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EICHLER MAPS AND HYPERBOLIC FOURIER
EXPANSION

TOYOKAZU HIRAMATSU

§0. Introduction.

In his lecture notes ([1, pp. 33-35], [2, pp. 145-152]), M. Eichler reduced
‘quadratic’ Hilbert modular forms of dimension —k (k is a positive integer)
to holomorphic automorphic forms of dimension — 2k for the reproduced
groups of indefinite ternary quadratic forms, by means of so-called Eichler
maps.

On the other hand, H. Petersson ([5], [6]) introduced a Fourier expan-
sion in a pair of hyperbolic fixed points for automorphic forms of real
dimension with respect to fuchsian groups of the first kind, and constructed
the Poincaré series at the pair of hyperbolic fixed points, and also calcu-
lated the inner product on the space of automorphic forms.

The purpose of the present paper is to prove the following theorem by
combining the above two results:

THEOREM. Let O be a maximal order in an indefinite division quaternion
algebra over Q and I' be the group of units in O. Then the n-th hyperbolic Fourier
coefficient c,, of the holomorphic automorphic form of dimension — 2k for I' wheih is
obtained from a Hilbert modular form by the Eichler map = is expressed as follows:
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where ¢, denote parabolic Fourier coefficients of the Hilbert modular form stated above.

During the preparation of the present paper the author received many
useful bits of advice from Professors T. Kubota and H. Shimizu. The
author wishes to express his hearty thanks to them.

Notation. Z, Q. R and C denote respectively the ring of rational
integers, the rational number field, the real number field and the complex
number field. If R is a ring, M,(R) denotes the ring of all matrices of
degree 2 with coefficients in R.

§1. Eichler maps =.

Let A be an indefinite division quaternion algebra over Q, i.e., a divi-
sion algebra over @ such that A® R is isomorphic to M,(R) and let {1, o,
2, o2} be a basis of A over Q su?:h that w*=p, 2= —¢q and w2 = — Qo,
where p and g are distinct prime numbers with the Legendre symbol <—Tq)= —1.

We put
F=QWp).

Then, identifying F with the real quadratic subfield Q(w) in A, We may
write A= F+ FQ and we have a2 = Qa for all «eF,a being the conjugate
of « with respect to F. This expression gives the faithful representation x

of A into M,(F):
51 Ez
x(é) = ( )

—q¢& &
for ¢ =¢ +602€A with ¢&eF. we see easily that the conjugate of & is
& =& —£0, the trace of ¢ is tr(§) =€+ & =¢ + & =tr2¢) and the norm
of & is n(§) = ¢’ = &,&, + .6, = det x().
Let G=SL(2,R) and K be a maximal compact subgroup of G (i.e.
K = S0(2). Let O be the ring consisting of all elements in the form &, + £,2,
where £, &, are in the set of all integral algebraic numbers in F and let
r**™ be the group of (proper) units in O. From now on we assume that
=1 mod 4. Then O is the maximal order in A. We know that I', re-
garded as a subgroup of G, is a fuchsian group of the first kind and has a
compact fundamental domain I'\G/K.
Let V = M,(R)X Mx(R), and define p: G—=>GL({V) by

1) When there is no danger of confusion we may write I" instead of I'?*9,
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p(9) (&1, &) = (04(9)E1, 04(9)E5)

for each g in G, where (&,, &)V and each ¢,(i = 1,2) denotes an irreducible
continuous representation of G (i.e. p =g, ®0s,). Let p, be the symmetric
tensor representation of degree n of GL(2, R). Then, it is well known that
the restriction p,|G, which we denote again by p,, exhaust all irreducible
continuous representations of G:

0n:G=>SLn+1,R) (n=0,1,2,+++).

Therefore each of ¢; (i =1, 2) takes the following form:
{ o, = 87'id. B,
g, = a”lid. a,

where «, B€GL(2, R) and id. denotes the identical representation. Hereafter
we assume that g = <(1)(1) .

Now we put
G, =GxG, K,=Kxa'Ka.

Then K, is a maximal compact subgroup of G, and p(G)cG, p(K)CK,.
Hence the homomorphism p induces a map ¢ of the quotient space G/K
into the quotient space G/ K,:

7:GIK=9">H"XP* = G/IKXGla™ Ka = G /Ky,

Where $* denotes the complex upper half-plane. Let I' (/ p ) be the Hil-
bert modular group of the real quadratic field F. Then, if p satisfies the

condition

oI ¢p )

as operator, the map ¢ induced from p will be called Eickler map of p.

