωn through the linear
dispersion relation ω2

n = gkn tanh (knh).
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2.3.2. Improved choppy wave model
The improved choppy wave model (ICWM) was developed and characterized by Guérin
et al. (2019). It relies on the Lagrangian description of the water surface which allows
the derivation, in a relatively simple mathematical form, of terms appearing at higher
orders of expansion in wave steepness in the Eulerian formalism. Compared with the
second-order Lagrangian solution (e.g. Nouguier, Chapron & Guérin 2015), ICWM
corrects the nonlinear effects affecting the waves’ velocity resulting in a more accurate
description of the free surface kinematics. An Eulerian form of ICWM was used by
Desmars et al. (2020) to predict unidirectional waves and writes

φs
ICWM (x, t) =

N∑
n=1

ω̃s
n

kn
(an sinΨn − bn cosΨn) , (2.14)

ηICWM (x, t) =
N∑

n=1

(an cosΨn + bn sinΨn)+ 1
2

N∑
n=1

(
a2

n + b2
n

)
kn, (2.15)

with

Ψn = kn ·
[

x −
N∑

m=1

km

km

(
−am sinψnl

m + bm cosψnl
m

)]
− ωnl

n t,

ψnl
n = kn · x − ωnl

n t,

ωnl
n = ωn + 1

2
kn ·

N∑
m=1

(
a2

m + b2
m

)
ωmkm,

ω̃s
n = ωn − 1

2
kn ·

N∑
m=1

(
a2

m + b2
m

)
ωmkm.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

Note that the formulation of the surface potential of ICWM, not given yet in the literature,
is discussed in Appendix D.

2.3.3. Linear wave theory with corrected dispersion relation
To quantify the importance of the correction of the dispersion relation only, a linear wave
model that includes the correction of the dispersion relation pertaining to ICWM is also
used. This model is referred to as LWT with corrected dispersion relation (LWT–CDR)
and reads

φs
LC (x, t) =

N∑
n=1

ω̃s
n

kn

(
an sinψnl

n − bn cosψnl
n

)
, (2.17)

ηLC (x, t) =
N∑

n=1

(
an cosψnl

n + bn sinψnl
n

)
. (2.18)

2.4. Numerical differences between HOS–OCM and AMBM
Throughout the paper, a systematic comparison of the reconstruction and prediction
accuracy of each algorithm is performed. Leaving aside hydrodynamic considerations, this
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section aims at highlighting the numerical differences between HOS–OCM and AMBM
to support the discussion of the results.

Even if both HOS–OCM and AMBM use least squares, through the minimization
of |F | (2.10) for HOS–OCM and of C (2.11) for AMBM, a fundamental difference
between the two methods is the nature of the control parameters of the minimization
process. While they consist of the surface elevation and potential at the grid points for
HOS–OCM, AMBM solves for the amplitude and phase of the wave components, and
the surface fields are calculated from the model expressions after the minimization. This
way, AMBM always gives a solution to the equations of the surface dynamics according
to the considered wave model (i.e. LWT, LWT–CDR or ICWM). In contrast, the wave
equations for HOS–OCM are seen as constraints that are not necessarily exactly verified
by the solution. In addition, the wavenumbers of the wave components are not defined the
same way for each method: they are implicitly defined by the grid size and resolution
for HOS–OCM, and arbitrarily chosen for AMBM. To improve the comparability of
the methods, the wave components of AMBM are chosen according to those implicitly
defined by the computational grid of HOS–OCM. Although this might not correspond
to the optimal choice of parameters for AMBM, convergence studies on the number of
wave components have shown that, for both the synthetic and experimental configurations
depicted in this paper (§§ 3 and 4, respectively), this choice leads to results that fairly
represent the accuracy of the AMBM solver. Because numerical instabilities are arising
for AMBM when very long modes are solved for, wave components whose wavenumber k
is lower than half the peak wavenumber kp of the observed wave field (i.e. the wavenumber
of maximal energy) are not considered in the LWT, LWT–CDR and ICWM solutions.

2.5. Influence of the spatial periodicity assumption
Both HOS–OCM and AMBM (with similar wavenumbers to those of HOS–OCM, see
the previous section) assume that the solution of the surface reconstruction problem is
Lx- and Ly-periodic, while the observations have no reason to exhibit spatial periodicity.
Forcing the solution to match at the spatial boundaries of the reconstructed domain leads
to discrepancies if no numerical treatment is employed. In the presented applications, the
discrepancies induced by the periodicity assumption are restricted to a relatively small
region on the domain boundaries. In consequence, no special treatment for the periodicity
assumption was used a priori, the influence of these discrepancies on the results is reduced
by evaluating the quality of the solution over a restricted domain that ends one peak
wavelength (λp = 2π/kp) away from each boundary. The size of the regions to be removed
from the analysis was chosen for this study based on the evaluation of the actual results of
the investigated cases. Changing the configuration, in particular the space and time extent
of the observed domain, could modify the size of the impacted regions by the periodicity
assumption.

3. Reconstructions

In this section, the numerical set-up to evaluate the accuracy of the reconstruction methods
from synthetic surface observations is described before discussing the results.

3.1. Numerical set-up
Two unidirectional wave fields, made of regular and irregular waves that propagate
along the positive x-direction, aim at being reconstructed. Throughout the paper, the
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reconstruction and prediction configurations are set up with respect to the characteristics
of the irregular wave field, even in the case of regular waves that is seen as a ‘simplified’
wave field of similar scales to help interpret the results. The irregular wave field is
based on a JONSWAP energy distribution (Hasselmann et al. 1973) with a peak period
Tp = 10 s and a peak-enhancement factor of 3.3. The wave height varies depending on
the investigated wave steepness Hs/λp (differing by a factor of π from the alternative
steepness definition 1

2 kpHs), with Hs the significant wave height defined as four times
the standard deviation of the surface elevation. The regular wave field is defined from
the peak wave characteristics of the irregular one, i.e. the period is T = Tp and different
values of wave steepness H/λ (= kA/π) are investigated, with H = 2A the wave height
defined as the crest-to-trough height, and λ = 2π/k = λp the wavelength. These wave
fields, called reference wave fields and indicated by the superscript ‘r’ (e.g. ηr), are
generated using the HOS solver HOS-ocean (Ducrozet et al. 2016) with a nonlinear order
M = 4, which provides converged results in terms of nonlinearity. The length of the
domain is set to 32 peak wavelengths, deep water is assumed and a relaxation period
Tr, such as described by Dommermuth (2000), is used to smoothly turn the linearly
initialized wave field into a fourth-order solution. A conservative simulation time of 2Tr
is used before considering that the nonlinearities are fully developed and generating the
synthetic observations. Regarding the spatial discretization, 32 points per peak wavelength
are used, which ensures that the shortest wave sampled by the radar is properly resolved.
This discretization, however, limits the steepness of the simulated irregular wave field to
Hs/λp � 3.2 % according to application ranges of highly nonlinear potential flow solvers
(Ducrozet, Bonnefoy & Perignon 2017).

