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1. Introduction

Until recently there has been little systematic work on the second-order
properties of queueing processes. The aim of this paper is to study systematically
the second-order properties of the queue length processes embedded at departure
epochs in the M/G/l and bulk service M/G/l queues, and at arrival epochs in the
GI/M/l queue. In the latter case our results extend those of Daley [7], while in the
ordinary M/G/l queue our work parallels Daley's [6] discussion of waiting times
in the same system. In the final section we briefly discuss two discrete time queueing
systems.

Much of the earlier work on second-order properties of queueing systems has
been devoted to continuous time processes. Morse [12] obtained the autocorrela-
tion function for the continuous time queue length process in the stationary
M/M/l queue. Observation of this function shows it to be completely monotone.
Parzen [14] (equations 5.25 and 5.26, p. 149) has given this function for the
stationary M/G/co queue and it can be seen to be a convex function, and complete-
ly monotonic for M/Mjco. Benes [1] obtained the autocovariance function for the
virtual waiting time in the stationary M/G/l queue. More recently, Reynolds [16]
has given a more general approach to the calculation of the autocovariance func-
tion of the continuous time queue length process in some stationary queueing
models, including an approach to some systems with finite waiting rooms. He
illustrates his results by considering the stationary M/M/l queue, the M/M/l
queue with finite waiting room and a batch arrival infinite server queue.

Some of the more recent work concerns discrete time processes. The first work
in this direction seems to be that of Craven [5] who calculated the serial correlation
coefficients of lags one, two, and three for a stationary sequence of waiting times
in the M/M/l queue. On the basis of the heavy traffic form of his results, he made
a conjecture as to the heavy traffic form of the entire sequence of serial correlation
coefficients. Blomqvist [3] has considered the serial correlation coefficients of a
stationary sequence of waiting times in M/G/l from the point of view of simulating
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36 A. G. Pakes [2]

such systems. Daley [6] has given a systematic treatment of the serial correlation
coefficients of a stationary sequence of waiting times in the GI/G/l queue and in
particular the M/G/l queue, for which he proves a generalization of Craven's
conjecture. Jenkins [9] has calculated the correlation coefficient of lag one for a
stationary sequence of the embedded queue length process in the M/EJl queue.
Daley [7] has dealt with the queue length problem of the stationary GI/M/l queue
from the point of view of simulation.

At this point, it is worth noting that some of the notation will be used to
denote different quantities throughout the paper. However, within any section
there will be no ambiguity.

2. The stationary M/G/l queue

In a stationary M/G/l queueing system with Poisson arrivals at rate X, service
distribution function B(-), traffic intensity, p = Xfit < 1 where nr = JJ xrdB(x)
(r = 1, 2, • • •), we consider the embedded process {Qn} (n = • • •, — 1, 0, 1, • • •)
of the length of the queue at successive departure epochs of customers. As is well
known (Takacs [18]), {Qn} is an ergodic Markov chain with one-step transition
probabilities pXi = kj+1_t (1 ^ i i^j+l), pOj = ptJ, and ptJ — 0 otherwise
(i, j = 0, 1, • • •), where K{x) = £?L0 kjxj = J j e"**1 -x)<*ff(0 = J?[A(1 -x)]
(\x\ ^ 1) so that p = AT'(l). The stationary distribution {TIJ for the Markov
chain {Qn} has the generating function

a ) i w E ^ ; ( w g i )
i=o K(x) — x

from which the moments vr = E(Q") (all «, r = 1, 2, • • •) are easily found;

v2 = p+
2(l-pf

3(1 -p) 4 L l - p J 2(1 -p)

where a2 = var (Qn) (all «). It is easily seen that vr is finite iff" pir+1 is; we shall
always assume /i3 < oo.

Define the serial correlation coefficients rn = {Mn — v\)/a2 where Mn =
E(QmQm+n) (all WJ; /i = 0, 1, • • •). By the Cauchy-Schwartz inequality {/•„} is well
defined when ^3 < oo. Appealing to the following theorem, we see that {rn} is a
monotone non-increasing sequence with limit zero. This theorem is a special case
of a theorem due to Daley [8]; see also the remarks on p. 313 of [8] and Pakes [13].