LemmaA 1. The homomorphism o satisfies the condition o(I')CI'(/ p ) as operator
if and only if «=(_ §)=0.

Proof. 1If p satisfies the condition p(I")CI'(/ p ) as operator, then a7’ =7a

. _(ab _( & & -

for all 7er. Hence, putting « = (, d>’ T = <——q1§2 Ef), we have the follow
ing relations:
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a, — bgé, = aé, + c&,,
aé?z = d{:z,
Céz - d§1 = - bqu + dél'

If we take 7 = 8‘% 2_2>, where ¢, denotes a fundamental unit of the real
0
quadratic field F, then the third relation implies that def=d. If d+0
then e} = 1. This is impossible. Hence we have d =0. Similarly, a =0.
Therefore we have — bgé, = c&,. There exists an element of I" such that
& 0. In fact, otherwise, there would be only two primitive hyperbolic
conjugacy classes in I", namely, [ Sg (;0_2 ] and {(832 22 ] But this contra-
dicts the fact that the group I has an infinite number of primitive hyper-
bolic conjugacy classes. Hence ¢ = —bg; and this means « = <—2q 8)

Therefore, as the linear fractional transformation, « takes the form (__2 (1)>
And vice versa. Q.E.D.

From Lemma 1, the homomorphism p which induced Eichler map «
can be written in the form

p=1id.®id., id. = alid.a,
_ 01
= (0 D).

Since K is the isotropy subgroup of the point i (€9*) in G, a~'Ke is that
of the point «(i) in G; and the map r takes the following explicite form:

1 9YDz2—> (2, alz)) = (z, _;121 >E®+X®+-

Obviously the map < is holomorphic and by the map -, a compact funda-
mental domain I'\G/K for the group I" is imbedded holomorphic into a non-
compact but volume-finite fundamental domain I'(/ p )\G,/K, for the group
rep).

§2. Automorphic forms associated with Eichler maps =
Given a group I'”** as descrived in §1, then there exists the Hilbert

modular group I' (/ p ). It satisfies the condition p (I)cI'(/ p ). namely,

& & 0 1\"Y & & 0 1
| e L e N | B
— g&; &, —q 0 —qg, &/ \—¢q ©
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(e 2l
—qf_z 51 , _‘45_2 51
Eryp)

_( & ¢
for each 7 = —q152 é)el‘.
Now let k be a positive integer and we denote by S, (I (/ p )). the space
of all (holomorphic) Hilbert modular forms of dimension — k for the group

I'/p ). With each element F(z) = F(z,2,) in the space S,(I'(/p )) we
associate a function f(z) in the following manner:

(t*oF) (2) = F(c(2)), 2€9*,

fz) = z75z*F) (2).
Then, under the condition f(z) = constant, f(z) is a (non-trivial) holomorphic
function in $* and satisfies the transformation law

f(r(2) = (— gz + £ f(2)

= El__
for all 7 <-—q€2
from that of the map . The later part is shown as follows:

%)EF. The holomorphic property of f(z) is immediate
1

f(r(z)) = 7(2)™ (% F) (1(2)
= 7(2)"F (o(7) (z(2))),

and for each ¢ = (‘CZ Z,) el'(y p ), putting

ilo,z) = {(cz, + d) ¢z, + d)}7F,
we have
F(o(7) (z(2))) = 7(o(T), ©(2))"'F (z(2))

= lghz + &) (= a8( 1) + &) R @)

= (— g€z + &)**1(2)27 (c*oF) (2)
= (—qfz + £)**7(2)*f ().

This implies our assertion. Therefore, under the condition f(z) = constant,
f(z) is a holomorphic automorphic form of dimension — 2k for the group
I.
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The Hilbert modular form has parabolic Fourier expansion of the form

Flzyy 25) = 2 cormitrvz) |
#: integers in F

2#=0 mod (.}—/%_—>

2>0 or p#=0

where 7 (pz) = pz, + flz, and g >0 implies that g is totally positive. We
put K, = {el"¢z|ln=Z} and denotes by {(#)} a set of representatives of {K,}.
Then, the form f(z) has the following expansion:

©0 . npz—e—2N5 1
@) = 2 Bewhla), Bl = 3 i (e =gt
M

This expansion for f(z) was introduced by Eichler ([1, p. 35], [2, p. 151]).