To generate the radar observations, a virtual radar scans the surface and gives at
every non-shadowed point one of the two observed quantities, that is either the surface
elevation ηo = ηr

j (with j = 1, . . . ,No) or the intensity σ o = σ r
j according to (2.1). In

the case the observations consist of radar intensities, the distances Ro = Rj and angles
of incidence Θo = Θj (see figure 1) are stored as well. In operating conditions, R is
approximated based on the time of flight of the radar beam, and Θ is calculated based on
the geometric relation Θ = cos−1 (za/R). Moreover, to decouple the effects of the wave
shadowing (i.e. larger gaps in the spatial distribution of observations) from those of the
wave steepness (i.e. stronger impact of the nonlinear wave physics) on the reconstruction
accuracy for larger wave heights, the height of the radar antenna is made proportional
to the wave height according to za = 8H(s) in the case of (ir)regular waves. This way,
the shadowing properties are kept similar for all the investigated wave heights, and the
observed differences in reconstruction accuracy between various steepness values are only
related to hydrodynamic nonlinearities. The influence of the wave shadowing is quantified
by comparing the results with those obtained with randomly distributed observations (i.e.
data type 1 vs data type 2). Since the number of observations in the case of data type 1 is
set similar to that obtained with the radar sampling of the surface (which includes wave
shadowing), the overall density of observations is independent of the data type. Despite
the unrealistic nature of the dependence between za and the wave height, the factor of
8 already depicts a situation of strong shadowing (see figure 2a). The radar horizontal
location is chosen such that it is facing the incoming waves and that there is a gap of
3λp ≈ 470 m between the radar and the reconstructed domain, i.e. xa = x0 + Lx + 3λp.
The remaining radar characteristics are chosen according to Naaijen & Wijaya (2014),
i.e. the range resolution is set to 7.5 m and the antenna rotation period, fixing the
temporal resolution, to 1.5 s. Only the observations that fall into the reconstructed domain
[x0, x0 + Lx] × [t0, t0 + Ta] are used for the reconstruction.
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Concerning the computational domain of HOS–OCM, its spatial extent is Lx = 12λp for
a number of points Nx = 246, leading to a resolution of Δx ≈ λp/20.4 ≈ 7.6 m. This is in
agreement with the maximal spatial resolution of 7.5 m imposed by the observations in the
case the ocean surface is sampled by the radar. The assimilation period is Ta = 3Tp, which
is long enough to give a converged reconstruction accuracy for the chosen measurement
length, and the number of time steps is Nt = 48Ta/Tp = 144 (i.e. Δt ≈ 0.21 s).

3.2. Reconstruction accuracy quantification
For the quantification of the error between the reconstructed surface and the reference,
the surface similarity parameter (SSP) is used. This indicator was developed by Perlin &
Bustamante (2016) and already used in the context of ocean wave prediction (e.g. Lünser
et al. 2022). For the surface elevation, the SSP between the reconstructed field η and the
reference ηr is formulated as

SSPη (t) =

(∫ ∣∣Fη (k, t)− Fηr (k, t)
∣∣2 dk

)1/2

(∫ ∣∣Fη (k, t)
∣∣2 dk

)1/2

+
(∫ ∣∣Fηr (k, t)

∣∣2 dk
)1/2 , (3.1)

where Fη denotes the spatial FFT of η (x, t) over the points of the computational domain
of HOS–OCM. A similar expression holds for the surface potential error SSPφs (t).
As mentioned in § 2.5, a restricted region that begins (ends) one peak wavelength
after (before) the left (right) spatial boundary is selected for the quantification of the
reconstruction accuracy to limit the influence of the periodicity assumption, i.e. x ∈[
x0 + λp, x0 + Lx − λp

]
. The value of the SSP is bounded by 0 and 1, meaning a perfect

agreement or disagreement between the compared signals, respectively. Because the
motion response of marine structures is most likely influenced by a limited frequency
range, i.e. similar to a low-pass filter, the presented SSP calculation focuses on
wavenumbers whose expected impact is significant. More specifically, this is done by
retaining in (3.1) only the complex amplitudes F associated with wavenumbers lower
than or equal to a cutoff value, here defined as 5kp. This choice is supported by the
fact that the wave field evolution is mainly driven by wave components of wavenumber
k < 5kp (Ducrozet et al. 2017). Moreover, to have an error indicator representing the global
accuracy over the reconstructed domain, the time-averaged SSP between the two instants
t0 and t0 + Ta is calculated. For the surface elevation, it reads

SSPη = 1
Ta

∫ t0+Ta

t0
SSPη (t) dt. (3.2)

An expression similar to (3.2) is used to quantify SSPφs . In the case of irregular waves, the
SSP values are averaged over 200 wave field realizations with different sets of randomly
chosen initial wave phases.

3.3. Reconstruction results
In this section, the ability of HOS–OCM and AMBM to accurately reconstruct the
observed wave field is studied. First, regular waves are considered, leading to a clear
distinction between the characteristics of each modelling method. Then irregular waves are
reconstructed, showing the performance of the methods in more realistic wave conditions.
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3.3.1. Regular waves
Reconstruction results for regular waves are presented in figure 4. They show that, for
all data types, the reconstruction accuracy decreases for larger wave steepness when the
wave model is not able to catch enough nonlinear features, consisting here of increasing
the wave shape asymmetry and the wave velocity, the latter appearing from the third
order. The HOSM1 and LWT are fully linear and miss the aforementioned nonlinear
effects, penalizing the reconstruction accuracy when the steepness increases. The trend
followed by LWT–CDR is almost similar to that of LWT (and of HOSM1), showing that
modelling the nonlinear correction of the wave velocity is not enough to improve the
reconstruction significantly. However, the influence of the wave velocity having linear and
quadratic dependencies on the simulation time and wave steepness, respectively, means
that the nonlinear correction of LWT–CDR is expected to be more impactful for longer
assimilation period Ta and larger steepness. In contrast, the accuracy is very high for
HOSM3 and ICWM, and barely affected by the steepness variation. This is because both
models include all the nonlinear effects associated with regular waves up to the third order.
As seen from the slightly lower accuracy obtained with data type 2 compared with data
type 1, the wave shadowing effect, which tends to concentrate the discrepancies at the
non-visible parts of the waves (e.g. troughs), has a limited impact. Using observations of
radar intensity (data type 3) instead of elevation (data type 2) has a small influence as
well, which validates that both HOS–OCM and AMBM can extract correct information
about the surface dynamics from elevation or slope samples. In the case of data type 3,
the fact that the accuracy of HOS–OCM is generally a little lower than that of AMBM
most likely comes from the numerical differences detailed in § 2.4 between the two
methods. In particular, performing the reconstruction from radar intensities instead of
elevations might affect the relative weight of the HOS equations (2.4) with respect to the
observation-mapping function in the minimized residual (2.10) of HOS–OCM, resulting
in a lower accuracy. A penalty approach (e.g. Nocedal & Wright 1999) could be employed
to investigate the effect of the wave model enforcement (i.e. forcing the solution to strictly
satisfy the HOS equations) on the reconstructed surface. Nevertheless, the SSP values
remain below 0.05 in all configurations, and almost the same results are obtained for the
surface potential.

Reconstruction of regular waves of larger steepness (up to H/λ ∼ 10 %) have been
performed and provide results that are in line with the physical properties of the wave
models, i.e. similar accuracy between HOSM3 and ICWM and progressive distinction
between LWT and LWT–CDR for increasing steepness. For the very steep cases, however,
the reference data generation, surface reconstruction and surface prediction procedures
had to be slightly adapted to prevent various numerical perturbations from appearing, and
whose study is left out of this paper for the sake of brevity.