THEOREM D. Let {Xn} (n = ---,-l,0,l,---)bea stationary ergodic Markov
chain on the non-negative integers and let it be stochastically monotone, that is
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[3] Correlation coefficients of queue lengths 37

Pr {Xn+1 ^j\Xn = 1} ^ Pr {Xn+1 ^j\Xn = i + l} (all n; i,j = 0, 1, • • •) and let
E{X%} < oo. Then the serial correlation coefficients rn = [E(XmXm+n)-(E(Xm))2]/
var (Xm) (all m; n = 0, 1, • • -)form a monotone non-increasing sequence with limit
equal to zero.

We now prove Theorem 1 which is the key to further properties of the serial
correlation coefficients {>„}.

THEOREM 1. The generating function R(y) = Y^=o rny" (M < 0 of the serial
correlation coefficients {rn} of the embedded queue length process {Qn} of the sta-
tionary M/G/\ queue with fi3 < oo, is given by

(3) * « - — ^ +

where H(O,y) = £n°°=1 Cny
n (\y\ < I) and where with D = d/dx,

(4) Cn = E(Q0; Qn = 0) =
n!

The correlation coefficients are given by

rn = l-nVl(l-p)/a2+(^Q)/(72 (n = 2, 3, • • •)•

77ie sequence {rn} is convex.

PROOF. Denning ^.n) = ^,» x i P r { 0 o = », fi. =7} = ^ { 2 0 ; 2 n = ; } («.; =
0, 1, • • •), we see that 6f+1) = £ £ 0 0<a)p,j which for M/G/l is

i = 0

Forming the generating functions Hn(x) = YJ=o ^ ^ = E(Qox
Q") (\x\ ^ 1)

gives us

xH,+l(x)-K(x)Hn(x) = -6(
o

n)K(x)(l-x) (n = 0,1, • • •; |x| ^ 1)

Taking generating functions again, and observing that

gives

(6) H(x, y) - I Z
X— y

(\x\ < 1, bl < 1)

where H(0,y) = £„% C , / on putting fl^ = Cn (n = 0, 1, • • •)•
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Applying Abel's theorem, as given by Karlin [10] p. 463 to (6) shows that
M(y) = Yj?=0 Mny" = 8H(x, y)/dx\x=1, where the derivative at x = 1 is taken
through positive x < 1. (This convention will be adhered to throughout the paper.)
Simple algebra then leads to (3). Using the uniqueness theorem for power series
and expanding the right hand side of (3) gives (5). We now demonstrate (4) by
means of Lagrange's theorem for the reversion of series.

First note that the function x—yK{x) has, for each 0 ^ y < 1, a unique zero
r(y) in the unit circle; see Takacs [18] p. 47 and p. 235. But from its definition
H(x, y) is a regular function of x in the open unit disc for each 0 ^ y < 1, so that
the numerator of (6) has a zero at x = x(y) and this implies that

(7)

By observing that xll'(x)/(l —x) is regular in the open unit disc, Lagrange's theo-
rem gives (4).

The convexity of {/•„} follows on noting that (5) implies o2(rn — 2rn+l+rn+2)
= Cn+1 — Cn, and since {Qn} is a stochastically monotone Markov chain, {Cn}J
is a monotone non-decreasing sequence; see Theorem 3 of Pakes [13]. The proof
is now complete.

In order to estimate the mean of a stationary stochastic process such as is the
queue length process {£>„}, given a sample of observations (Qlt • • •, QN), we form
the unbiassed estimator m = Q ^ = 1 Qn)/N whose variance is given exactly by

N - l

var(m) = o2{N+2 £ {N-n)rn}jN2.

If YJ?= o rn converges, the variance of the sample mean is, when N is large, asymp-
totically equal to

(8) <72{1+ 2 £rn}/iV.
n = l

Thus for the purposes of estimation of vt, we are interested in the convergence of
Xn°= o rn» and it follows from the non-negativity of rn and Abel's theorem that
Z"=o rn < °° iff l im^i R(y) < oo, and the two limits are equal. The following
theorem deals with this matter.