Remark. The series P,(z) converges absolutely, uniformly on £* x $*.
In fact, let z;=2;+iy; and y;=d; >0 (j=1,2), d; being a constant.

Then,
le2ﬂi(53"ﬂ31+ Saznﬁzz)l = g-2melnny1g—2m e 2MaYy
_onz 1 drpden
emey #’!lz_é_(e ) N 1fn%0,
0
<
on 1 —Anpdin
e2m e < e , if n<<0,
0

where ¢, satisfies ¢, >1. This implies the remark.

et o

0 &?
in the group I, the above expansion for f(z) may be regarded as an

Now, since the series P,(z) is invariant under the transformation <

expansion at the pair of hyperbolic fixed points {0,c}. But unfortunately,
this expansion is not unique in general. In fact, let &,(I") be the space
of all holomorphic automorphic forms of dimension — 2k for the group I

For each function F(z) in the space S,I"(/p )), let f(z) be the function
associated with it by the Eichler map r. Then, T:F(z)—> f(z) gives a

C-linear map of the space S/ p )) to the space Sy(l). If P.-expansion
1s unique, then we have

fR)=0=>all ¢,, =0—=—= F(z)=0.

Hence the map T is one-to-one, so that

1 dim Sy Vo)) = dim 7(Sy(I" Vo )= dim &(1).
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On the other hand, we know that
dicm S p ) =ak?+bk+c (@a>0)

by Shimizu [8, p. 63] and
dicm Sol") = dk + e.

Therefore (1) is impossible for sufficiently large k.
We give some examples and remark.

Example 1. Let k be an even integer and let G._,(z) be an Eisenstein

series of dimension —k for the group I'/ p ). Then the function G_,(z)
has the following Fourier expansion:

G-—k(Z) =1 + Z c#le:itr(/Jz)’

p: integers in F
p=1 mod( 1 )

p
250
where
_ (27[)2";/? e
o= {(k— l)l}zpng(k) (v integrgideals in FIN( )I '
W
Erls) = > NG|,

(v): integral ideals in F

Therefore we have

T(Gurle)) = fowld) = 241+ 37 0™ ()]

P

Put z = i(€$H*). Then Zm(yz — ;I~qlz—> is equal to a real number; and also
¢, >0. Hence f_,(i) #0, i.e., f_,(z) # constant.

Example 2. As a numerical example, consider the quaternion algebra
A over Q with a basis {1, o, 2, w2} such that «*=5, 2= —2. Then the
only characteristic primes for this A/Q are 2 and 5; and $*/I"*2 has four
elliptic fixed points of order 3 and its genus is zero. Hence, dim &I =1,

On the other hand, dim S,(I"t/5)) = 2 by Gundlach [3, p. 382], and

T(G-4(z)) = f-s(2) = z"“[l +20.3.55 2 |N(v)|aez”i(#2—ﬁ—zlz—)}

“ D5 u

= constant.
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Therefore a function obtained from the cusp form in S,I"(/5)) by the map
T is linearly dependent to the function f4(z) or identical with zero. But its
decision would be difficult.

Remark. It would be of great interest to determine the kernel of homo-
morpnism 7T IEOS,C(F(VT ) ——)kggzk(l"pxq).

Example 3. It is not true in general that any form for the group I?*¢
is always obtained from some form for the group I' ¢/ » ) by the map T.

For example,

dicm S,(I""*7) = 14 and dicm S{W5 ) = 2.

§3. Hyperbolic Poincaré series

This section is essentially based upon the work of Petersson [5] and we
shall describe those parts of it applicable to our case.

Let A, be an indefinite division quaternion algebra over @ and let
{1,0, 2,02} be a basis of A, over @ such that w? = p,, 2°=— ¢, and 02=—Qo,

where p, is a positive integer, g, is a integer with Jacobi symbol <;q°>:—l.
0

we put

o= 1as 8

&, & Integral algebraic numbers in F, = Q(/p_o)}

Then O, is the order in A,. Let O, be a maximal order in A, such that
0,20, and let I')?*% be the group of (proper) units in 0,2 Then the
fuchsian group I', has a compact fundamental domain I';\G/K and contains
: €30
the hyperbolic element <0° &

denotes a fundamental unit of F, such that ¢, > 1.