3.3.2. Irregular waves
Reconstruction results for irregular waves are presented in figure 5. As expected, and
similar to the case of regular waves, the lower-order models are less accurate, and the SSP
values increase for larger wave steepness. However, larger SSP values than those of the
regular waves are found, which can be explained by the increased complexity resulting
from the interaction phenomena between waves of different scales. This is especially
clear when the reconstruction relies on slope information (i.e. data type 3) for which
the accuracy strongly depends on the correct resolution of the modulation of short waves
by long waves, making the whole range of wave scales important to resolve. In contrast,
mainly the waves of high amplitude (localized around the peak of the energy spectrum)
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Figure 4. Reconstruction accuracy for the regular wave field as a function of the steepness H/λ for HOSM1
(- -•- -), HOSM3 (—•—), LWT (- -
- -, red), LWT–CDR (· · · 
 · · · , red) and ICWM (– ·
– ·, red). Results
using data type (a,d) 1, (b,e) 2 and (c, f ) 3 are presented (see table 1 for definitions).

influence the correct extraction of wave information from the observations when they
consist of surface elevations (i.e. data types 1 and 2), simplifying the reconstruction.
Radar intensities are also harder to use for surface reconstruction because they contain less
information about the wave field than surface elevations, as explained in § 2.1.2. Regarding
the linear approaches, HOSM1 systematically leads to a higher accuracy than LWT for
data types 1 and 2, and to a significantly lower accuracy for data type 3. This could be
explained, as for the regular waves, by the numerical differences between HOS–OCM
and AMBM (see § 2.4). In combination with the numerical characteristics of HOS–OCM,
the third-order modelling of HOSM3 gives the most accurate reconstructions for data
types 1 and 2. As shown in figure 6(a) for data type 2, the improvement of HOSM3
over HOSM1 is mainly visible for large surface deformation. Without providing clear
hints for interpretation, the discrepancies implied by the use of data type 3 in nonlinear
reconstructions of the same surface can be spotted in figure 6(b). In general, the SSP values
for the surface potential are a bit larger than for the surface elevation, which could come
from the fact that, for all data types, the observations are related to the surface elevation
but not directly to the surface potential. The potential is calculated from the wave model
only, leading its reconstruction error to be slightly higher than that of the elevation.

4. Predictions

After investigating the performance of the methods for surface reconstruction, this section
focuses on quantifying the accuracy that can be obtained by propagating the reconstructed
solutions in view of predictions.

4.1. Definition of the prediction domain
The prediction accuracy is quantified over the theoretically accessible prediction zone
corresponding to the spatio-temporal domain within which pieces of information about the
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Figure 5. Reconstruction accuracy for the irregular wave field as a function of the steepness Hs/λp for HOSM1
(- -•- -), HOSM3 (—•—), LWT (- -
- -, red), LWT–CDR (· · · 
 · · · , red) and ICWM (– ·
– ·, red). Results
using data type (a,d) 1, (b,e) 2 and (c, f ) 3 are presented (see table 1 for definitions). The shaded areas show
the standard deviation for HOSM3 and ICWM for the 200 wave field realizations.
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Figure 6. Reconstructed surface elevation of irregular waves of steepness Hs/λp ≈ 3.2 % at time t0 + Ta
using observations subject to wave shadowing and that consist of (a) surface elevations (i.e. data type 2) and
(b) radar intensities (i.e. data type 3). Comparison of the reference surface (——, green) with HOSM1 (- - - -,
SSPη ≈ 0.078), HOSM3 (——, SSPη ≈ 0.024 (a) and 0.076 (b)) and ICWM (–·–·, red, SSPη ≈ 0.062).

reconstructed wave components, travelling at the group velocity cg = ∂ω/∂k, overlap (e.g.
Naaijen, Trulsen & Blondel-Couprie 2014; Qi et al. 2018b). In practice, the boundaries
of the prediction zone are defined by considering that the wave field can be accurately
described by a finite frequency bandwidth containing the most energetic wave components.
Here, similar to Desmars et al. (2020) and Huchet et al. (2021), cutoff angular frequencies
ω� and ωh (with ω� < ωh) are selected such that E (ω�) = E (ωh) = 0.05E

(
ωp

)
, with

E (ω) the wave energy spectrum of the irregular wave field and ωp = 2π/Tp. These
angular frequencies give the highest and lowest group velocities of the wave components
of interest that define the prediction zone boundaries. Because it is supposed that the
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t

t�

th

1/cg�

1/cgh

x0 x0 + Lx xa

λp λp

x̂
t0 + Ta

Figure 7. Definition of the theoretically accessible prediction zone from information contained in the
reconstructed solution at t = t0 + Ta.

radar is mounted close to the location where the waves have to be anticipated, the target
location for prediction is the radar location xa and the predicted surface is evaluated as
a time series. Also, to maximize the prediction horizon, the last reconstructed solution
(i.e. at t = t0 + Ta) is taken as the initial condition for the propagation. Finally, since
the solution is considered valid over a restricted domain due to the spatial periodicity
assumption (see § 2.5), the prediction zone is determined by neglecting information out of[
x0 − λp, x0 + Lx + λp

]
. In consequence, a future time t is included in the prediction zone

at xa if it is part of the interval [th, t�] with

th = t0 + Ta + xa − (
x0 + Lx − λp

)
cgh

, (4.1)

t� = t0 + Ta + xa − (
x0 + λp

)
cg�

, (4.2)

and the group velocities are calculated using the linear dispersion relation, i.e.
cg = 1

2ω/k
[
1 + 2kh/ sinh (2kh)

]
, which already gives a good estimation of the extent of

the prediction zone compared with a higher-order formulation of the dispersion relation
(Qi et al. 2018a). Figure 7 shows the geometrical interpretation of the prediction zone
definition. In the depicted configuration, the obtained limits of the prediction horizon lead
to th − (t0 + Ta) ≈ 14Tp and t� − th ≈ 6Tp.

4.2. Numerical aspects of the prediction using HOS–OCM
While the analytical models can be propagated in space and time without requiring any
special numerical treatment, the HOS solutions from HOS–OCM need a fixed, periodic
spatial domain to be propagated over. Here, the propagation of the HOS solutions is done
as follows. First, the spatial computational domain of HOS–OCM is extended to include
the location of the prediction xa. This domain is set similarly to that used for the generation
of the reference surface described in § 3.1, and it is used to express the reconstructed
solution at t = t0 + Ta with zeros for x /∈ [x0, x0 + Lx]. The prediction is thus based on the
propagation of the reconstructed solution obtained at the end of the assimilation period.
Second, to avoid discontinuities, the solution is made smoothly go to zero at both ends of
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the reconstructed domain. More specifically, the surface fields η and φs are multiplied by
the third-order polynomial

fs (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x − (

x0 − λp
)

λp

]2 {
3 − 2

[
x − (

x0 − λp
)

λp

]}
, if x ∈ [

x0 − λp, x0
]
,

1, if x ∈ [x0, x0 + Lx] ,

1 −
[

x − (x0 + Lx)

λp

]2 {
3 − 2

[
x − (x0 + Lx)

λp

]}
,

if x ∈ [
x0 + Lx, x0 + Lx + λp

]
.

(4.3)
Finally, the HOS-ocean solver is used for the forward propagation of the solution with an
order of nonlinearity M matching that used for the reconstruction, i.e. either 1 or 3.

As described in § 4.1, even if the initial surface is perfectly known over a limited spatial
domain, the dispersion of wave information during the surface propagation automatically
prevents the prediction at a further point in space from perfectly matching the true solution.
The accuracy of such a prediction depends on the amount of truncated energy by the
cutoff frequencies defining the extent of the prediction zone, and a perfect prediction
remains out of reach even with a perfectly reconstructed surface. Consequently, the optimal
prediction accuracy can be quantified by applying the propagation procedure described
above (although with M = 4) to the reference solution and comparing the obtained
prediction with the normally propagated reference solution. The determination of this error
is done in the following for the case of irregular waves and indicates how far the accuracy
obtained with the investigated prediction algorithms is from the best achievable one. This
optimal prediction accuracy quantification does not apply to regular wave fields because
they are not subject to wave dispersion.

Because propagating a solution which boundaries have been smoothed down to zero
potentially introduces non-physical artefacts in the simulation, the spectra of the reference
prediction and that of the optimal prediction have been compared. This comparison
showed that no artefact appears in the solution subject to the described smoothing process.