THEOREM 2. ^ ° = 0 rn converges iff ^4. < 00 and when this condition is satisfied,

(9) Vr =1 J _ + V3~v*vi
K) nh" 2(1-p) 2(l-p)<r2

PROOF. Write R{y) in the form

(10) R(y) = [a\\-y)-v1{\-P)y+yG{y)]la\\-yf

where
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(11) GOO = (l-y)H(0,y) = (l-p)yT(y)n'[^y)](n[r(y)]-(l-pXl-T(y))ri

and where the second equality comes from (1) and (7). This form of G(y) is con-
venient to handle. A two fold application of L'Hospitals rule to (10) shows that

I rn = R(l) = lim [_2G'(y) + G"(y)-]l2a2.
n=0 y t l

It can be seen from (11) that G"(y) will involve d3ll(x)/dx3\x=ziy) and no higher
derivatives, and since T(1) = 1, it follows by monotone convergence that this third
order derivative tends, as y] 1, to E{Qn(Qn-\)(Qn-2)}. Thus R{\) is finite iff
v3 < oo and this latter condition holds iff /i4 < oo. Equation (9) follows on noting
that

G'(l) = <72 and G"(l) = (v3-v2v1-<j2)l(l-p).

This theorem should be contrasted with Theorems 2 and 4 of Daley [6] where
he shows that the sum of the serial correlation coefficients of a stationary sequence
of waiting times in GI/G/l is finite iff the fourth moment of the service distribution
is finite.

COROLLARY 1. Let {<2n}^=1 be an observed sequence of queue lengths in the
stationary M/G/l queue with /i4 < oo. Then for N large

var(m) « (v3-v2v1-p<72)/iV(l-p)

PROOF. This follows from (8) and Theorem 2.

COROLLARY 2. Under the conditions of Theorem 2,

PROOF. This follows from Theorem 2, equations (2) and by using

v AV4 [ A W 3 3AV1 | 3AV1 ; IX^ 3A/i3 ,
3 4(1 -p) (1-p)2 4(1-p)3 (l-p)2 2 ( 1 - p) 1-p

which is easily found from (1).

Comparing Corollary 2 above with Corollary 4.2 of Daley [6], we see that
when Ht < oo in the stationary M/G/l queue 1 +2 £™=1 rB is asymptotically equal
(p t 1) to the corresponding expression for a stationary sequence of waiting times.
We now prove a theorem which shows that the heavy traffic behaviour of {rn} is
similar to that of the waiting time serial correlation coefficients; see Daley [6],
Theorem 5.

T H E O R E M 3 . For the family of ergodic M/G/l queueing systems with given ser-

vice time distribution B(-) and arrival rate k such that 0 < l — p < < 5 < ! and
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^3 < oo, the serial correlation coefficients rn of a stationary sequence of queue
lengths {&,} satisfy

\rn-l+An{l-pf\ < M( l -p) 3

for any finite set of integers n = 1, • • •, N, where A = 2/k2fi2 and M is a constant
depending on N.

PROOF. From (2) it is easy to show that vja2 = 2(\-p)lk2n2 + O[(\-p)2]
(p t 1) so that the theorem is true for N = 1. In fact, since I/a2 = O[{\ -pf]
{pi 1), it is clear from (5) that we only need to show that there is a constant M
such that Y£=iL Ck < M{\ -p).

The generating function K(x) is given by /?[A(1 —x)], where fi(s), the Laplace-
Stieltjes transform of the service time distribution function B{-), is a function of s
regular in Re s > 0. So for each positive k, P[k(l —x)] is a function of JC regular
in Sx = {x : \x\ < e < 1} and for each such x, fl[k(l —x)] is a function of k uni-
formly continuous in the set Sx = {k : (l—8)/n1 g k ^ (l+£i)//*i} (fii > 0).

Using (1) it is easily seen that

xll'(x)l(l -x) = (1 -p)W(x, k) (0 < p < 1, 0 ^ JC ̂  1)
where

= kx\\ -X)

Setting e < ^[2(1+6!)/^], it is clear that x — f}[k(l— x)] has no zeros in S =
SxxSx, and so under this condition it follows from the regularity of /?(•) that
W(x, k) is a function of x regular in Sx for each k e Sx, and it is a function of k
uniformly continuous in Sx for each xe Sx.