) which has fixed points {0, o}, where ¢,

Remark. Let O* be any maximal order in A, Then, since A4, is in-
definite, O* is conjugate with O,, i.e., there exists an element « in A, such
that n(a) 0 and O* = a~'Oya. Therefore the unit group I'* in O* has the
same genus and signature as I, and contains the hyperbolic element
a™t 8‘2‘ 252 a which fixes points {0,c0}. The case of I'* can be treated by
a similar way as in the following method for I, so that this case is omitted

here.

2) The unit group in O, is commensurable with I,
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First of all, we shall induce a Fourier expansion for the function f(2)
in &, (k is a positive integer) at the pair of hyperbolic fixed points

{0,c0} which are fixed points of (83 2_2>. We put g(z) = 2°f(z). Then the
0

. . . . . 2 .
function ¢(z) is invariant under the transformation ¢ = 80 2_2 in the group
0
r,. Put

logz
= —2°__0<ar < r.
loged §z=m

Then, since o(¢) = ¢ + 1, a function §(¢#) considered g(z) to be a function of
¢t is invariant under the translation ¢ —¢ + 1. Hence, if we put g= e,
there exists a function §(q) holomorphic in the domain

2m2

e Toget < [g] <1
such that g(¢) = g(q). Therefore the function §(g) has a Laurent expansion
in g¢:

9@) = X cug"

As mentioned above, the form f(z) in &,(I",) has the following expansion:

=) . logz
fl2) =2 X ¢, Togeot”

=z* _% P Moz e .
This expansion is called Ayperbolic Fourier expansion for f(z), briefly HFE for
S(z).

Next we shall introduce a Poincaré series with respect to o.
(i) Definition and transformation law.

Let Z,.. be the subgroup of Iy generated by ¢ = <83 2_2 and let R(I,)
0

be a system of right coset representatives of I'y mod Z,.. Then the Poin-
caré series for ¢ is defined as

logL(z)
Z logegt
LeR(Ty) (12 + ay)*(Biz + B)*

(a1 ag

L={p; 8

2niy

Eogilz; Loyv) = gz v) =

where £ >1, 0<arg L(z) <=z and v is a parameter extended over all inte-

https://doi.org/10.1017/50027763000013945 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013945

182 TOYOKAZU HIRAMATSU

gers. Obviously the summation is independent of the coset representatives
chosen.
For each rer,, R(I)r is also a system of coset representatives; and

putting
o(z; L) = (a2 + an)"(Biz + B),
_(a b _(a] a3
T = (C 5) and Lr= (ﬁfl ﬂ;),
we have
Lo az+ b ko az+ b .
o(1(2) 5 L= (alm + az) <131 m + [32>

= (cz + d)**{(@,a + ax0)z + (a1d + axd)}{(Bia + B0)z + (Bid + Bod)}*
= (cz + d)**(afz + a})*(Biz + B3)".
Therefore we obtain the following transformation law:

E_lT(2); v) = (cz + d)**E_ylz; v)
for all 7 = (? g)ero.

(i1) Convergence of the series £_y(z; Iy, v).

R . _ ko .
1°.  Convergence of the series %[ﬁlz + Bl 2"<L = <‘81 ‘32>E§R(1’0), k>l>.

In the following, we shall give a brief outline of the proof® We fix
a point z,(€$*) and take a constant p, such that

0<po<min |7(20) — 2ol m
r€l
r(20)%F20

where | |5 denotes the hyperbolic distance; and we put
& = {269 1z — zolu = po}.