4.3. Prediction accuracy quantification
The SSP is used again to quantify the accuracy of the predicted surface elevation and
potential. Because the comparison with the reference surface relies on time series, its
formulation is different from (3.1) and follows

S̃SPη =

(∫ ∣∣Fη ( f )− Fηr ( f )
∣∣2 df

)1/2

(∫ ∣∣Fη ( f )
∣∣2 df

)1/2

+
(∫ ∣∣Fηr ( f )

∣∣2 df
)1/2 , (4.4)

where Fη denotes the temporal FFT of η (xa, t) over the prediction period, i.e. t ∈ [th, t�],
and f is the frequency. A similar expression holds for the surface potential error S̃SPφs .
To only take into account the theoretically predictable wave components, the integral
boundaries span the frequency range that is used to determine the extent of the prediction
zone, i.e. the interval between f� = ω�/ (2π) and fh = ωh/ (2π).
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Figure 8. Prediction accuracy for the regular wave field as a function of the steepness H/λ for HOSM1 (- -•- -),
HOSM3 (—•—), LWT (- -
- -, red), LWT–CDR (· · · 
 · · · , red) and ICWM (– ·
– ·, red). Results using data
type (a,d) 1, (b,e) 2 and (c, f ) 3 are presented (see table 1 for definitions).

4.4. Prediction results
Similar to the reconstruction, the ability of the different methods to predict the observed
wave field is investigated for both regular and irregular wave fields.

4.4.1. Regular waves
Prediction results for regular waves are presented in figure 8, and unambiguously show the
advantage of models that take into account the nonlinear correction of the wave velocity.
Indeed, the accuracy decreases significantly with the wave steepness for both HOSM1
and LWT, while it remains very high for all the other models. This is in agreement with
previous studies that compare the prediction performance of linear and nonlinear models
and find that correct predictions of severe sea states can only be obtained with an accurate
modelling of the wave velocity (e.g. Blondel-Couprie et al. 2013; Desmars et al. 2020;
Meisner et al. 2023). The effect of the nonlinear phase shift on the predicted surfaces is
depicted in figure 9. The influence of both measurement modulation mechanisms, i.e. the
wave shadowing effect and the use of radar intensities, on the prediction accuracy is very
limited.

4.4.2. Irregular waves
Prediction results for irregular waves are presented in figure 10. In this configuration,
the benefit of HOSM3 is clear. Even if LWT–CDR and ICWM significantly improve the
prediction compared with HOSM1 and LWT, the additional modelling effects included
in HOSM3 substantially increase the accuracy. For data types 1 and 2, the results
obtained with HOSM3 are satisfactory (see surface profiles in figure 11a), although
there remains room to reach the optimal accuracy defined in § 4.2. Even for data
type 3, for which HOSM3 leads to a relatively poor reconstruction compared with
ICWM (see figure 5c, f ), the propagation performance of HOSM3 leads to a prediction
accuracy comparable to or even higher than that of ICWM for large wave steepness.
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Figure 9. Predicted surface elevation of regular waves of steepness H/λ ≈ 3.2 % at location xa from a
reconstruction using observations subject to wave shadowing and that consist of radar intensities (i.e. data type
3). (a) Comparison of the reference surface (——, green) with LWT (- - - -, red, S̃SPη ≈ 0.287) and LWT–CDR
(· · · · · · ··, red, S̃SPη ≈ 0.049). (b) Comparison of the reference surface with HOSM3 (——, S̃SPη ≈ 0.014)
and ICWM (–·–·, red, S̃SPη ≈ 0.023).

Examples of nonlinear predictions using data type 3 are shown in figure 11(b) to illustrate
the impact of the complete third-order modelling compared with ICWM. The nonlinear
phase velocity correction of ICWM is independent of the properties of individual wave
components, i.e. it acts as a global horizontal shift of the surface according to the sum of
every wave component’s Stokes drift (Guérin et al. 2019). In consequence, ICWM only
models an ‘average’ nonlinear phase shift that is mainly driven by the most energetic
wave components, and misses the frequency-dependent phase correction modelled by
HOSM3. More specifically, compared with the modification of the dispersion relation
due to third-order resonant effects (Longuet-Higgins & Phillips 1962), ICWM tends
to overestimate (underestimate) the velocity correction of low-(high-)frequency wave
components. It is also interesting to note that in the case of data type 3, ICWM gives
better prediction results than LWT–CDR, while they are similar for data types 1 and 2.
This emphasizes the need for accurate modelling of surface slopes when the observations
are radar intensities.

5. Application to experimental data

In this section, the surface reconstruction/prediction algorithms are applied to real wave
measurements from wave tank experiments. A description and characterization of the
experimental data are provided by Clauss & Klein (2011) and briefly recalled below.

5.1. Experimental set-up
The experimental campaign was carried out in the seakeeping wave tank of the Technical
University of Berlin and aimed at studying the spatial development of an extreme wave. To
this end, the New Year wave (also known as the Draupner wave) was reproduced at a scale
1:70 in the wave tank of length 120 m, width 8 m and depth 1 m. By generating the same
unidirectional wave field multiple times and successively moving an array of wave gauges,
a total number of 520 gauge measurements were performed with a spatial step of 0.1 m.
In full scale (which will be used hereafter), the spatial extent of the measurements
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Figure 10. Prediction accuracy for the irregular wave field as a function of the steepness Hs/λp for HOSM1
(- -•- -), HOSM3 (—•—), LWT (- -
- -, red), LWT–CDR (· · · 
 · · · , red) and ICWM (– ·
– ·, red). The optimal
accuracy defined in § 4.2 is also shown (— —). Results using data type (a,d) 1, (b,e) 2 and (c, f ) 3 are presented
(see table 1 for definitions). The shaded areas show the standard deviation for HOSM3 and ICWM for the 200
wave field realizations.
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Figure 11. Predicted surface elevation of irregular waves of steepness Hs/λp ≈ 3.2 % at location xa from a
reconstruction using observations subject to wave shadowing and that consist of (a) surface elevations (i.e.
data type 2) and (b) radar intensities (i.e. data type 3). Comparison of the reference surface (——, green)
with HOSM1 (- - - -, S̃SPη ≈ 0.498), HOSM3 (——, S̃SPη ≈ 0.036 (a) and 0.062 (b)) and ICWM (–·–·, red,
S̃SPη ≈ 0.193). The optimal prediction defined in § 4.2 is also shown in (a) (— —, S̃SPη ≈ 0.010).

is 3633 m with a resolution of Δxe = 7 m, which is comparable to the spatial scale
and resolution of radar measurements. The New Year wave appears at predefined
target location and time, and the energy distribution of the surrounding wave field is
assumed to be described by a JONSWAP spectrum with Tp = 16.7 s, Hs = 11.92 m and a
peak-enhancement factor of 1. With a water depth of 70 m, it leads to a peak wavelength
λp ≈ 364 m.
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This experimental configuration generalizes the applicability of the reconstruction/
prediction algorithms in three ways. First, the dimensionless wavenumber kph ≈ 1.2
makes the configuration fall into the finite water depth regime. Second, even if no
specific characterization of the signal perturbations was done, the data generation process,
based on the (generally non-perfect) repeatability of model tests (e.g. calibration and
measurement inaccuracies with respect to vertical surface displacement but also horizontal
position of the wave gauge array and distance in between) contaminates the space series of
surface elevation with spurious fluctuations. Because the surface elevation was measured
with an array of 13 wave gauges separated by an interval of 2Δxe, that was translated
by Δxe between two successive wave generations, the main measurement repeatability
errors take the form of localized fluctuations of wavelength 2Δxe. The amplitude of these
fluctuations depends on the repeatability between the two successive measurements for
which the array of wave gauges was translated by Δxe, it is thus not constant all over
the covered spatial domain. For instance, such fluctuations are clearly identifiable in
figure 12 around x − x0 = 2800 m. To check that the presented approaches are applicable
to non-perfect input data, the raw experimental measurements are used without any
preprocessing procedure to attenuate these perturbations. Finally, the wave field contains
waves that are above the breaking limit, as reported by Clauss & Klein (2011), leading
breaking events to be included in the reference data. None of the reconstruction methods
take into account wave breaking and, as explained in the next section, only the third-order
HOS solution (HOSM3) models wave breaking during the surface propagation phase (i.e.
t > t0 + Ta). Hence, the following results also inspect the capability of the reconstruction
approaches to handle wave breaking in the input data, although they do not model it.

