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Abstract

By using the Grothendieck–Riemann–Roch theorem we derive cycle relations modulo
algebraic equivalence in the Jacobian of a curve. The relations generalize the relations
found by Colombo and van Geemen and are analogous to but simpler than the rela-
tions recently found by Herbaut. In an appendix by Zagier, it is shown that these sets of
relations are equivalent.

1. Introduction

Beauville showed in [Bea86] that the Chow ring with rational coefficients of an abelian variety
possesses a double grading CHQ(X) =

⊕
CH i

(j)(X) where i refers to the codimension and j refers
to the action of the integers: CH i

(j)(X) = {x ∈ CH i(X) : k∗(x) = k2i−jx}. The quotient A(X) of
the Chow ring modulo algebraic equivalence inherits this double grading A(X) =

⊕
Ai

(j)(X) and
carries two multiplication laws, the intersection product x · y and the Pontryagin product x ∗ y.

If X = Jac(C) is the Jacobian of a curve C of genus g, then we can decompose the class [C] of
the image of the Abel–Jacobi map of C as [C] =

∑g−1
j=0 C(j) with C(j) ∈ Ag−1

(j) (Jac(C)). Colombo and
van Geemen proved (cf. [CV93]) that for a curve C with a map of degree d to P1, the component
C(j) vanishes for j � d − 1. In [Her07] Herbaut extended this result and found cycle relations for
curves having a gr

d, i.e. a linear system of degree d and projective dimension r, with r � 2.

It is the purpose of this note to show that one can use the Grothendieck–Riemann–Roch theorem
to derive, in an easy way, the Colombo–van Geemen result as well as simple relations of higher degree.

Let C be a smooth projective curve of genus g over an algebraically closed field K.

Theorem 1.1. If C has a base-point-free linear system gr
d, then∑

a1+···+ar=N

(a1 + 1)! · · · (ar + 1)! C(a1) ∗ · · · ∗ C(ar) = 0, (1)

for every N � d − 2r + 1.

For N = d − 2r + 1, this relation coincides with Herbaut’s relation (cf. [Her07, Theorems 1
and 8]). For higher values of N they are in general different, but in an appendix we present a proof
by Don Zagier that shows that Theorem 1.1 and Herbaut’s Theorem 1 are equivalent.
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2. Preliminaries

Let C be a smooth projective curve of genus g over an algebraically closed field K. We suppose
that the curve C has a base-point-free linear system gr

d of degree d and projective dimension r. This
defines a morphism γ : C → Pr. Let J = Jac(C) be the Jacobian of C.

We consider the incidence variety Y ⊂ C × P̂r defined by

Y = {(p, η) ∈ C × P̂r : γ(p) ∈ η},
where P̂r is the dual projective space of Pr. It has dimension r and possesses the two projections
φ̃ and α̃ onto C and P̂r. Note that α̃ is finite of degree d and φ̃ is a Pr−1-fibration. We shall write
Pr for P̂r.

We have the following diagram of morphisms

Pr Pr × J
v��

p

��

Y × J
α��

φ
��

π �� Y

φ̃
��

α̃ �� Pr

J C × J
q�� π̃ �� C

where the morphisms v, p, q, π̃ and π are projections, and α = α̃ × idJ and φ = φ̃ × idJ .

Let P be the Poincaré bundle on C×J and set L := φ∗P , a line bundle on Y ×J . Put � := c1(L)
and Π := c1(P ).

The Chow ring of Pr × J is generated over CH ∗(J) by the class ξ = v∗h with h a hyperplane
in Pr with ξr+1 = 0. For a class β ∈ CH ∗(Pr × J) we have the relation (cf. [Ful98, Theorem 3.3,
p. 64])

β =
r∑

i=0

βiξ
r−i with βi = p∗(β · ξi), (2)

where, by abuse of notation, we write here and hereafter βi for p∗(βi).

We let x = α∗(ξ) be the pull back of ξ. We let ρ = π∗φ̃∗(point) be the pull back class of a point
on C. We work in the Chow ring up to algebraic equivalence. There we have the relations

xr = dπ∗(point), xr+1 = 0, ρ2 = 0, xr−1ρ = π∗(point).

Recall the Fourier transform F : A(X) → A(X) for a principally polarized abelian variety (X, θ)
of dimension g (cf. [Bea86, Bea04]). It has the properties (i) F ◦ F = (−1)g(−1)∗, (ii) F (x ∗ y) =
F (x) · F (y) and F (x · y) = (−1)gF (x) ∗ F (y), (iii) F (Ai

(j)(X)) = Ag−i+j
(j) (X).

