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Let X and Y be normed spaces and let L(X, Y) denote the set of linear
transformations (henceforth called "operators") T with domain a linear subspace D(T) of
X and range R(T) contained in Y. The restriction of T to a subspace E is denoted by
T\E; by the usual convention T\E = T\EnD(T). For a given linear subspace E the
family of infinite dimensional subspaces of E is denoted by ${E). An operator Tis said to
have a certain property P ubiquitously if every E e $(X) contains an F e $(E) for which
T | F has property P. For example, T is ubiquitously continuous if each E e ${X) contains
an Fe$(E) for which T\F is continuous. In the present note we shall characterize
ubiquitous continuity, isomorphy, precompactness and smallness. A subspace of X is
called a principal subspace if it is closed and of finite codimension in X. The restriction of
an operator to a principal subspace will be called a principal restriction. The symbol T will
always denote an arbitrary operator in L[X, Y).

LEMMA 1. If M and E are subspaces of X and if codim E < °°, then M = M C\E © F
for some finite dimensional subspace F.

Proof. The map of M/MnE into XIE given by m + MnE-»m + E (meM) is
injective. •

A restriction T\M of T is said to be nontriyial if M D D(T) is infinite dimensional.

LEMMA 2. The operator T has a principal restriction having a continuous inverse if
and only if T has no nontrivial precompact restriction.

Proof. The " i f part is contained in the Kato-Goldberg result [3, p. 80]. For the
converse, suppose that M is a principal subspace for which T\M has a continuous inverse
and let £ be a subspace such that T | E is precompact. Then T \ M fl E is an isomorphism
and hence M D E n D(T) is finite dimensional. Therefore E D D(T) is finite dimensional
by Lemma 1. •

COROLLARY 3. (See [2].) Any two norms defined on an infinite dimensional linear
space are comparable on some infinite dimensional subspace.

Proof. Consider the appropriate identity map. •

With a given operator T we associate the graph operator G of T as follows. Let XT be
the linear space D(T) normed by ||je||r = ||JC|| + ||TJC|| and define the operator G:XT^>X
by Gx = x(x e XT). Observe that T is continuous if and only if G is an isomorphism.
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THEOREM 4. The operator T is ubiquitously continuous if and only if T is continuous
on some subspace of finite codimension.

Proof. We may clearly suppose dim D(T) = °°. Suppose T is ubiquitously con-
tinuous. Let E e S{D{T)). There exists F e $(E) making T \ F continuous. Then G"11F is
an isomorphism. Consequently G has no nontrivial precompact restriction. Hence by
Lemma 2 a principal subspace M of XT exists for which G\M is an isomorhism. Then
T | GM is continuous. If N is a subspace of X complementary to D(T) then GM © N is a
finite codimensional subspace upon which T is continuous.

Conversely let T\E be continuous where c o d i m £ < ° ° and let Me$(X). Then
EC\M e$(X) by Lemma 1, and T\EC\M is continuous. Thus T is ubiquitously
continuous. D

THEOREM 5. The following statements are equivalent.

(i) T is ubiquitously an isomorphism.
(ii) T is an isomorphism on some subspace of finite codimension.

(iii) T is continuous on some subspace of finite codimension and T has no nontrivial
precompact restriction.

Proof. The implication ( i )^ ( i i i ) is immediate from Theorem 4. Assume (iii). Then
by Lemma 2 there exists a finite codimensional subspace M of X for which T \ M has a
continuous inverse. If E is a finite codimensional subspace making T\E continuous, then
codim(£ n M) < oo (Lemma 1) and T\EHM is an isomorphism. Hence (iii) =>(»)• The
proof that (ii) ^ (i) is similar to the corresponding part of the proof of Theorem 4. •

PROPOSITION 6. Let Z be a subspace of X. For each principal subspace M of Z there
exists a principal subspace Mo of X such that M = Mo fl Z.

Proof. Let M be a principal subspace of Z. There exists a finite dimensional
subspace F of Z such that M@F = Z. Let xx,...,xn be a basis for F. Choose
/a , . . . , / „ e X' such that /)(*,-) = 6,7 and f^m) = 0 for m e M(i, j^n); this is possible since
F n M = (0). Then Mo = f l / , r l (0) is a principal subspace of X with M = Mo D Z. D

LEMMA 7. If X = M (BN, where M is a principal subspace, then the projection of X
onto M with null space N is bounded.

Proof. Let {xx,. . . ,xn} be a basis for N and let N,r = sp{jc1( . . . ,* , -_ , ,
xi+1, . . . , xn}. Since M + Nt is closed for each i (see e.g. [3, p. 16]) there exists by the
Hahn-Banach theorem an f e X' such that /•(*,-) = 1 and fix) = 0 for x e Af + N,. Define
G = E // ® *,. Then Q is a bounded projection with range JV and null space M, and

P = I - Q is the required projection.

C O R O L L A R Y 8. / / there exists a principal subspace M for which T\M is continuous,
then T is continuous.
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A characterisation of bounded semi-Fredholm operators (0+-operators) between
Banach spaces will now be given. An operator T is called a $+-operator if its null space
N(T) is finite dimensional and R(T) is closed.

THEOREM 9. Let X and Y be Banach spaces and let T e L(X, Y) be an everywhere
defined (injective) operator. The following statements are equivalent.

(i) T is a bounded <f>^-operator (resp., an isomorphism).
(ii) T is bounded and ubiquitously an isomorphism.
(iii) T has a principal restriction which is an isomorphism.

Proof. Assume (ii). Then by Lemma 2 there exists a principal subspace M making
T\M an isomorphism. Hence (ii)^>(iii).

Assume (iii). The implication (iii)^>(i) in the case when T is bounded is a well
known classical result (cf. [1]). Hence, by Corollary 8, (iii)^>(i).