5.2. Adaptation of the algorithms
Because (i) the observed waves are longer and steeper than in the numerical set-up and (ii)
highly nonlinear potential flow solvers are subject to limitations in terms of wave steepness
and space/modal discretization (Ducrozet et al. 2017), the reconstruction algorithms are
adapted as follows. First, the computational domain of HOS–OCM is extended and
discretized according to its new dimension relative to λp. Considering the limited spatial
extent of the surface measurements, a length Lx = 2485 m ≈ 6.8λp is chosen. By keeping
the same number of points per peak wavelength, the grid is made of Nx = 140 points.
This extension also affects the choice of the wavenumbers kn of the wave components
of the analytical models (see § 2.4). Note that the resulting spatial step Δx ≈ 17.9 m is
longer than the wavelength of the measurement perturbations of wavelength 2Δxe = 14 m
described in the previous section. A similar assimilation period Ta = 3Tp (here ∼50 s) is
used, and the number of time steps Nt is still fixed to 48 per peak period. The location of the
synthetic radar remains similar, i.e. approximately 470 m after the end of the computational
domain. Then, due to the presence of breaking waves, the third-order HOS propagation of
the reconstructed surface leads the surface elevation to be multi-valued if no energy is
dissipated, making the simulation crash. In consequence, the propagation of the HOSM3
solution is performed by an in-house HOS engine that includes a wave breaking model as
described by Wu (2004, § 4.4). It has been ensured, by comparing predicted surfaces for
the steepest case presented in § 4.4.2, that the two employed HOS solvers lead to consistent
results. The other wave models, whose numerical frameworks handle the propagation
of very steep surfaces without crashing, are propagated without modelling any energy
dissipation.
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Figure 12. Time evolution of the spatial surface profiles, from the reconstruction (t − (t0 + Ta) ∈ [−50, 0] s)
to the prediction (t − (t0 + Ta) > 0 s) using data type 1. The wave gauge measurements (——, green) are
compared with the linear and nonlinear solutions of HOS–OCM, namely HOSM1 (- - - -) and HOSM3 (——).
The solutions outside the theoretical prediction zone (· · · · · · · ·, grey) are coloured in grey. The extreme wave
appears at t − (t0 + Ta) = 40 s.
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5.3. Results
The application of the algorithms to the experimental data is illustrated through one
specific configuration chosen such that the New Year wave appears in the middle
of the prediction zone 40 s after the surface reconstruction. Similar to the numerical
investigation, the three data types described in § 2.1.1 are used as surface observations.
The calculation of the prediction zone is similar to that described in § 4.1 with the
characteristics of the wave field generated experimentally. Only the regions on the domain
boundaries that are left out of the prediction zone due to the periodicity assumption
(see § 2.5) are kept constant, i.e. approximately equal to 156 m. This choice follows
the observation that the impact of the periodicity assumption on the accuracy of the
reconstruction is very limited, and taking regions spanning one peak wavelength would
be unnecessarily conservative.

The time evolutions of the reference and reconstructed space series of HOSM1 and
HOSM3 using data type 1 are presented in figure 12, together with the propagated
surfaces up to 100 s of prediction. Both solutions match well the reference surface in the
reconstructed domain, that is for t − (t0 + Ta) ∈ [−50, 0] s. The distinction between the
linear and nonlinear solutions becomes stronger as time increases during the prediction,
the linear solution being subject to an increasing phase delay and shape mismatch. In
contrast, HOSM3 is able to predict the main features of the surface even after 100 s
of prediction. It can also be noted from figure 12 that the definition of the theoretical
prediction zone is conservative as the predicted surfaces also correlate, to a certain extent,
with the reference outside the boundaries denoted by the dotted lines. A refined procedure
for the determination of the actual prediction zone would be of practical interest to avoid
underestimating the prediction horizon.

The accuracy is quantified through the calculation of SSPη (see § 3.2 for definition)
over the reconstructed or predicted domain. In the latter case, the integral terms of (3.1)
are bounded by k� and kh (calculated from ω� and ωh, see § 4.1), the limiting wavenumbers
of the waves included in the prediction zone. The results are presented in figure 13 for all
wave models and data types. In agreement with the numerical results, HOSM3 and ICWM
give the most accurate reconstructions/predictions for all data types, with a significant
advantage for HOSM3. The linear solutions HOSM1 and LWT follow approximately the
same trend and become rapidly incorrect as time increases. The LWT–CDR is consistent
with the numerical results in the case of data types 1 and 2, i.e. its reconstruction accuracy
is close to that of LWT, but gets closer to that of ICWM during the prediction phase. For
data type 3, however, LWT–CDR fails to correctly reconstruct the surface with SSPη > 0.3
for all the investigated times. The observed much harder convergence (i.e. need for much
more iterations) of the weakly nonlinear AMBM solutions in the case of the experimental
set-up compared with the numerical one could explain the depicted inconsistency in the
results of LWT–CDR. The determination of the parameter responsible for this lower
convergence rate, e.g. the presence of wave breaking events or measurement perturbations,
would necessitate further investigations that are outside of the scope of this paper. In
contrast, the convergence rate of HOS–OCM is similar in both numerical and experimental
configurations.

Finally, figure 14 gives a closer view of the New Year wave prediction for all wave
models and data types. While all the other wave models miss the description of the surface
elevation, HOSM3 is able to predict the correct phase and amplitude of the New Year wave
for all data types. In addition to confirming that all the physics modelled at the third order
is crucial for the correct description of steep wave fields (e.g. Lünser et al. 2022), this result

975 A8-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.841


N. Desmars and others

0.4

(a) (b) (c)

0.3

0.2S
S

P
η

0.1

0

0.4

0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0
–30 0 30

t – (t0 + Ta) (s)

60 90 –30 0 30

t – (t0 + Ta) (s)

60 90 –30 0 30

t – (t0 + Ta) (s)

60 90

Figure 13. Evolution of the spatial SSP of the surface elevation in time during the reconstruction
(t − (t0 + Ta) ≤ 0 s) and prediction (t − (t0 + Ta) > 0 s) periods for HOSM1 (- -•- -), HOSM3 (—•—),
LWT (- -
- -, red), LWT–CDR (· · · 
 · · · , red) and ICWM (– ·
– ·, red). Results using data type (a) 1,
(b) 2 and (c) 3 are presented (see table 1 for definitions).

suggests that a prediction system based on such a third-order surface dynamics would be
enough for severe wave conditions.

6. Conclusions

The reconstruction and prediction accuracy of surface waves was investigated using
observations representing different modulation mechanisms pertaining to remote
measurements. Using a selection of methods that model different physical properties of
the ocean surface, the impact of the wave shadowing and tilt modulations on the capacity
of the prediction algorithms were highlighted. Reconstructing surfaces from observations
subject to shadowing was found to have an impact limited to the non-visible regions.
However, using radar intensities (assumed proportional to the surface slopes) instead of
surface elevations affected the reconstruction more generally due to the indirect, more
complex extraction of wave information from the measurements. It also brought to light
some numerical properties of the reconstruction methods, HOS–OCM and AMBM, that
influence their respective performances significantly. Still, both methods were able to
predict waves in all configurations with an accuracy that depends on the limitations of the
embedded physical model. It was shown that the accuracy of the surface reconstruction
was mainly related to the correct modelling of the wave shape nonlinearities. In contrast,
modelling the nonlinear correction of the dispersion relation had a marginal effect on the
reconstruction accuracy but substantially helped improve the prediction. The third-order
terms included in HOSM3 that model a frequency-dependent nonlinear wave phase
correction (unlike ICWM) were shown to be crucial for the correct prediction of steep
irregular waves. In addition, the application of the algorithms to data from wave tank
experiments confirmed their suitability for non-perfect measurements, wave breaking and
finite water depth. It demonstrated as well the feasibility of extreme wave predictions with
HOSM3.