For a suitable choice of coset representatives R(I',), each element in R(I)
may satisfy the condition

— loge? < log| L(z,)| = logel.
Then, there exist two constants ¢, and ¢, satisfying

(2) eI KD =iln < [Byz + By 2 < cye- KD il

3) As for full detail of the proof, cf. Petersson [5, pp. 144-146].
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for all L = (21 ZJE?R(FO), and all ze8,.
Next we take a constant R such that R > ele; and put
= {29 lz— ilu =R},
Dp = KN {z€9*] [loglz| | = logede’o}
and
Np = {LERT)| Lz,=Dp).
Then, the number m, of elements contained in the set 9tp is finite and
moreover there exists a constant c¢; satisfying the following condition:
3 my < czet.
Finally we take a constant R, such that R, > ele® and R, > p,; and put
Jn = Nary — Rn-nro(n = 2), Iy = N,

Then, by (2) and (3), there exists a constant ¢, which is independent of
n(=2) and satisfies the condition

21 |Biz 4 Be| 7F < g yet T IRm (n=2).
Ley,

This implies

21 Bz 4 BB << ey(eRF0 — 1)TU £ 31 [Tz 4 Tl PR

Le®R(Iy) Led,
*® * * *
L= (Bx Bz) L= (Tl rz)
Therefore the series 31 |8,z + B,|72* converges over §,, since the sum
Le®(Ty)
31 is finite.

LE3y
2°,  Convergence of the series ELlalz—i— ay | 7F|Byz + By (L= gll g;’)E?ﬁ(Fo),
k>1).
Lemma 2. Consider the set
U={zed*z=0+1y, |2]| =C, y=¢},
where C, € are positive constants. If z =« + iy lies in U, then
lez+d| = Alci + d|

Sor all real ¢, d, where A depends only on C and é&.
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Proof. Disregarding the trivial case ¢ =0, we first assume ‘%l>20.

Then we have

Je+-fzt -]

> ==

hence

_ d \? ik
Icz-i—dlz—cz{(x—er) +y2]; e
= A¥c* + d¥) = Allci + d]?,
where A, = min [%, E} . Therefore we have
(4) lez +d| = A,lci +d]|.

On the other hand, if {%X§ZC, we get

]ci+dlz=cz+d2:c2<l+l%

)

écz(l + 402) — cz 1 + 4C2 82

—a
< ld IO 4F - 1HIC ey apy
hence
(5) |cz+d|;71.jr_5;45f1ci+d|.
By (4) and (5), we have
lez+d| = Alci + d],
where A = min [Al, ]/—1_1%?} . This establishes the lemma.

Now we put
U, ={z€9*z=2 + iy, 2| =C, E=sy=¥¢),

where C, ¢ and & denote positive constants; and we take coset representa-
tives R, such that each element in R(I",) satisfies the condition [log|L(#)]]
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<logel. Then, by Lemma 2, we have
ICVJZ + az]_klﬁxz + 182|_k = A?|a,i + 0(2|—k|.81i + ﬁz]_k

= Ao + a7 4 B + Bl )
for all zell,, and all L = (gl gz>e‘:ﬁ(l“0). Hence we also have
1 2

S gt al e+ Bl A S Jaital 3 (Bi+El
LeR(Iy) LeR(TIy) LeR(I'y)

Convergence of the series %],Bli + B,]72* is reduced to the argument of 1°

putting z, = i. And convergence of the series >!|a;i 4+ a,|2* is demonstrated
L

in the following manner. We take S=<(l) _(1)>ESL(2, R) and put I'j=STI,S™.

Then I'j has the same genus and signature as I, and contains the hyper-

bolic element S<8g 2-2>S“1 which has fixed points {0,c0}. Moreover the
0

infinite cyclic group generated by S(S'z’ g_2>S‘1 is given by SZ,.S"! and the
0
set of right coset representatives I'j mod SZ,.S™' is given by SR(I,)S™! to

which a one-to-one correspondence with R(I")) is given. Since SLS"=< By =B 1>

0y a
and [a,i + a7 = |—a,i + ;|72 for all L = <gl g2>, we know that
1 2
2 lei + | 7% = 2 [B{i + B3| ~2%.
LeR(T) L’eR(Ty)
2= (3 &) =g 5)
Because of |log|L'(i)|] = |log|L()| | =< loge,?, convergence of the right hand

side is reduced to the argument of 1° putting z, = i.
Finally, let K be any compact set in $* and take U, a rectangle such
that 1,2 K. Then the series

S (yz + a,2)_k(‘812 + 182)_k
LeR(Iy)

= (%1 ¢2
=51 82)
converges absolutely, uniformly over K, since it does so over U, as mentioned
above.

3° Since 0 < arg L(z) <z for all LeR(I"y), we have

2miy ]ogL(;)
e logeot

yme

e 2logey if v <O,

{1 , if y=o0,
=
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for all Le®(",). Obviously each ¢ i 10g€o (Leiﬁ(l’o)) is holomorphic in H*.