Now (1 — p)~l Y£=\ Ck is a nnite sum of finite order derivatives of a finite
product of functions regular in Sx for each fixed k e Sx and uniformly continuous
in Sx for each xe Sx. Hence a finite set of such sums is uniformly bounded in each
compact subset of SxxSx. Taking {(s, k) : s = 0, k e Sx} as such a set, we see
that for n = I,- • -,N there exists a constant M such that ££!} Ck < M(l -p),
so the proof is complete.

3. The stationary M/M/l queue

We shall illustrate the results of the previous section by discussing the sta-
tionary M/M/l queue, that is B{x) = 1 —e~x/"', for which the algebra is tractable.
The results of this algebra are

K(y) = (l+p-py)-1, n(y) = (l-

TGO = (l+p-[(l+P)2-4pj']*)/2p,

m y ) = 1-P2 DlT^-i+JgJL] where a = 4p
y'y' 2p(l-y)2l ' 1+pJ
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C- ^

1+pJ
By working as in Daley [6] p. 697, we can obtain the representation

(12)

/ > • ( « + £ A = (I-P)3(I+PK+ 2 C\n

Jo (1-03 2rcp2 J o2npz

for n = 0, 1, • • •. This shows that the sequence {rn} is completely monotone. It
should be noted that equation (34) in [6] is in error; the left hand side should read
pB_i. The error is made in the first equation of p. 697; compare with equation (21)
of [6].

Again, working as in Daley [6] we have

rn = O((fn"-*) (n -• oo).

From Theorem 3, we have the heavy traffic approximation rn = 1—w(l—p)2

+ O[(l — p)3] (p "I" 1). We can find a light traffic approximation in the following

manner. Observing that the terms of the series (1 — au)~z = YJ=o ( I (au)r are

non-negative enables us to integrate term by term and so (12) yields.

. _ ( I -P) 3 ( I+PK^ 2 -

r = O

Taking the first term of this series, and retaining only the lowest power of p shows
that

rn = Anp" + O(pn+1) ( p | 0 )

where An = 2"+1 • 1 • 3 • • • (2«+l)/(n

4, The bulk service queue

In a stationary bulk service queue with Poisson arrivals at rate 1, the customers
are served in batches of size s or less, where the positive integer s is fixed, with the
batch service time distribution function B(-) and traffic intensity p = A^/S < 1
where \iT = J j x?dB{x). We consider the embedded process {Qn} {n — • • •, —1,0,
1, • • •) of the length of the queue at successive departure epochs of the batches.
As is well known (Saaty [17]) {£>„} is an ergodic Markov chain with one step
transition probabilities ptj = kj-i+s (s ^ i ^j+s), ptj = psj (0 ^ i ^ s), and
Pu = 0 otherwise (i,j = 0, 1, • • •), where K(x) = YJ=o kj*J = Jo e~^(1"x)rf5(0
(1*1 ^ 1), so that p = K'(l)/s. The stationary distribution {nt} for the Markov
chain {Qn} has generating function
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n(x) = ! W
i = 0

where {t ;} '" 1 are the J— 1 solutions within the unit circle of the equation Xs — K{x)
= 0.

Letting vr = E(Qr
n) (all n; r = 1, 2, • • •) and <r2 = v2 — vj and noting

that vr is finite iff /xr+1 is, we see that the serial correlation coefficients
rn = [E(Q0 Qn) — Vj ]/a2 are well defined if n3 < oo. Observing that the Markov
chain {Qn} is stochastically monotone, Theorem D shows that the serial correla-
tion coefficients of the embedded queue length process {Qn} of the stationary
bulk service queue, are monotone non-increasing with limit equal to zero. The
remainder of this section is devoted to finding a representation for {rn} and
showing that it is a convex sequence.

THEOREM 4. The generating function R^y) = Y^=ornf (M < 1) of the serial
correlation coefficients {/•„} of the embedded queue length process {Qn} of the sta-
tionary bulk service queue with /i3 < oo is given by

where

P(hy) = iony
n = t gi(y)h(l, y) (\y\

B=0 1=1

and

The T;(j) (i = 1, • • •, s) are the s roots within the unit circle of the equation

(15) Xs -yK(x)= 0 (\y\ < 1).