The encouraging results of HOS–OCM/HOSM3 call for further investigations on
improving the compatibility of highly nonlinear wave models with reconstruction/
prediction algorithms from real radar measurements and other types of remotely acquired
wave data. Though the presented study is restricted to unidirectional wave fields, the
formalism has been developed to be applicable to directional waves, which will be the
object of future studies. Relying on the explicit resolution of the wave equations also
allows extending of the reconstruction to additional environmental parameters. Ongoing
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Figure 14. Prediction of the New Year wave, 40 s after the reconstruction. The reference surface (——, green)
is compared with the predicted solution obtained using data types 1 (——), 2 (- - - -) and 3 (· · · · · · · ·) for (a)
HOSM1, (b) HOSM3, (c) LWT, (d) LWT–CDR and (e) ICWM.

investigations are considering the inclusion of the current as an unknown of the surface
reconstruction problem.
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Appendix A. Linearization of the radar intensity

Under the assumption that the main property affecting the radar backscatter is the local
incidence angle of the radar beam on the surface, it is possible to express the intensity of
the backscattered signal by the ocean surface as (Nieto Borge et al. 2004)

σ = c1
u · n
|u| |n| + c2, (A1)

with c1 is a scaling factor and c2 an offset, and where n is the surface-normal vector and
u the radar-beam vector, both depicted in § 2.1.1. These vectors are expressed as

n =
⎡⎣−ηx

−ηy
1

⎤⎦ =
⎡⎣−ηr cosβ + ηβ/r sinβ

−ηr sinβ − ηβ/r cosβ
1

⎤⎦ , (A2a)

and

u =
⎡⎣xa − x

ya − y
za − η

⎤⎦ =
⎡⎣−r cosβ

−r sinβ
za − η

⎤⎦ , (A2b)

from which is deduced

u · n
|u| |n| = rηr + za − η√

r2 + (za − η)2
√
η2

r + η2
β/r

2 + 1
. (A3)

This leads to a nonlinear relation between σ and the surface elevation. By referring as ε to
either the surface slopes ηr and ηβ or elevation η, (A3) turns into

u · n
|u| |n| = rηr

R
+ za

R
− r2

R3 η + O
(
ε2
)
. (A4)

As a function of the nominal angle of incidence Θ , it yields

u · n
|u| |n| = cosΘ + ηr sinΘ − η

sin2Θ

R
+ O

(
ε2
)
. (A5)

The linearized solution of the backscattered radar intensity, assumed valid for the
considered sea states, thus reads

σ = c1

(
cosΘ + ηr sinΘ − η

sin2Θ

R

)
+ c2. (A6)

Appendix B. Formulation of the HOS–OCM matrices

The formulation of the matrices used in HOS–OCM are described in this section.
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B.1. In the HOS equations
The matrix A∂t is defined according to a finite difference scheme using seven stencils (i.e.
of sixth order of accuracy). A central scheme is used, except on the time boundaries of
the grid where either forward or backward schemes are used instead. Spatial-derivative
matrices A∂x , A∂y and A∂

�
z are derived from the spectral definition of the derivative

operators, i.e. ∂x ≡ ikx, ∂y ≡ iky and ∂�z ≡ |k|� (with a factor tanh (|k| h) for � odd),
respectively. The notation A∂z in (2.7) refers to A∂

1
z . The vertical-velocity vector at order

M follows:

W M =
M∑

m=1

W (m), (B1)

and each order is evaluated as

W (m) =
m−1∑
�=0

η�

�!
A∂

�+1
z · φ(m−�). (B2)

The vector φ(m) contains the approximation of the velocity potential at z = 0 at order m
and is derived iteratively as

φ(1) = φs, (B3)

φ(m) = −
m−1∑
�=1

η�

�!
A∂

�
z · φ(m−�), m = 2, . . . ,M. (B4)

To avoid spurious numerical results due to aliasing during the calculation of the products,
a full dealiasing procedure is employed (e.g. Bonnefoy et al. 2010). Finally, in order to
prevent potential numerical instabilities from appearing in case of high wave steepness,
high-frequency modal coefficients of the solution vectors φs and η that are used to
construct the right-hand side terms bd and bk, and of the right-hand side terms themselves,
are damped according to an exponential filter before performing the system inversion.

B.2. Observation-mapping function
The observation-mapping function relates the quantities at the HOS grid points to the
observations. It performs two basic operations, an interpolation (from the grid point
locations to the observation locations, in both space and time) and a mapping (from the
wave-quantities space to the observation space). More specifically, the latter operation is
based on a function that expresses the measured quantity from the surface elevation and/or
potential at the grid points. In the presented applications, the observations are related to
the surface elevation only, as it is the case for considered wave sensors that give either η
or σ according to (2.2). The interpolation function takes the form of a No-by-Np matrix,
denoted Ai, that uses Lagrange cubic polynomials. The mapping function depends on the
considered observations, and its formulation is detailed below.

B.2.1. Mapping surface elevations
In the case the observations consist of surface elevations (i.e. data types 1 and 2), the
constraint related to the observations is formulated as a simple interpolation following

975 A8-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

84
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.841


N. Desmars and others

ηo = Ai · η. To match the formalism of (2.7), this equality can be recast into

AM ·
[
φs

η

]
= ζ , (B5)

with AM = {
O,Ai}, ζ = ηo, and O an No-by-Np matrix that is full of zeros.

B.2.2. Mapping radar intensities
In the case the observations consist of radar intensities, the constraint related to the
observations is formulated based on the linear radar model (2.2). Consequently, the
constraint related to the radar observations reads

σ o = c1

{
cos Θo +

[(
Ai · A∂x · η

)
cos βo +

(
Ai · A∂y · η

)
sin βo

]
sin Θo

−
(

Ai · η
) sin2 Θo

Ro

}
+ c2w, (B6)

where vectors having the superscript o contain quantities related to observations, namely
the radar intensity σ , the angle of incidence Θ , the azimuth β or the distance R and w is a
vector of length No that is full of ones. The last equation is equivalent to

σ o

sin Θo = c1

[
cos Θo

sin Θo +
(

Dc · Ai · A∂x + Ds · Ai · A∂y − De · Ai
)

· η

]
+ c2

sin Θo , (B7)

in which Dc, Ds and De are diagonal matrices built from vectors cos βo, sin βo and
sin Θo/Ro, respectively. To match the formalism of (2.7), equation (B7) is recast into

AM ·
[
φs

η

]
= ζ , (B8)

with

AM =
{

O,Dc · Ai · A∂x + Ds · Ai · A∂y − De · Ai
}
, (B9)

and

ζ =
(

σ o

c1
− c2

c1
w − cos Θo

)
/ sin Θo. (B10)

Appendix C. Expression of the analytical Jacobian matrices for the least-square
problems of AMBM

In this section, the explicit formulation of the Jacobian matrix is given for all
configurations of AMBM. Each one is characterized by a wave model (namely LWT,
ICWM or LWT–CDR) and an observed quantity (i.e. surface elevation or radar
intensity). For the considered wave models, the model parameters are always of the
same form, i.e. p = {a1, . . . , aN, b1, . . . , bN}T = {

vT
a , v

T
b
}T, where va = an and vb = bn

with n = 1, . . . ,N and N the number of wave components. The matrix notation is used
for conciseness and its similarity to the syntax of matrix-computation programming
languages.
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C.1. With elevation observations
Using the surface elevation as observed quantity, the cost function described by (2.11)
writes

C = 1
2

∣∣ηm (p)− ηo∣∣2 , (C1)

with ηm the wave model evaluations of ηo. The corresponding No-by-N Jacobian matrix
is formed by the partial derivatives of every component of ηm with respect to every model
parameter in p. Explicit expressions are detailed below for LWT, ICWM and LWT–CDR.

