
ANZIAMJ. 48(2006), 99-106

THE EXPONENTIAL OF A CONSTANT MATRIX
ON TIME SCALES
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Abstract

In this paper we describe an elementary method for calculating the matrix exponential on
an arbitrary time scale. An example is also given to illustrate the result.
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1. Introduction

There are several methods in the literature to calculate the matrix exponential e'A

and the matrix Ak for any given n x n matrix A, due to their appearance in the
study of systems of linear differential and difference equations, respectively. In
1996,1. E. Leonard [7] presented an elementary but powerful method to calculate the
matrix exponential eM which uses only knowledge of homogeneous linear differential
equations with constant coefficients and the Cayley-Hamilton theorem. Two years
later, by using a similar approach and employing homogeneous linear difference
equations with constant coefficients, M. Kwapisz [6] derived an alternative method
to determine Ak, the k-th power of A. The methods are especially useful when the
matrix A is not diagonalisable.

A time scale T is a nonempty closed subset of the set of real numbers K. Time-
scale calculus, introduced by Hilger [3], has recently gained considerable interest as
it unifies continuous and discrete analysis. The most well-known examples of a time
scale are T = K, T = 1 and T = q*, where ql = {t : t = qk, k el] with q > 1.

In the light of time-scale calculus, our aim is to develop an elementary method
to calculate the matrix exponential on an arbitrary time scale, and thereby unify the
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results in [6, 7]. To the best of our knowledge the Putzer algorithm is the only method
available to calculate the exponential of a constant matrix on an arbitrary time scale,
see [1, Theorem 5.35]. Here in this article we propose an alternative method which is
more elementary and easier to apply than the Putzer algorithm.

For some basic aspects of time-scale calculus we refer to the monographs [1, 2, 5].
In the following lines we provide only some essential ingredients to be used in this
paper.

The forward and backward jump operators a, p : T —> T defined by

o{t) = inf[s el:s>t] and p(t) — sup{s € T : s < t]

together with the convention inf 0 = supT and sup0 = inf T are the main tools for
time-scale calculus. A point t e J is called right-scattered, right-dense, left-scattered,
left-dense, if o(t) > t, o(t) = t, p(t) < t, p(t) = t is satisfied, respectively.
The graininess at t is then defined by /x(r) = a{t) — t. The set T* is defined
as T\{m} if T has a left-scattered maximum m, and as J otherwise. A function
/ : T —>• OS is called regressive if 1 + fj,(t)f(t) ^ 0 for all t € "P. A matrix-valued
function A(t) of size nxn defined on a time scale T is called regressive if for all t e "P,
det[/ + fi(t) A(t)] ,£ 0, where / is the nxn unit matrix. It is not difficult to prove that
an n x n matrix A{t) is regressive if and only if the eigenvalues kt(t), i = 1, . . . , n,
of A(t) are all regressive. A function f : T -*• K is called rd-continuous, if it is
continuous at every right-dense point and if the left-sided limit exists (finite) at every
left-dense point. The set of all rd-continuous and regressive functions defined on T is
denoted by 3$ = &(J). The function / is called (delta) differentiate at t with the
(delta) derivative denoted by / A ( 0 if for any given e > 0 there is a neighbourhood U
of t such that

- fHt)(<r(t) - s)\ < e\a(t) - s\ for all s e U.

The following theorem is due to Hilger [3], see also [1, Theorem 1.16].

THEOREM 1.1. Assume that f : J -»• OS and let t € T.

(a) If f is differentiable at t, then f is continuous at t.
(b) Iff is continuous at t and t is right-scattered, then f is differentiable at t with

-7(0

(c) If f is differentiable and t is right-dense, then

S — t
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(d) / / / is differentiable at t, then f(o(t)) = /(/) + n(t)f*(t).

Let t0 sJ and Ae&beannxn matrix-valued function. The matrix exponential
eA(t, to) on T, [1, Definition 5.18], is defined to be the unique solution of the matrix
initial value problem

X* = A(t)X, X(t0) = I, (1.1)

where / denotes as usual the n x n identity matrix.
It is not difficult to verify that

eA(t, toy
l = eA(t0, t), eA(a(t), t0) = [I + ix(t)A(t)]eA(t, t0).