The correlation coefficients are given by

(16) rn = l - s v 1 n ( l - / J ) / a 2 + ( ' I f Om)/<r2 (n = 1, 2, • • •).
m = 0

The sequence {/•„} is convex.

PROOF. Letting Of = E(Q0; Qn = j) we see that

ij («,J = 0, 1, • • •)
1 = 0

and proceeding as in Theorem 1 we find, if |JCJ ^ 1 and | j | < 1,
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(17) H(x, y) = Z E(Q0 x^f =
o x —yK(x)

where hj(y) = J^=o ^ "V- It follows by inspection that

(18) Z ^ X * 1 - *0 = " (1 - x)P{x, y)
y=o

where P(x, y) is a polynomial in x of degree s — 1. The assertion concerning the
roots of (15) are well known; see Takacs [18] p. 82, and for / = 1, • • -,s—l,
T,(1) = T; and TS(1) = 1 when the T; and T;(y) are suitably ordered.

For each y in \y\ < 1, H{x, y) is a function of x regular in the unit disc, so
that the numerator of (17) has s zeros coinciding with those of the denominator,
so Lagrange's interpolation formula (Cheney [4] p. 58) shows that

where gt(y) is given by (14) and

O b s e r v i n g t h a t x°-xj = -(l-x)(xs~1+xs~2+ • • • +xJ) (j = 0 , 1, • • ;s-l)

and using the defining relations for P(x, y) shows that

(19) Pix>y) = Y.L{y)x>
j = O

where Lfo/) = Y2-o4>Ty* a n d w h e T e 4>T = E{Qo\Q,^J)- Abel's theorem
enables (13) to be found from (17) and (18), and (16) follows from (13) and the
uniqueness of power series expansions. Observing that o2(rn+2 — 2rn+1 + rn) =
On+l-On and that On - Z*-=o $ B ) (from (19)), it follows from the stochastic
monotonicity of the Markov chain {£?„} that {/•„} is a convex sequence; see Theorem
3ofPakes [13].

5. The stationary GI/M/l queue

In a stationary GI[M/1 queueing system with service times distributed ex-
ponentially with parameter ft and with independent interarrival times having
distribution function A(-) and traffic intensity p = O ^ ) " 1 < 1, where Xr =
J^ xrdA{x) (r = 1, 2, • • •), we consider the embedded process {Qn} (n = •••,— 1,
0, 1, • • •) of the queue length at successive arrival epochs of customers. As is well
known (Takacs [18]) {Qn} is an ergodic Markov chain with one-step transition
probabilities ptj =/,+1__,- (1 ^j g J + l ) pi0 = l - Z i = o / t a n d Ptj = ° o t h e r "
wise (i,j = 0, 1, • • •), where
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F(x) = £ / , x ' = \'°e~M1~xytdA(t) (|x| ^ 1), so that p" 1 = F(l) .
i = O Jo

The stationary distribution {7tJ for the Markov chain {Qn} is given by 7tj =
(1 — <!;)£' (i = 0, 1, • • •) where t, is the unique root in (0, 1) of the equation
F{x) = x.

Letting vr = E{ffn) (all n; r = 1, 2, • • •) and a2 = v 2 -v j , we define the
serial correlation coefficients ra = (E(Q0Qn) — v2)/a2. As Daley [7] has pointed
out, {Qn} is a stochastically monotone Markov chain and {rn} is a monotone non-
increasing sequence with limit equal to zero. Daley has also found an expression
for the generating function R(y) = ££L0 rny" (\y\ < 1);

where £,{y) is the root of smallest absolute value of the equation x = yF(x),
£ = f (1) and {'(1) = ^ / ^ ^Wl,=i • He has shown that R(l) is finite and he found
a heavy traffic approximation for -K(l). The following theorem exhibits the form
of {rn} and gives further monotone properties.