C.1.1. Linear wave theory
The expression of the surface elevation according to LWT is given by (2.13), leading
to the Jacobian matrix Jη,LWT = {

BT,CT} where B = cos
(
κx ⊗ xo + κy ⊗ yo − ω ⊗ to)

and C = sin
(
κx ⊗ xo + κy ⊗ yo − ω ⊗ to) with ⊗ the outer product, κx = kxn, κy = kyn,

ω = ωn, and xo, yo, to contain the x-, y-, t-coordinates of the observations, respectively.

C.1.2. Improved choppy wave model
The expression of the surface elevation according to ICWM is given by (2.15), leading to
the Jacobian matrix Jη,ICWM = {

ET, F T} with

E = G −
(

Da · H − Db · G
)

� K + Dka · U, (C2)

F = H −
(

Da · H − Db · G
)

� L + Dkb · U, (C3)

where

K = Dk ·
[
Cnl −

(
Dka · Bnl + Dkb · Cnl + U

)
� (κωva)⊗ to

]
, (C4)

L = Dk ·
[
−Bnl −

(
Dka · Bnl + Dkb · Cnl + U

)
� (κωvb)⊗ to

]
, (C5)

in which � denotes the element-wise matrix multiplication. Here, Da, Db, Dk,
Dka and Dkb are diagonal matrices built from vectors va, vb, κ , κva and
κvb, respectively, where κ = kn. Bnl = cos

(
κx ⊗ xo + κy ⊗ yo − ωnl ⊗ to) and Cnl =

sin
(
κx ⊗ xo + κy ⊗ yo − ωnl ⊗ to) are the nonlinear counterparts of B and C that include

a correction of the dispersion relation, and ωnl = ωnl
n . Further, U is an N-by-No matrix that

is full of ones. Finally, G = cos Q and H = sin Q with Q a modified phase term defined by

Q = κx ⊗
{

xo −
[
−

(κxva

κ

)T · Cnl +
(κxvb

κ

)T · Bnl
]}

+ κy ⊗
{

yo −
[
−

(κyva

κ

)T · Cnl +
(κyvb

κ

)T · Bnl
]}

− ωnl ⊗ to. (C6)
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C.1.3. Linear wave theory with corrected dispersion relation
The expression of the surface elevation according to LWT–CDR is given by (2.18), leading
to the Jacobian matrix Jη,LC = {

MT,NT} with

M = Bnl +
(

Dka · Cnl − Dkb · Bnl
)

� (κωva)⊗ to, (C7)

N = Cnl +
(

Dka · Cnl − Dkb · Bnl
)

� (κωvb)⊗ to. (C8)

C.2. With radar intensity observations
Using the radar intensity as observed quantity, the cost function described by (2.11) writes

C = 1
2

∣∣σm (p)− σ o∣∣2 , (C9)

with σm the wave model evaluations of σ o. The corresponding No-by-N Jacobian matrix
is formed by the partial derivatives of every component of σm with respect to every model
parameter in p. Explicit expressions are detailed below for LWT, ICWM and LWT–CDR.

C.2.1. Linear wave theory
The formulation of the LWT radar intensity is obtained by inserting (2.13) into (2.2), which
gives

σLWT (x, t) = c1 sinΘ
N∑

n=1

{
−an

[(
kxn cosβ + kyn sinβ

)
sinψn + sinΘ

R
cosψn

]

+bn

[(
kxn cosβ + kyn sinβ

)
cosψn − sinΘ

R
sinψn

]}
+ c1 cosΘ + c2. (C10)

The corresponding Jacobian matrix is Jσ,LWT = {
RT,ST} with

R = − (
T � C + B · De) · Dg, (C11)

S = (
T � B − C · De) · Dg, (C12)

in which T = κx ⊗ cos βo + κy ⊗ sin βo, the definitions of βo, Θo, w and De follow from
§ B.2.2, and Dg is a diagonal matrix built from the vector c1 sin Θo.
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C.2.2. Improved choppy wave model
The formulation of the ICWM radar intensity is obtained by inserting (2.15) into (2.2),
which gives

σICWM (x, t)

= c1 sinΘ
N∑

n=1

[
−an

(
{[kxn(1 − l)− kynd] cosβ + [kyn (1 − q)− kxnd] sinβ} sinΨn

+sinΘ
R

cosΨn

)
+ bn

(
{[kxn(1 − l)− kynd] cosβ + [kyn (1 − q)− kxnd] sinβ} cosΨn

−sinΘ
R

sinΨn

)
− sinΘ

2R

(
a2

n + b2
n

)
kn

]
+ c1 cosΘ + c2, (C13)

with

d =
N∑

n=1

kxnkyn
kn

(
−an cosψnl

n − bn sinψnl
n

)
,

l =
N∑

n=1

kx
2
n

kn

(
−an cosψnl

n − bn sinψnl
n

)
,

q =
N∑

n=1

ky
2
n

kn

(
−an cosψnl

n − bn sinψnl
n

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C14)

The corresponding Jacobian matrix is Jσ,ICWM = {
V T,W T} with

V =
{

X �
[
H +

(
Da · G + Db · H

)
� K

]
− (

Dm · M · Dc + Dn · M · Ds) �
(

Da · H − Db · G
)

− E · De
}

· Dg, (C15)

W =
{

X �
[
−G +

(
Da · G + Db · H

)
� L

]
− (

Dm · N · Dc + Dn · N · Ds) �
(

Da · H − Db · G
)

− F · De
}

· Dg, (C16)

in which X = −T + κx ⊗ l cos βo + κy ⊗ d cos βo + κy ⊗ q sin βo + κx ⊗ d sin βo.
Diagonal matrices Dm and Dn are built from vectors κxκ and κyκ , respectively, and

d = −
(κxκyva

κ

)T · Bnl −
(κxκyvb

κ

)T · Cnl, (C17)

l = −
(

κ2
xva

κ

)T

· Bnl −
(

κ2
xvb

κ

)T

· Cnl, (C18)

q = −
(

κ2
yva

κ

)T

· Bnl −
(

κ2
yvb

κ

)T

· Cnl. (C19)
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C.2.3. Linear wave theory with corrected dispersion relation
The formulation of the LWT–CDR radar intensity is obtained by inserting (2.18) into (2.2),
which gives

σLC (x, t) = c1 sinΘ
N∑

n=1

{
−an

[(
kxn cosβ + kyn sinβ

)
sinψnl

n + sinΘ
R

cosψnl
n

]

+bn

[(
kxn cosβ + kyn sinβ

)
cosψnl

n − sinΘ
R

sinψnl
n

]}
+ c1 cosΘ + c2. (C20)

The corresponding Jacobian matrix is Jσ,LC = {
Y T, ZT} with

Y =
{

T �
[
−Cnl +

(
Dka · Bnl + Dkb · Cnl

)
� (κωva)⊗ to

]
− M · De

}
· Dg, (C21)

Z =
{

T �
[
Bnl +

(
Dka · Bnl + Dkb · Cnl

)
� (κωvb)⊗ to

]
− N · De

}
· Dg. (C22)

Appendix D. Velocity potential of ICWM

In this section, the velocity potential of ICWM in its original Lagrangian framework
is derived under deep water assumption. Then, the corresponding surface potential is
approximated in the Eulerian framework, leading to the expression that is used for
comparison with the reference solution.

