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PROOF SYSTEMS FOR EXACT ENTAILMENT
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Abstract. We present a series of proof systems for exact entailment (i.e., relevant truthmaker
preservation from premises to conclusion) and prove soundness and completeness. Using the
proof systems, we observe that exact entailment is hyperintensional not only in the sense of
Cresswell, but also in the sense recently proposed by Odintsov and Wansing.

§1. Introduction. Recently, there has been a growing interest in so-called “exact
truthmakers” in philosophical logic and semantics.1 An exact truthmaker for φ is a
state (of affairs, event, action, etc.) which necessitates φ’s truth while being wholly
relevant [14, p. 599].2 For example, the ball being red is an exact truthmaker for “the
ball is colored.” The complex state of the ball being red and round, in contrast, is not
an exact truthmaker, since the ball’s shape is irrelevant to whether it’s colored.

The concept of exact truthmaking gives rise to the non-classical consequence relation
of exact entailment, i.e., guaranteed exact truthmaker preservation from premises to
conclusion (cf. [11, p. 202], [12, p. 669], [17, pp. 536–537]). Understanding the logic
of exact equivalence is of fundamental importance to the project of exact truthmaker
semantics. Part of the reason for this is that exact equivalence (i.e., mutual exact
entailment) amounts to sameness of truthmaker content.3 Additionally, there is a
close connection between exact entailment and the concept of metaphysical ground
(see [9, pp. 71–74] and [13, pp. 685–687]).

But there is also a genuinely logical interest in the relation. Remember that a context
is hyperintensional iff it does not respect (classical) logical equivalence [5, p. 25].4

Recently, reasons have been discovered for taking a hyperintensional approach to
logics that have traditionally been treated intensionally, such as conditional logics [7]
or deontic logics [10]. It turns out that in many such cases, exact truthmakers provide
a fruitful framework for developing hyperintensional logics for the relevant concepts
(cf. [1, 2, 8, 15, 16]). In this setting, the logic of exact entailment becomes the appropriate
logic for reasoning within hyperintensional contexts.
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1 See [14] for an introduction.
2 Dually, an exact falsemaker for φ is a state s which necessitates φ’s falsity while being wholly

relevant to it.
3 See [12, 13, 19] on the notion of truthmaker content.
4 See [3] for an introduction.
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It is the aim of this paper to develop a proof theory for the logic of exact entailment.
To this end, we shall present a series of proof systems, each displaying different logical
aspects of exact entailment. First, we shall directly axiomatize exact entailment as an
asymmetric (many–one) consequence relation (§4). The resulting axiomatic calculus
puts the focus on the logical laws governing exact entailment. We shall then describe
a deductively equivalent Hilbert calculus (§5), which puts the emphasis on formula-
to-formula inferences. Our third and final proof system is a symmetric (many–many)
sequent calculus (§6). This calculus puts the focus on the way the logical connectives
interact with exact entailment.

Our calculi overcome most limitations of the few existing calculi from the literature.
Fine [11] and Correia [4] present Hilbert calculi for (what’s essentially) exact
equivalence. These calculi can double as calculi for exact entailment by exploiting
that φ exactly entails � iff φ ∨ � is exactly equivalent to � (cf. [11, p. 202] and
[4, pp. 113–114]). But since these calculi are formulated using a binary operator for exact
equivalence, they can only be used for binary exact entailment, i.e., single premise, single
conclusion instances of the relation. As Fine and Jago [17] point out, however, there is
an irreducibly asymmetric notion of exact entailment, i.e., a concept of exact entailment
where multiple premise cases cannot always be reduced to single premise cases. As a
result, the calculi of Fine [11] and Correia [4] cannot account for all forms of exact
entailment. All our systems, instead, work for all relevant forms of exact entailment.

Fine and Jago [17, pp. 552–556] provide a sequent calculus for exact entailment. But
this calculus has two important limitations. First, the Fine–Jago calculus only works
for what Fine [11, p. 206] calls the “inclusive” variant of exact truthmaker semantics.
In fact, Fine and Jago [17, p. 551] explicitly leave it open to develop a sequent calculus
for exact entailment under what Fine [11, p. 210] calls the “replete” variant of exact
truthmaker semantics. All our systems, in comparison, can easily be adjusted for the
replete semantics, simply by adding axioms/rules. Indeed, these extended systems are,
to the best of our knowledge, the first comprehensive proof systems for exact entailment
on the replete semantics.

The second limitation is more proof-theoretic in nature. It turns out that even
though the Fine–Jago calculus has the Cut-elimination property, it fails to have
the subformula property (as acknowledged by authors; cf. [17, p. 560]). This is, of
course, surprising since Cut-elimination typically implies the subformula property.
The culprit is a structural rule, specific to exact entailment, which deletes formulas
from derivations. As we’ll show in §6, the problematic rule cannot be eliminated from
the Fine–Jago calculus, and as a consequence, the subformula property fails. As a
further consequence, the calculus doesn’t allow for proof searches. Our symmetric
sequent calculus, developed in §6, instead, absorbs all the structural rules, enjoys the
subformula property, and allows for straightforward proof searches.