THEOREM 5. The serial correlation coefficients {/•„} of the embedded queue length
process of the stationary GI/M/l queue are given by

(21) rn = l -»( l -£)OT) + (l-02("Z (n-j)fij)IZ'(l) (« = 1, 2, • • •)

where fS0 = 0 anJ where, with D = d/dx,

(22) j\pj = &-l\FXx)l(l-x)2]U_0 (J = 1. 2, • • •)•

sequence {rn} is convex and its third differences are non-positive i.e.

rn+3-3rtt+2 + 3rn + 1-rn :g 0 (n = 0, 1, • • •)•

PROOF. Lagrange's theorem shows that €(y)/(l-£(y)) is power series expan-
sible within the unit disc, so letting £(y)l(l-Z(y)) = U U ^ , / (M < 0> (21)
and (22) follow immediately. We see from (21) that rn+2 — 2rn+l+rn = /}n+1

(n — 0, 1, • • •), so that the convexity of {/•„} is established on observing that both
F(x) and (1— x)~2 have power series expansions with positive coefficients, so
pn ^ 0 (n = 1, 2, • • •)•

The final statement of the theorem will be proved if we can show that {fin}f
is a monotone non-increasing sequence. Let

ftt = Pr {Qn = 0, Qm ¥> 0 (m = 1, • • •, n-l)\Q0 = 0} (n = 1, 2, • • •)•

Then we have I ^ i / ^ o V = 0'-«0'))/(l-«0'))(l>'l < l);seeTakacs [18] p. 116.
From this we find t h a t / ^ = 1 - f t ^ 0 and/0

(S' = )?„_! -j8n ^ 0 (n = 2, 3, • • •),
thus completing the theorem.
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[11 ] Correlation coefficients of queue lengths 45

Let

H*) = E//BV (|x| ^ 1, n = 1, 2, • • •)•

Prabhu [15] p. 64 has shown that op%] = jfn-jln (n ^j), opty = 0 otherwise,
where

oP§ = Pr {Qn = j , Qm * 0, (m = 1, • • •, n - l ) |Q 0 = 0} (n = 1, 2, • • •)•

It is not difficult to see that

= 5 = t oP(oi, 5'(1) =
B = 1 n

and

a. = i OP(O%

thus the rn can be expressed solely in terms of these last exit probabilities.

6. Discrete time queues

Meisling [11] has considered a queueing process in which customers can
only arrive at time instants which are multiples of A > 0. At any such instant
either no customers arrive, with probability q > 0, or exactly one customer arrives,
with probability p = 1— q > 0. The service times of successive customers are
identically and independently distributed lattice random variables with distribu-
tion ck = Pr {service time = kA} (k = 1,2, • • •). The queue lengths at successive
departure epochs form a stochastically monotone Markov chain with one step
transition probabilities ptJ = bj+l_i{\ ^ i ^j+l),puj = Pij, andpu = Oother-
wise (/,_/ = 0, 1, • • •), where

When pq > 0 this Markov chain is irreducible, and if

f kck < UP
k=l

it is ergodic and Theorem D applies to stationary queues of this nature.
Beusch [2] has considered a queueing system where customers can only arrive

at time instants which are multiples of A > 0, and where the service times are
positive multiples of A. He studies the process {Xn} where Xn is the sum of the
service times of all customers in the queue at time nA (n = 0, 1, • • •) including
those customers which arrive at n and the remaining service time of the customer
receiving service at this instant. If Yn is the sum of the service times of the customers
that arrive at n, and if Pr {Yn = i} = dt \i = 0, I, • • •; n = 1, 2, • • •) and if the Yn
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are all independent, then {Xn} is a Markov chain with one step transition prob-
abilities pij = dJ+1-i(l <: i ^j+l),pOj = Pij, andptJ = 0otherwise (1,7 = 0, 1,
• • •). This Markov chain is stochastically monotone and when </0+^i < 1 it is
irreducible and if Yf= 1 idt < 1 it will be ergodic and Theorem D can be applied
to stationary Markov chains of this type.

It is clear that the transition matrices of the Markov chains just discussed
are of a similar form to that of the embedded queue length process in the M/G/l
queue, so that under suitable conditions it seems likely that much of the discussion
of Sections 2 and 3 could apply to the Markov chains mentioned above.
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