We have the relation q∗(eΠ) = F [C] (cf. [Bea04, § 3]). Comparing terms gives that F [C(j)] =
(1/(j + 2)!)q∗(Πj+2) for j = 0, . . . , g − 1. Note, also, that q∗1 = q∗Π = 0. More generally, extending
scalars to Q we have the relation

q∗(ekΠ) = k2gF [(k−1)∗C] for k ∈ Z�1.

In fact, writing [C] =
∑g−1

j=0 C(j) we have (k−1)∗[C] =
∑

j kj+2−2gC(j), hence

k2gF [(k−1)∗C] = F

[∑
j

kj+2C(j)

]
=

∑
j

kj+2q∗(Πj+2/(j + 2)!) = q∗(ekΠ).
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3. The proof

We shall prove that if C has a base-point-free linear system gr
d, then∑

a1+···+ar=N

(a1 + 1)! · · · (ar + 1)! F [C(a1)] · · ·F [C(ar)] = 0, (3)

for every N � d − 2r + 1.
We are going to apply the Grothendieck–Riemann–Roch theorem to the morphism α and the

line bundle L. For k � 1 we put Vk := α∗(L⊗k). Since α is a finite morphism of degree d this is a
vector bundle of rank d and we get

ch(Vk) = ch(α!L
⊗k) = α∗(ek�tdα),

with tdα the Todd class of the morphism α.
The Todd class tdα is algebraically equivalent to a class of the form A(x) + B(x)ρ. Here A =∑r−1

j=0 ajx
j and B =

∑r−1
j=0 bjx

j are polynomials in x and a0 = 1. In fact, tdα is the pull back under
π of tdα̃, an element of A(Y ). The ring A(Y ) is generated as an A(C)-module by 1, x1, . . . , x

r−1
1

with x1 = α̃∗(h) and A(C) is generated by 1 and the class of a point.

Proposition 3.1. For k ∈ Z�1 we have in A(Pr × J) the relation

ch(Vk) = dA(ξ) + ξB(ξ) + k2gF [(k−1)∗C]ξA(ξ).

In particular, all chj(Vk) are divisible by ξ for j � 1.

Before we give the proof of Proposition 3.1 we state a corollary and a lemma.
Proposition 3.1 gives an expression of the Chern characters of the bundles Vk. We can express the

Chern classes of the bundles Vk of rank d in terms of the Chern characters by using the well-known
formula (cf. [Mac95, ch. I (2.10′)])

1 + c1(Vk)t + · · · + cd(Vk)td = exp
(∑

j�1

(−1)j−1(j − 1)! chj(Vk)tj
)

. (4)

Formula (4) combined with Proposition 3.1 will give us the vanishing relations we are asking for.
For example, applying these formulas for r = 1 and k = 1 immediately gives us the theorem of
Colombo–van Geemen [CV93] as we now show.

Corollary 3.2. If C has a g1
d , then C(j) = 0 for j � d − 1.

Proof. Put V = V1. We see ch(V ) = d + nξ + F [C]ξ for some n (actually n = 1 − d − g). Since
chj(V ) is divisible by ξ for j � 1 and ξ2 = 0, formula (4) becomes in this case

1 + c1(V )t + · · · + cd(V )td = 1 + ch1(V )t − ch2(V )t2 + · · · + (−1)j−1(j − 1)! chj(V )tj + · · · .

Therefore, chj(V ) vanishes for j > d. Hence, F [C] has no terms of codimension d or more. Since
F [C(j)] is of codimension j + 1, it follows that C(j) = 0 for all j � d − 1.

Lemma 3.3. In A(Pr × J) the following relations hold for ν � 0:

α∗(�µ · xν) =

{
q∗(Πµ)ξν+1 µ > 0,
dξν µ = 0

and α∗(�µ · xν · ρ) =

{
0 µ > 0,
ξν+1 µ = 0.

Proof. For the first relation. By (2) the coefficient of ξr−j is given by

p∗(α∗(�µxν)ξj) = p∗(α∗(�µxνα∗(ξ)j)) = p∗(α∗(φ∗(Π)µxν+j))

= q∗(φ∗(φ∗(Π)µxν+j)) = q∗(Πµφ∗(xν+j)).
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If ν + j = r, then xr is algebraically equivalent to d times point × J and since Π is algebraically
equivalent to 0 on point×J , we get that any term with µ > 0 and ν + j = r contributes 0. The term
with ν + j = r − 1 contributes q∗(Πµφ∗(xr−1)) = q∗(Πµ) since φ∗(xr−1)) = 1C×J . If ν + j < r − 1
or ν + j > r, then we get q∗(Πµφ∗(xν+j)) = q∗(Πµ0) = 0. Finally, if µ = 0, we use that x = α∗ξ,
hence α∗(xν) = dξν .