In addition to being technically well-behaved and fruitful, studying our calculi will
also lead to interesting philosophical insights about the framework of exact truthmaker
semantics. Odintsov and Wansing [23] argue for a notion of hyperintensionality
according to which a logic only counts as hyperintensional if it is not self -extensional,
where a logic is self-extensional just in case its operators respect logical equivalence
(within the logic). They show that Leitgeb’s system HYPE [21], an important proposal
for a basic system of hyperintensional logic, does not qualify as hyperintensional
according to this criterion. As we’ll show in §4, exact entailment on the inclusive
semantics, instead, does not fail the criterion. This observation can serve as further
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1262 J. KORBMACHER

ammunition in the debate about which system to take as our base system for
hyperintensional logic (cf. [6, 22]). Interestingly enough, the system for exact entailment
on the replete semantics, however, turns out not to be hyperintensional in the sense of
Odintsov and Wansing. Depending on one’s perspective, one may take this as a reason
to prefer the inclusive semantics over its replete alternative—or the other way around.

But the interest in the proof systems is not only theoretical in nature. From a purely
pragmatic side, the systems we present can be used as a base system for developing proof
systems for hyperintensional logics in an exact truthmaker setting. In the conclusion
(§7), we sketch a quick example of how this can work. But before we get started, we
quickly go through syntax (§2) and semantics (§3).

§2. Language. In the following, we’ll work with a fixed propositional language L,
which has just the connectives ¬,∧,∨ and is defined over a set P = {pi : i ∈ I } of
propositional variables. The Backus–Naur Form (BNF) of L, correspondingly, is

φ ::= pi | ¬φ | (φ ∧ φ) | (φ ∨ φ).

We use p, q, r, ... as meta-variables ranging over propositional variables and φ,�, �, ...
as meta-variables ranging over formulas. Unless indicated otherwise, Γ,Δ,Σ, ... range
over finite sets of formulas.5 We’ll follow the usual notational conventions with respect
to parentheses etc.

We shall often find it convenient to rely on the following alternative syntax for L.
Remember that a literal is either a propositional variable or its negation. We denote
the set of literals by Λ and use � as a meta-variable ranging over literals. We can then
define the L-formulas using the following BNF:

φ ::= � | φ ∧ φ | φ ∨ φ | ¬¬φ | ¬(φ ∧ φ) | ¬(φ ∨ φ).

We shall refer to this as “the construction from literals.”
We write

∧
Γ or

∧
φ∈Γ φ for the conjunction of the Γ’s, and

∨
Γ or

∨
φ∈Γ φ

for the disjunction of the Γ’s. We’ll justify this notation ex post by observing that
both conjunction and disjunction are idempotent, commutative, and associative
with respect to exact entailment. As a result, our notation is logically innocuous.
We shall furthermore assume some background total order on L, which allows
us to choose

∧
Γ and

∨
Γ uniquely for given Γ by respecting the order (relying

on commutativity), ignoring repetitions (relying on idempotence), and parentheses
(relying on associativity).

§3. Semantics. We sketch the necessary background on exact truthmaker seman-
tics and exact entailment.6 A frame (also known as a state space in the literature) is a
structure F = (S,�) such that S = {s, t, u, ...} is a non-empty set (“states”) and � is
a partial order over S (“parthood”), such that for each s, t ∈ S there exists a unique
least upper bound s � t ∈ S with respect to � (“fusion”).7

5 By the compactness of exact entailment (cf. [17, Theorem 5.2, p. 546]) the restriction to finite
premise sets is relatively harmless. The restriction to finitary cases is proof-theoretic in spirit.

6 For a more detailed exposition, see, e.g., [12, 13, 17].
7 As Fine [14, p. 560] points out, the concept of a state in exact truthmaker semantics is a

technical one, which encompasses anything that can reasonably be thought of as necessitating

https://doi.org/10.1017/S175502032200020X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032200020X


PROOF SYSTEMS FOR EXACT ENTAILMENT 1263

A model is a structure M = (S,�, v), where (S,�) is a frame and v = (v+, v–) is
a pair of interpretation functions v+ : P → ℘(S) (“exact truthmaker assignment”)
and v– : P → ℘(S) (“exact falsemaker assignment”; cf. fn. 2), subject to the following
condition for ◦ = +, –:

If s, t ∈ v◦(p), then s � t ∈ v◦(p). (Atomic Closure)