Sumarizing these results ((i) and (ii)) we obtain the result that if
k>1,9 then the series &_,(z; ', ») is a holomorphic automorphic form of
dimension — 2k for the group I'y and is the so-called Ayperbolic Poincare series

with respect to ¢ = (O e
0

§4. Inner product formula.

Let f(z) be any form in &,(I"). Then f(z) has the following HFE.
with respect to ¢:

_k o ni_"
flz) =2"" 23 ¢,z 2oger.,

Nn=—00

In the following, we calculate the Petersson inner product of f(z) with
5 _o(z; Ioyv),s i-e->

6) (£, F-nele; o) = (£,8) = || FE ules slyr—tdwdy, z=2+ iy
D

where D denotes a compact fundamental domain of Iy and &F_,,(z; v) stands
for the complex conjugate of &_,(z;v). If k>1, the integral (6) does con-
verge and obviously the inner product (6) is independent of the choice of D.
From now on we assume that & >1.

Now we put

. !
—hgmi b
9,(z) = z i 2logeg ,

Then we have

—kmi Y
Boulz;v) = 51 (L) oan(B + f)

= 3 4.0l
Le®Try

and

f&) = 3 ca9alz).

N=—00

Because of Zo,w$<_(1) __(1)>, the system R(I",) contains both L and —L, and

these matrices make the same contribution to the integral. Thus, putting

4) In the case of k=1, cf. Petersson [7].
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Ry = R/ 1,19, we have

(.8 =2([sla), 3 GEIL y-dndy.

Since the series F_,(z;») converges absolutely, uniformly over D,

[{7 @oTaTL y2-2avay

LeR*(Ty)
D

-~
EB
I

-2 3 SSﬂZ)s,(z)yzk-zdxdy
Legf*(ro)LD

2 | rwaGyasay.
R(Ty)D

Because of $+* =I'\D = Z, . RI,)D, it follows that R*(",)D is a fundamental
domain for Z,., the group generated by ¢. We have remarked in §3 that
the series 5_,(z; ) is independent of the system R(I',) of right coset repre-
sentatives I’y mod Z,.. Thus we can assume that R({I",) was chosen in such

a way that

D,
NN .
€’ &
Fig. 1
Di:ey'=a*+y*=<el, 6, <argz=n=— 6, <o< o, <%)

R0 D =[}im+?’3‘1. (consult Figure 1)
1~

Then we have

(7.8) = 2im (| 31 c,0.00Gydady;

§1—>-+0Jddn=—oco
Dgl

and since 3} converges uniformly over the closed domain D3,
"

5 1, means the identity matrix of degree 2.
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(f,E) =2 lim 3 cn“ v 2dady .

01->+0 n=—co
DY,

Now we put logz = # + iv. Then

ka—Z i ](u, U) I — e2ku S'ln?.k—Zv’

—2ku—
9,(2)9,(2) = e =m0t gy +i =) Soger logeo

where J(u,v) denotes the Jacobian of (x,y) with respect to (#,v). Therefore

we obtain
m—01 2loge
(f,&) =2 lim E Cp S S (n+v>210g Hix (n= y)210gso sin**~2vdudv.
f1+00 n=—oo 61 -Zlogso

The inside integral vanishes unless # = y; hence

2logey w01

v
=) — H —yr _
(f,&) =2 lim ¢, S du \ ¢ " Tioges sin2k~2vdy
01>+0 —215ge, 6

T _yn Y
= 8logsog e “Toges sin®*~2dv - c,
0

= eZk(”) *Cye

Appling Kummer formulas [4, p. 217, (31) and (32)], &x(v) can be calculated
as follows:

n2y YA
E(v) = 25 %krloge,e Zozes F(?k 1) e
r(k+ 52— - i) (k- Al i)

Therefore we have the following inner product formula

n2y
(7) (f(z)15-2k(z; Foy V)) = 25‘2’°/r10g50e‘210g6011(2k - 1) * 6, X
1

Ik + = i) I (b= 52—i)

This formula has been obtained by applying the general theory of Petersson

X

[6] to the case of our group I',.