For the second relation. Observe that �µ · ρ = 0, if µ � 1. Indeed, � = φ∗Π, ρ = φ∗(point × J)
and Π · (point × J) = 0. When µ = 0, we have α∗(xνρ) = ξνα∗ρ = ξν+1.

We now give the proof of Proposition 3.1.

Proof of Proposition 3.1. We have α∗(�µxνρ) = 0 for all µ � 1, ν � 0. So in the contributions
α∗(ek�tdα) we get contributions of the form α∗(ek�A(x)) and α∗(ρB(x)) only. We have

α∗(ek�A(x)) = α∗(A(x)) +
∑
µ�1

kµ

µ!
α∗(�µA(x)) = dA(ξ) +

∑
µ�1

kµ

µ!
q∗ΠµξA(ξ)

= dA(ξ) + q∗(ekΠ)ξA(ξ) = dA(ξ) + k2gF [(k−1)∗C]ξA(ξ).

On the other hand, α∗(ρB(x)) = ξB(ξ).

By using the relation

k2gF [(k−1)∗C] = q∗(ekΠ) =
∑
µ�0

kµ+2

µ + 2!
q∗Πµ+2 =

∑
µ�0

kµ+2F [C(µ)],

we get the following corollary of Proposition 3.1.

Corollary 3.4. We put aj = bj = 0 for every j � r. With A =
∑r−1

j=0 ajx
j where a0 = 1 and

B =
∑r−1

j=0 bjx
j we have for j � 1, k � 1 that

chj(Vk) = (daj + bj−1)ξj +
j−1∑
m=1

am−1k
j−m+1F [C(j−m−1)] ξm.

With j � 1 we put

chj(Vk) = A1(j)ξ1 + · · · + Ar(j)ξr,

where Am(j) is of codimension j − m. Please note that chj(Vk) is divisible by ξ for j � 1 by
Proposition 3.1.

Remark 3.5. The coefficient Am(j) depends on k, but for simplicity of notation we do not involve
the index k in the notation.

Then, for every j � 1 and 1 � m � r, we have

Am(j) =




daj + bj−1 m = j,

am−1k
j−m+1F [C(j−m−1)] m < j,

0 m > j.

Since rank(Vk) = d, the coefficient of tM+1 of the right-hand side of (4) must be zero for every
M � d. Let us write

F (t) =
∑
j�1

(−1)j−1(j − 1)! chj(Vk)tj .
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Note that F (t)i = 0 for every i � r + 1 because chj(Vk) is divisible by ξ for j � 1. Therefore, the
right-hand side of (4) is equal to

∑r
i=0(1/i!)F (t)i. The coefficient of tM+1 in the polynomial F (t)i,

for i � 1, is equal to

(−1)M+1−i
∑

α1+···+αi=M+1

(α1 − 1)! · · · (αi − 1)! chα1(Vk) · · · chαi(Vk).

We denote the expression (α1 − 1)! · · · (αi − 1)! by α{1, i}. Then we have that
r∑

i=1

(−1)i

i!

∑
α1+···+αi=M+1

α{1, i} chα1(Vk) · · · chαi(Vk) = 0

for M � d, and so
r∑

i=1

(−1)i

i!

∑
α1+···+αi=M+1

α{1, i}
[ r∑

m1=1

Am1(α1)ξm1

]
· · ·

[ r∑
mi=1

Ami(αi)ξmi

]
= 0.

Now the left-hand side of this is easily seen to be equal to
r∑

m=1

m∑
i=1

(−1)i

i!

∑
α1+···+αi=M+1

α{1, i}
∑

m1+···+mi=m

[Am1(α1) · · ·Ami(αi)]ξm.

We therefore have, for every m = 1, . . . , r and M � d, that
m∑

i=1

(−1)i

i!

∑
m1+···+mi=m

∑
α1+···+αi=M+1

α{1, i}Am1 (α1) · · ·Ami(αi) = 0.

With M � d, the case m = r gives the relation
r∑

i=1

(−1)i

i!

∑
m1+···+mi=r

∑
α1+···+αi=M+1

α{1, i}Am1 (α1) · · ·Ami(αi) = 0.

If we write

BM (i) =
∑

m1+···+mi=r

∑
α1+···+αi=M+1

α{1, i}Am1 (α1) · · ·Ami(αi),

then this relation becomes
∑r

i=1((−1)i/i!)BM (i) = 0 for every M � d. We analyze the dependence
on k.