D.1. Velocity potential in the Lagrangian framework
A potential P of a Lagrangian flow is defined such that its derivatives according to a
particle instantaneous location R = {x (x̄, ȳ, z̄, t) , y (x̄, ȳ, z̄, t) , z (x̄, ȳ, z̄, t)}T (with R̄ =
{x̄, ȳ, z̄}T the reference particle location defined by the surface at rest) give the particle
velocity, i.e. ∇RP = Rt with ∇R = {

∂x, ∂y, ∂z
}T. Because the Lagrangian framework

leads to the knowledge of Rt at the particle location R instead of at any arbitrary spatial
point, the calculation of P by direct integration of Rt with respect to R is not trivial.
Alternatively, demonstrating that a function P is a velocity potential of the Lagrangian
flow can be done as follows. By definition, a perfect differential dP can be written in the
form

dP = ∇R̄P · dR̄ = ∇RP · dR, (D1)

with ∇R̄ = {
∂x̄, ∂ȳ, ∂z̄

}T. Then, using the following relation

(J · Rt) · dR̄ = Rt · dR, (D2)

with J the Jacobian matrix of R defined by

J =
⎡⎣xx̄ yx̄ zx̄

xȳ yȳ zȳ
xz̄ yz̄ zz̄

⎤⎦ , (D3)

it is possible to state that finding a function P such that dP = (J · Rt) · dR̄ is a perfect
differential (equivalent to showing that ∇R̄P = J · Rt) implies that ∇RP = Rt, thus that
P is a velocity potential.
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The components of the free surface (i.e. at z̄ = 0) particle displacement according
to ICWM is given by Guérin et al. (2019). Noticing that the only differences between
the classical second-order Lagrangian solution, such as derived by Nouguier et al.
(2015, (5.25)–(5.27)) and Pierson (1961, (8) and (27) with a second-order vertical mean
correction), and ICWM are (i) the corrected horizontal particle shift and (ii) the neglected
interaction terms between waves of different frequencies, the ICWM components R are
extended here to any water depth z̄ to yield

x (x̄, z̄, t) = x̄ +
N∑

n=1

kn

kn

(
−an sin ψ̃n + bn cos ψ̃n

)
eknz̄ + U st, (D4)

z (x̄, z̄, t) = z̄ +
N∑

n=1

(
an cos ψ̃n + bn sin ψ̃n

)
eknz̄ + 1

2

N∑
n=1

(
a2

n + b2
n

)
kn e2knz̄, (D5)

where ψ̃n = kn · x̄ − ω̃nt, ω̃n = ωn − 1
2 kn · U s, and U s = ∑N

n=1
(
a2

n + b2
n
)
ωnkne2knz̄,

and their time derivatives Rt follow

xt (x̄, z̄, t) =
N∑

n=1

kn

kn
ω̃n

(
an cos ψ̃n + bn sin ψ̃n

)
eknz̄ + U s, (D6)

zt (x̄, z̄, t) =
N∑

n=1

ω̃n

(
an sin ψ̃n − bn cos ψ̃n

)
eknz̄. (D7)

The corresponding Jacobian matrix, written in the form J = {J 1, J 2, J 3}, reads

J 1 =
⎡⎣xx̄

xȳ

xz̄

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 +
N∑

n=1

kx
2
n

kn

(
−an cos ψ̃n − bn sin ψ̃n

)
eknz̄

N∑
n=1

kxnkyn
kn

(
−an cos ψ̃n − bn sin ψ̃n

)
eknz̄

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

kxn

(
−an sin ψ̃n + bn cos ψ̃n

)
eknz̄

+
N∑

n=1

(
a2

n + b2
n

)
2knωnkxne2knz̄t + O

(
ε3
)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D8)
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J 2 =

⎡⎢⎣yx̄

yȳ

yz̄

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
n=1

kxnkyn
kn

(
−an cos ψ̃n − bn sin ψ̃n

)
eknz̄

1 +
N∑

n=1

ky
2
n

kn

(
−an cos ψ̃n − bn sin ψ̃n

)
eknz̄

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

kyn

(
−an sin ψ̃n + bn cos ψ̃n

)
eknz̄

+
N∑

n=1

(
a2

n + b2
n

)
2knωnkyne2knz̄t + O

(
ε3
)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D9)

J 3 =

⎡⎢⎣zx̄

zȳ

zz̄

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
n=1

kxn

(
−an sin ψ̃n + bn cos ψ̃n

)
eknz̄

N∑
n=1

kyn

(
−an sin ψ̃n + bn cos ψ̃n

)
eknz̄

⎛⎜⎜⎜⎜⎜⎝
1 +

N∑
n=1

kn

(
an cos ψ̃n + bn sin ψ̃n

)
eknz̄

+
N∑

n=1

(
a2

n + b2
n

)
k2

ne2knz̄ + O
(
ε3
)

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D10)

in which ε ≡ k
√

a2 + b2 characterizes the wave steepness. Then, retaining terms up to the
second order in ε and ignoring interaction terms of waves having different frequencies,
such as done for ICWM (Guérin et al. 2019), the components of J · Rt yield

J 1 · Rt =
N∑

n=1

kxn

kn
ω̃n

(
an cos ψ̃n + bn sin ψ̃n

)
eknz̄, (D11)

J 2 · Rt =
N∑

n=1

kyn
kn
ω̃n

(
an cos ψ̃n + bn sin ψ̃n

)
eknz̄, (D12)

J 3 · Rt =
N∑

n=1

ω̃n

(
an sin ψ̃n − bn cos ψ̃n

)
eknz̄. (D13)

A function P that satisfies the first-order Lagrangian expansion for an irregular
unidirectional wave field is given by Pierson (1961, (8)) and Nouguier et al. (2015,
(3.10)). For the second order, Nouguier et al. (2015, (4.46)) give a continuous form of
such a function for a directional irregular wave field, while Pierson (1961, (27)) gives its
discrete formulation for a bichromatic two-dimensional wave field. This latter expression
only involves interaction terms of wave components of different frequencies, which are
neglected in the present formulation of ICWM. Hence, the first-order potential function
that includes the ICWM nonlinear phase correction appears to be a good candidate for the
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velocity potential and reads

P =
N∑

n=1

ω̃n

kn

(
an sin ψ̃n − bn cos ψ̃n

)
eknz̄. (D14)

Indeed, using the above function, the components of ∇R̄P correspond to those of J · Rt

(D11) to (D13). Consequently, (J · Rt) · dR̄ is a perfect differential of P to the second
order, meaning that ∇RP = Rt and P is a velocity potential of ICWM in the Lagrangian
framework.

D.2. Approximation of the surface potential in Eulerian form
In order to compare the value of the potential with the reference solution at any spatial
point, an Eulerian form of (D14) is required. Because the derivation of the complete
explicit Eulerian formulation is not trivial and would lead to lose the mathematical
simplicity of the Lagrangian formulation, only an approximation the Lagrangian solution
is calculated. Similar to the procedure used by Desmars et al. (2020) to evaluate the
Eulerian surface elevation of ICWM, the quantities are expressed on the free surface,
i.e. at z̄ = 0, and a change of reference is performed to implicitly take into account the
horizontal particle shift U s|z̄=0. This leads to the following expressions of the surface
particle horizontal location and velocity potential

x (x̄ − U s|z̄=0t, 0, t) = X (x̄, t) = x̄ +
N∑

n=1

kn

kn

(
−an sinψnl

n + bn cosψnl
n

)
= x̄ + D (x̄, t) , (D15)

P (x̄ − U s|z̄=0t, 0, t) = P (x̄, t) =
N∑

n=1

ω̃n|z̄=0

kn

(
an sinψnl

n − bn cosψnl
n

)
, (D16)

where ψnl
n = kn · x − ωnl

n t and ωnl
n = ωn + 1

2 kn · U s|z̄=0. Then, the surface potential of
ICWM at any spatial point is evaluated by computing the particle horizontal displacement
at its instantaneous rather than its reference location according to

P (x̄) = P (X − D (x̄)) ≈ P (X − D (X )) = φs
ICWM (X ) . (D17)

Finally, the expression of the surface potential of ICWM in the Eulerian framework is

φs
ICWM (x, t) =

N∑
n=1

ω̃n|z̄=0

kn
(an sinΨn − bn cosΨn) , (D18)

where

Ψn = kn ·
[

x −
N∑

m=1

km

km

(
−am sinψnl

m + bm cosψnl
m

)]
− ωnl

n t. (D19)

The surface potential of LWT–CDR follows directly by removing the effect of the
nonlinear shape correction from (D18), i.e. replacing Ψn with ψnl

n .
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