Further properties of the matrix exponential eA(t, t0) including the ones above are
contained in [1, Theorem 5.21].

When A is an n x n constant matrix, one can easily show that eA{t, t0) = eM'~'o) for
T = K, while if T = 1 and A is regressive, then eA(t, tQ) = (/ + A)'~'°. In the next
section we describe an elementary method to calculate eA(t, t0) for constant matrices
by using homogeneous linear dynamic equations with constant coefficients and the
Cayley-Hamilton theorem.

2. The main result

Let A be an n x n constant matrix and denote by p(k) its characteristic polynomial.
For certain real numbers c 0 , . . . , cn_i we may write that

kn + cn^k"~l + • • • + c0.

The Cayley-Hamilton theorem states that

p(A) = 0. (2.1)

LEMMA 2.1. If A e &, then O = eA(-, t0) is the unique solution of the matrix initial
value problem

0, (2.2)

X*\to) = A\ y = 0 , 1 , . . . , « - 1 . (2.3)

PROOF. Let us first show that the initial value problem (2.2), (2.3) has a unique
solution. Define ZJ+l(t) = X*'(t) for j = 0, 1 , . . . , n - 1, and Z = (Z , , . . . , Zn)

T.
Then the matrix initial value problem (2.2), (2.3) becomes

ZA = MZ, Z(fo) = Zo, (2.4)
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where

Since the

M =

' 0
0

0
_-c0I

I
0

0
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regressivity condition
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0
-C2I . . .

0
0

/

[4]

A
A2

An-\

det(/ + fi(t)M) = 0
1=1

is satisfied due to A e &, it follows from [1, Theorem 5.8] that the matrix initial value
problem (2.4) has a unique solution.

Now from (1.1) we have

(2.5)

In view of (2.1) and (2.5) we obtain

co<l> = = 0

and
>A'<t>A'(/0) = Aj<t>(t0) = Aj, j = 0, 1 . . . , n - 1,

which means that 4> = eA(-,t0) is the unique solution of the matrix initial value
problem (2.2M2.3). •

We may now state and prove our main result.

THEOREM 2.2. Let A e & with the characteristic polynomial

p(X) = Xn + cn^Xn~x H h c0-

Ifxtit), i = 0 , 1, . . . ,n — 1, is the unique solution of the initial value problem

Lx = x*" + cn-xx*"~' +--- + c0x=0, (2.6)

x*i(t0) = 8ij, ; ' = 0 , l n - 1 , (2.7)

where

then

[0, i

xx{t)A (2.8)
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PROOF. Define * ( / ) = xo(t)I + xt(t)A -\ 1- xn-X(t)An~x. It is easy to see that

* A ° + <:„_,**"'' + . . . + c 0 * = (Lxo)I + {Lx{)A + ••• + (/.*„_,) A""1

= 0-1 +0A+-+0A"-1 =0 .

Also, * A ' (t0) = J™Zo xf (h)A' = A1\ j = 0 , . . . , n - 1. Thus * (t) is also a solution
of the initial value problem (2.2)-(2.3). In view of Lemma 2.1 and the uniqueness of
the solutions we conclude that *(f) = <*>(/) for all t e 1. D

REMARK 1. The characteristic polynomial p(X) may be replaced by the minimal
polynomial of A or by any polynomial satisfied by A.

REMARK 2. If we take T = R and t0 = 0 then Theorem 2.2 coincides with [7,
Theorem 2]. Note that the regressivity condition holds trivially in this case since
fi(t) = 0.

REMARK 3. If we set T = 2, t0 = 0, and A = B — I, then we can compute the k-th
power of B and hence obtain Theorem 2 of [6]; see the example below.

3. Application

In this section we show how to calculate the matrix exponential eA(t, t0) by em-
ploying Theorem 2.2 for a given constant matrix A € t%. The special cases T = R,
T = 1 and T = q1 will be deduced from the general result.