Assume (i). Then there exists a principal subspace M such that X = M © N(T). By
the Closed Graph Theorem, T\M is an isomorphism. Hence (i)^>(ii). •

THEOREM 10. Let T be injective and everywhere defined on a Banach space. If T is
bounded, and if T~l is continuous on a subspace of finite codimension, then T is an
isomorphism.

Proof. Let T be bounded and let E be a finite codimensional subspace of Y such that
T~1\E is continuous. Then T~lE has finite codimension in X, and T\T~XE has a
continuous inverse. Lemma 1 now implies that Thas no nontrivial precompact restriction.
Hence, by Lemma 2, there is a principal subspace M of X for which T\M is an
isomorphism. But M is complete. Therefore TM is complete and hence is a principal
subspace of R(T) for which T"11 TM is continuous. Therefore T~l is continuous by
Corollary 8. •

To show that completeness is essential in Theorem 10 we give an example of a
bounded everywhere defined operator which is not an isomorphism, yet has a principal
restriction which is an isomorphism. Let / be a discontinuous linear functional with
domain X, and let G:Xf^>X be the graph operator associated with /. Then G"1 is
unbounded. However, G~1\N(f) is an isometry. Since codimN(f) = 1, it follows from
Lemma 2 and Theorem 5 that G has a principal restriction which is an isomorphism.

COROLLARY 11. Let XT be complete. If T is ubiquitously continuous then T is
continuous.

Proof. If T is ubiquitously continuous, then G"1 is continuous on some subspace of
finite codimension by Theorem 4. Hence, by Theorem 10, G is an isomorphism, or,
equivalently, T is continuous. •

We remark that Corollary 11 fails without the completeness assumption; for
example, every discontinuous linear functional is ubiquitously continuous.
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If X and Y are complete, then XT is complete if and only if T is closed. Hence we
have the following corollary.

COROLLARY 12. Let X and Y be complete. If T is closed and ubiquitously continuous,
then T is continuous.

Assuming that X and Y are Banach spaces and that T is everywhere defined and
injective, L. Drewnowski [1] asks whether T is an isomorphism whenever it has the
property that for each closed subspace E e £(X) there exists F e $(E) for which T\F is
an isomorphism. The following example shows that if "closed subspace E" is replaced by
"principal subspace E" in the above, then T need not be bounded.

EXAMPLE 13. There exists an unbounded everywhere defined injective and surjective
operator T:l2-^*l2 such that every principal subspace of l2 contains an infinite dimensional
closed subspace Fsuch that T\F is an isomorphism.

Let M and Nx be a pair of closed mutually orthogonal infinite dimensional subspaces
of l2 such that M+Nx = l2 (where 4- denotes the orthogonal sum), and select a dense
proper subspace N of Â  so that Nx = K + N where K is one-dimensional (N will be the
null space of a discontinuous linear functional on Nx). On l2 = M+(K + N) define P to be
the projection of l2 onto M + K with null space N. P is unbounded since its null space
N(P) is not closed. Let T = I + P. Then T is unbounded. Also, T\(M + N) is an
isomorphism; indeed for meM, neN we have | |m+ n| |2= | |m| |2+| |n| |2< ||2m||2 +
\\n\\2 = \\2m + n\\2= \\T(m + w)||2<4 \\m + n\\2 so \\m + n\\ < \\T(m + n)\\ s 2 \\m + n\\.
Now let £ be a principal subspace. Then M = M(1E@W where dim W < °° by Lemma 1.
Hence F = M D E is infinite dimensional and has the required property.

We shall now characterize ubiquitously precompact operators. Such an operator will
be continuous on a finite codimensional subspace by Theorem 3. An operator T will be
called strictly singular if there is no infinite dimensional subspace M of D(T) for which
T\M has a continuous inverse; this is a generalisation of the classical definition (see [4]).
Any discontinuous linear functional is an example of an unbounded strictly singular
operator. We shall call T ubiquitously small if for each e > 0 and each E e $(X) there
exists F e ${E) such that | | r | F | | < e unless F D D(T) is finite dimensional. The theorem
below is a generalisation of III.2.1 of [3].

THEOREM 14. The following statements are equivalent.
(i) T is ubiquitously precompact,

(ii) T is ubiquitously small.
(iii) T is ubiquitously strictly singular.
(iv) T is strictly singular.

Proof. Assume (i). By Theorem 3 there exists a finite codimensional subspace E for
which T\E is continuous. Since T\E is ubiquitously precompact, there exists Fe3>(E)
such that T\F is precompact. In particular, T\F is continuous and precompact on its
domain FnD(T), and hence ubiquitously small on FC\D(T) by ([3], loc. cit.). This
shows that T is ubiquitously small. Thus (i)^(ii) by Lemma 1. Next assume T is not
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strictly singular and let M e ${D{T)) be such that T\M has a continuous inverse. Then
117m11 &c ||m|| for some c > 0 and all meM. Therefore T is not ubiquitously small.
Hence (ii)^>(iv). Next, assume T is not ubiquitously precompact. Then there exists an
infinite dimensional subspace M such that T\M has no precompact restriction to any
infinite dimensional subspace of M. Lemma 2 now implies that T \ M D N has a continuous
inverse for some principal subspace N of M. Since evidently dim(M n D{T)) = °°, it
follows from Lemma 1 that T\M (and hence T) is not strictly singular. Therefore
(iv) =̂> (i). Finally, the equivalence of (i) and (iv) implies immediately the equivalence of
(iii) and (iv). D

Theorem 14 implies in particular that the sum of two strictly singular operators is
strictly singular, and that every strictly singular operator is continuous on some subspace
of finite codimension.
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