§5. Hyperbolic Fourier coefficients. ‘
Given a group I'’*? as described in §1, and let f(z) be any element in

the image T(S.I'(/p )) of the space SJ(I't(/ p )) by the linear map T.
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Then, for each form f(z), there exists some element F(z) in S,(I"(/ p )) such
that T(F(z)) = f(z) and each of them has the Fourier expansion

F(Z) — 2 cl‘eznitr(/zz)

u: integers in F
1
4#=0 mod| T)
(%

#>0 or u=0
and
P i %
flz) =27" 21 cnz Poger,
N=-—00

respectively. The purpose of this section is to express the hyperbolic Fourier
coefficients ¢, by the formula contained the parabolic Fourier coefficients c,
of F(z).

Because of f(z) = T (F(2)), f(z) has also the following expansion:

fl2) =z"9(z), 9(z) = gc,,ez’”' (re-ige);
and then
(Fla)y E-ales o) = (7% 31 e0d™ Mowms, Sulz; o)
G (=22), 2_ula; ).

The former has been calculated in §4 and in the following, we shall calcu-
late the latter. By the same method as in §4, we first have

. -1 —p—n v
(0@), E-nlz; ¥) = 2 lim N[ (P ey e yrsdmay,
1> “
Dj,

where D7, is as shown in Figure 2:
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Here if we put

then

i
(z"“g(z), E) — 26] 4log TS 11 ( >logeo 4

0140 u

1
ani (N—(”) )T (w —L) . —k—-niz__._.l 4
x \\e a Y w5 08 fog2k=2dydy .

-
Dgl

As for D§¥, consult Figure 3:

’Ay
@ R, = ¢}
0, \] & z { 1T
'R, R, R, = &7
Fig. 3
It is well known that
i1
e2< 2 Z‘.fn Hz", |zl <o

where J,(¢) denotes the Bessel function of order » and argument ¢ of the
first kind.® Therefore we have

ni oy

7T —_—
(z"‘g(z), E) =2q 410g ¢ 1im 2( )logso 4 €.
01>+0 7T\ H

. ]n<4,rz<N<ﬂ>) Wora™ 5% s,

N=-—00

Here if we put again w = Re", then

. ~k-ni 21;
Sgw"’"‘w o8 0 y2k=2d ydy

Dyt
S S S S| n—01 i(n+ ni;)o
2loge 2log e . -
={r T ar [ e €607 Gintt-20d0
g2 6y

6) For instance, cf. Watson [9. p. 14].
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7—01 £<n+m'—~—\0
—1) 21 J .
= ( 1) y (€2™ — €,7%7) S e O fo sin?%720d @
n—rnt ———
2logée, i

and since >} and >} are uniformly for ¢,, we have

i

.
1

i Y loge
(z7%g(z), E) = 2(—1)q "oge (LY7o o
q p
a\H

x 3 & fn<4m'<—1y(f‘> )Tlﬁe(_nmm)asinzk-zoda.
0

n==o gy — i 2

2loge,

Applying Kummer formulas, the integral can be calculated as follows:

v .
—r Y 4in)
e< "zlog ey ln) sin2*-2040

Ce— y

= 22(1-K) e%<—nﬁ)ﬁ+i") r(2k—1) )
= bl r <k + " .. ) <k y )
2 "o geo 410gso
Summing up, we obtain
o -1 \
2ni ( Uz —p——

) (™ ;‘_‘ Cut ( 7, B oz v)

i __n% T v

= (—1)2***nq we ilog <o (o) — 1) 2(%)““" *eux
“

W S St ]n(4_”<N(ﬂ >7>><
e e 210g€0 !

1
X .
F<k+%+ni—ﬁé§)r<k—%—nijﬁgzo*)

It is now clear that the above formula (8), combined with the formula (7)

in §4, proves the following theorem which is announced in §0:

TueorREM. The notations and the assumptions being as above, we obtain

w25

¢, = (—1)" 1 q” 410geo Hoz 50F<k 4T )Z"(

4logég, 210g80 Z) X
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L 1
3 <L_>logeo P % PO il 7 M J <47”'<_Nﬂ>-2‘> X
p: integers in Q(yp )\ M FV=—°° y — 7”__.L_ ’ q
u=0 mod< ;/:T 2loge,

»>0 or u=0

X

1

X
(e + 2+ m‘ﬁ) rk— 2 - m‘To’;;>
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