Let a, b € J satisfy a ^ b, 1 + (J.(t)a ^ 0, 1 + fi(t)b ^ 0, and consider as in [7]
the matrix

'a 0 1'
A = 0 a 0 , (3.1)

0 0 b_

for which p(X) = (X - a)2(X - fc), A., = a, k2 = b. Since A.,, k2 e ^ \ A € &. The
corresponding scalar equation (2.6) then becomes

x* -(2a+ b)x* + a(2b + a)x* - a2bx = 0.

' It follows that, see [1,2] for details,

x(t) = cxea(t, to) + c2k(t, to)ea(t, t0) + c^e^t, t0)

is a general solution, where

As

- an(s) '
t, t0) = f
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From the general solution one can easily get the special solutions Jt,-(f)> ' = 0, 1,2,
satisfying (2.7). Indeed, it turns out that

f a2 1 ab
*o(0 = 1 - 7 TTT ea(t, t0) +

|_ (a-b)2\ a-

ab a2

- k(f, to)ea(t, t0) + — eb(t, t0),
b (a - b)2

Z
a — b

eb(t, t0),
(a — b)2 a — b {a — b)2

ea(t, t0) H r k(t, to)ea(t, t0) + —- eb(t, t0).
(a - b)2

Now since

a-b

V 0 a + b'

(a - b)2

A2 =

we obtain from (2.8) that

-.2ff a2 1 ab
eA(.t,to) = { 1 - 7 rri \ea(t,to) +

IL (a-b)2] a-

0 a2 0
0 0 b2

ab
(a-b)2

2a
(a - b)2

1

ea(t, to)
a+b
a-b

• ea(t, to) +
1

*('. h)ea(t, to) -

k(t,to)ea(t,to)

2a

(a - b)2

1

f, to) \

(a_by

eb(t, to) | A

eb(t,t0))A
2

~ea(t,to) 0 (ea(t,k)-eb(t,to))/(a-b)
0 ea(t,t0) 0
0 0 eb(t, t0)

(3.2)

If we take T = K, t0 = 0, a = 2 and b = 3, then our example coincides with the
one given by Leonard [7].

The k-th power of A for a = 2 and b = 3 was calculated by Kwapisz [6] as

Ak =
'2* 0 3*-2*"
0 2*
0 0

0
3*

k = 0 , 1 , . . . ,

by considering an analogous method applied to the system

x(k+l) = Ax(k).

If we set T = 2, t0 = 0, a = 2 and b = 3 we may write the above system of difference
equations as follows:

xA = Bx, B = A- I.
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Replacing a by a — 1 and b by b — 1 in (3.2) we obtain

A' = (/ + B)' = eB(t)

a_,(r,0) 0 (ea_i(t,0)-eb-i(t,0))/(a-by

105

a'
0
0

0
0

0
a'
0

<

(a1

?fl-l(f,O)
0

- V)/ifi
0
b'

-b)~

0
eb-i(t, 0)

as desired. Furthermore, since the regressivity condition is satisfied (fx(t) = 1, a = 2,
b = 3) the above computation is valid for t = —1, —2,. . . as well. In particular, we
can obtain the inverse of A by setting t = — 1.

In quantum calculus (q-difference equations theory) [4], one is often interested in
the problem of finding the solution of the initial value problem

where

Dqx(t) = Ax(t), x(tQ) = x0,

x(qt)-x(t)

(3.3)

(<?- ! ) ' ' '

If we take T = gz then it turns out that a{t) = qt, fi(t) = (q — l)t, and hence

Dqx(t)=xA(t).

Let A be defined by (3.1). Assume that

1 +a(q - l)t ^ 0 and 1 + b(q - l)t ^ 0 forallfeTT,

which means that A is regressive. Clearly,

x(t) = eA(t,t0)x0

~ea(t, to) 0 (ea(j, to) - eb(J, to))/(a - b)
00 ea(t,t0)

0 0

is the unique solution of (3.3), where (see [1, page 74])

ea(t, t0) =

, t0)

se[to,t)

From (d) of Theorem 1.1 one can also easily see that

n l

t > t0.

t < t0.
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REMARK 4. It is easy to verify that m (X) = (A.—a) (A—b) is the minimal polynomial
of A. This fact could have been used to considerably reduce the amount of work done
above. We leave this to the reader. Of course, one should always prefer using the
minimal polynomial provided it can be obtained without too much effort.
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