Proposition 3.6. We write
∑r

i=1((−1)i/i!)BM (i) =
∑

s Γsk
s as a polynomial in k. With M � d

we have that Γs = 0 for s > M + 1 and

ΓM+1 =
(−1)r

r!

∑
a1+···+ar=M−2r+1

(a1 + 1)! · · · (ar + 1)! F [Ca1 ] · · ·F [Car ].

Proof. If Am1(α1) · · ·Ami(αi) contains a factor with mj > αj , then it vanishes. Otherwise, since
Amj (αj) = amj−1k

αj−mj+1F [Cαj−mj−1], except when mj = αj, in which case Aαj (αj) = daαj +
bαj−1, the power of k contained in Am1(α1) · · ·Ami(αi) is equal to (α1+· · ·+αi)−(m1+· · ·+mi)+ν =
M + 1 − r + ν, where ν is given by ν = #{mj �= αj, j = 1, . . . , i} � i. Now if i < r the above
number is less than M + 1. On the other hand, if i = r, then m1 = · · · = mr = 1 (since mi � 1)
and therefore

BM (r) =
∑

α1+···+αr=M+1

α{1, r} A1(α1) · · ·A1(αr).

Again, if a term of the above sum contains a factor A1(1), then the power of k contained in this
term is less than M + 1. On the other hand, the sum of the terms with no factor of the form A1(1)
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is

B′
M (r) =

∑
αµ�2, α1+···+αr=M+1

α{1, r} A1(α1) · · ·A1(αr).

Since αµ � 2 we have that A1(αµ) = kαµF [Cαµ−2]. Therefore,

B′
M (r) = kM+1

∑
αµ�2, α1+···+αr=M+1

α{1, r}F [Cα1−2] · · ·F [Cαr−2]

= kM+1
∑

aµ�0, a1+···+ar=M−2r+1

(a1 + 1)! · · · (ar + 1)!F [Ca1 ] · · ·F [Car ].

We now prove Theorem 1.1.

Proof of Theorem 1.1. Since we are working with Q-coefficients, we conclude that the coefficient of
kM+1 (which is the maximum degree of k involved) must be zero for M � d, which is relation (3)
with N = M − 2r + 1 � d − 2r + 1. By applying the Fourier transform Theorem 1.1 follows.

Remark 3.7. We finish with a few remarks. Note that the existence of a base-point-free gr
d implies the

existence of a base-point-free gr−1
d−1 for which Theorem 1.1 provides a set of relations. Furthermore,

the statement of Theorem 1.1 remains true if one replaces d by any larger integer d′, although the
curve need not possess a base-point-free gr

d′ . For r = 1 this reflects the fact that the vanishing of
C(a) implies the vanishing of C(a′) for all a′ > a, cf. [Mar05, Corollary 24].
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Appendix. The equivalence of two sets of relations

Don Zagier

The relation of Herbaut mentioned in the introduction [Her07, Theorem 1], has the same general
form as (1), but with much more complicated coefficients, namely∑

a1+···+ar=N

Bd(a1, . . . , ar) C(a1) ∗ · · · ∗ C(ar) = 0

for all N � 0 if the curve C has a gr
d, where

Bd(a1, . . . , ar) =
∑

i1,...,ir�1

(−1)d−i1−···−ir

(
d

i1 + · · · + ir

)
ia1+1
1 · · · iar+1

r .

This equation is vacuous if N � d − 2r (because then all Bd(a1, . . . , ar) vanish, as we will see in a
moment and as Herbaut also points out) and reduces to (1) if N = d−2r+1, but the two equations
differ in general. In both theorems, since the existence of a gr

d trivially implies the existence of a
gs
d−r+s for all s � r, we can add to the given sets of relations the corresponding relations with (d, r)

replaced by (d− r + s, s) for all 1 � s � r. In this appendix, we prove that these two extended sets
of relations are equivalent.
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From the identity
∞∑

d=0

(−1)d−i

(
d

i

)
ud =

ui

(1 + u)i+1

we obtain the formula
∞∑

d=0

Bd(a1, . . . , ar)ud =
1

1 + u
Pa1+2(u) · · ·Par+2(u), (A1)

where Pn(u) (n � 1) is the power series without constant term given by

Pn(u) :=
∞∑
i=1

in−1

(
u

1 + u

)i

in Z[[u]].

Lemma A.1. We have the following:

(i) Pn(u) is a polynomial of degree n; more precisely, Pn(u) has the form
∑n

m=1(m − 1)!S(m)
n um

where each S
(m)
n is a positive integer;

(ii) Pn(−1) = 0 for n > 1;
(iii) for each n � 1, one has the Laurent series identity

(n − 1)!
[log(1 + x)]n

= Pn

(
1
x

)
+ O(x) in Q[x−1, x]]. (A2)

Example A.2. The first five polynomials Pn(u) are u, u + u2, u + 3u2 + 2u3, u + 7u2 + 12u3 + 6u4

and u + 15u2 + 50u3 + 60u4 + 24u5. We have

4!
[log(1 + x)]5

=
24
x5

+
60
x4

+
50
x3

+
15
x2

+
1
x

+ 0 − x

252
+

x2

504
− 19x3

30 240
− x4

20 160
+

53x5

147 840
− · · · .

Proof. The easiest approach (as usual) is to use generating functions. We have
∞∑

n=1

Pn(u)
tn−1

(n − 1)!
=

∞∑
i=1

(
uet

1 + u

)i

=
uet

1 − u(et − 1)
(A3)

and, hence,
1

(n − 1)!
Cum [Pn(u)] = Ctn−1 [et(et − 1)m−1] (m,n � 1).

(Here Cxi [Φ(x)] denotes the coefficient of xi in a polynomial, power series or Laurent series Φ(x).)
This clearly vanishes for n < m, showing that Pn is a polynomial of degree � n. It also implies the
explicit formula for Pn given in Lemma A.1(i), with

S(m)
n =

n!
m!

Ctn [(et − 1)m] = Cxn−m

[ m∏
j=1

1
1 − jx

]
=

1
m!

m∑
k=0

(−1)m−k

(
m

k

)
kn

being the Stirling number of the second kind (that is, the number of ways of partitioning a set of n
elements into m non-empty subsets). The right-hand side of (A3) reduces to −1 at u = −1, proving
part (ii). For part (iii), we use the residue theorem and the substitution et = 1 + x to get

1
(n − 1)!

Cum [Pn(u)] = Rest=0

[
et(et − 1)m−1 dt

tn

]
= Resx=0

[
xm−1 dx

[log(1 + x)]n

]
for m, n � 1.

We can now prove the equivalence of the two sets of relations described above. Let R be the
Q-subalgebra of the Chow algebra generated (with respect to the Pontryagin product, which we
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denote simply by juxtaposition) by the C(j). We define two polynomials G(t) ∈ R[t] and H(u, t) ∈
R[u, t] by

G(t) =
g−1∑
a=0

(a + 1)!C(a)t
a+2, H(u, t) =

g−1∑
a=0

Pa+2(u)C(a)t
a+2.

Then the relations obtained from Theorem 1.1 can be written in the form

degt[G(t)s] � d − r + s for 1 � s � r, (A4)

while, in view of (A1), Herbaut’s relations can be written in the form

Cud−r+s

[
1

1 + u
H(u, t)s

]
= 0 in R[t], for 1 � s � r. (A5)

We also introduce the strengthened Herbaut relations

degu[H(u, t)s] � d − r + s for 1 � s � r. (A6)

Clearly (A6) implies (A5). (Note that H(u, t)s/(1+u) is a polynomial by part (ii) of the Lemma A.1.)
To see that (A4) implies (A6), we use (A2) to obtain

G

(
t

log(1 + x)

)
= H

(
1
x

, t

)
− ε(x, t)

with ε(x, t) = O(x) (in fact, ε(x, t) = O(xt2)) and, hence, assuming (A4),

H

(
1
x

, t

)s

=
s∑

s′=0

(
s

s′

)
G

(
t

log(1 + x)

)s′

ε(x, t)s−s′

=
s∑

s′=0

O
(

1
xd−r+s′

)
O(xs−s′) = O

(
1

xd−r+s

)
(A7)

as x → 0, proving (A6). To prove that (A5) implies (A4), we use induction on s. Assume (A5) for
some s � r and (A4) for all s′ < s. Equation (A7) and the inductive assumption give

G

(
t

log(1 + x)

)s

= H

(
1
x

, t

)s

+ O
(

1
xd−r+s−2

)
and, hence, for n > d − r + s − 2,

Ctn [G(t)s] · Cx−d+r−s

[
x

1 + x

1
[log(1 + x)]n

]
= Ctn

[
Cud−r+s

[
1

1 + u
H(u, t)s

]]
= 0

by (A5). Differentiating (A2) and using part (i) of Lemma A.1, we find that the second factor on
the left equals ((d − r + s)!/(n − 1)!)S(d−r+s)

n−1 , which is non-zero for n > d − r + s. Equation (A4)
follows.
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