In a model M, we define the exact truthmaker set |φ|+M and the exact falsemaker set
|φ|–M by simultaneous recursion:

|p|+M = v+(p) (Sem-0+) |¬φ|–M = |φ|+M, (Sem-¬–)
|p|–M = v–(p) (Sem-0–) |¬φ|+M = |φ|–M, (Sem-¬+)

|φ ∧ �|+M = {s � t : s ∈ |φ|+M, t ∈ |�|+M}, (Sem-∧+)
|φ ∧ �|–M = |φ|–M ∪ |�|–M ∪ |φ ∨ �|–M, (Sem-∧–)

|φ ∨ �|+M = |φ|+M ∪ |�|+M ∪ |φ ∧ �|+M, (Sem-∨+)
|φ ∨ �|–M = {s � t : s ∈ |φ|–M, t ∈ |�|–M}. (Sem-∨–)

We further set |Γ|◦M = {|φ|◦M : φ ∈ Γ} for ◦ = +, –.
The following canonical model is of fundamental importance to the study of exact

entailment.8 The canonical model M = (S,�M, vM) is defined by S = ℘(Λ), �M =
⊆�S, and vM = (v+

M
, v–

M
), where v+

M
(p) = {{p}} and v–

M
(p) = {{¬p}}.

Fine and Jago [17, p. 536] show that there are two natural ways of explicating
guaranteed exact truthmaker preservation from premises to conclusion:

• Γ �c φ iff for all M, |
∧

Γ|+M ⊆ |φ|+M (“conjunctive exact entailment”),
• Γ �d φ iff for all M,

⋂
|Γ|+M ⊆ |φ|+M (“distributive exact entailment”).

As Fine and Jago [17] point out, �c and �d are indeed different consequence relations:
while we (trivially) have p, q �d p, we have p, q �c p. An instructive countermodel can
be found at [17, pp. 536–537]:

�������	s3

�������	s1 �������	s2
p q

p ∧ q��������

��������

What’s depicted here is the Hasse diagram of the underlying frame, where the subscripts
indicate the exact truthmaking relation in the natural way. Since in this model, |p ∧
q|+M = {s3} and |p|+M = {s1}, we have a countermodel which shows that p, q �c p.
Note that the model shows that the familiar rule of conjunction elimination fails with
respect to exact entailment—both in its conjunctive and in its disjunctive flavor. More
generally, it’s easily seen that by definition, distributive exact entailment is a monotonic

the truth of statements and can enter in mereological relations. This includes states of affairs,
events, actions, norms, etc.

8 Indeed, it appears in [4, p. 116], [11, pp. 215–216] and [17, p. 540].
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consequence relation: if Γ �d φ, then Γ, � �d φ. Conjunctive exact entailment, in
contrast, is not monotonic: while we trivially have p �c p, we don’t have p, q �c p.

Note, however, that conjunctive exact entailment reduces to a special case of
distributive exact entailment:

Proposition 3.1 (Semantic reduction). Γ �c φ iff
∧

Γ �d φ.

Proof. First note that, by definition, we immediately have Γ �c φ iff
∧

Γ �c φ. Then
note that the definitions of distributive and conjunctive exact entailment coincide in
the single premise case: φ �c � iff φ �d �.

Observe that this reduction is not in conflict with the different structural properties
of distributive and conjunctive exact entailment. On this reduction, the failure
of monotonicity for conjunctive exact entailment is preserved via the failure of
conjunction elimination for distributive exact entailment.

The reduction allows us to focus our attention on distributive exact entailment for
the purposes of this paper. Hence in the following, we shall simply speak of “exact
entailment,” intending distributive exact entailment, and use the symbol � to represent
the relation.9 We shall write φ �� � as an abbreviation for the conjunction of φ � �
and � � φ.

We’d like to remark two facts about exact entailment that heavily influence the design
of our proof systems.

First, we note that � is irreducibly asymmetric in the sense that we can’t reduce all
premise sets to single formulas with the same consequences. To make this more precise,
for φ(p1, ... , pn) a formula in the propositional variables p1, ... , pn, let φ(�1, ... , �n)
denote the result of uniformly substituting�i for pi in φ. Let Γ = {�1, ... , �n}. Then a
premise reduction for Γ would then be a formula φΓ such that Γ � � iff φΓ � �. But it’s
easily shown that there is no premise reduction for {p, q} already. For suppose that there
were such a φp,q . Since p, q � p and p, q,� q, we’d get φp,q � p and φp,q � q. Since the
canonical model is a model, this entails by the definition of � that |φ{p,q}|+M ⊆ |p|+

M
=

{{p}} and |φ{p,q}|+M ⊆ |q|+
M

= {{q}}. Since it’s easily checked (by induction) that for
all�, we have |�|+

M
�= ∅, it follows that |φ{p,q}|+M = {{p}} and that |φ{p,q}|+M = {{q}},

which is impossible since p �= q.10

The second remark we’d like to make is that exact entailment has no theorems
in the sense of formulas that are exactly made true by all states in all models (cf. [17,
p. 539]). More precisely, if we define � φ to mean that |φ|+M = S for all M, we get:

Proposition 3.2 (No theorems). � φ, for all φ ∈ L.

Proof. We may assume without loss of generality that P is infinite. To see this, note
that if L is not already defined over an infinite set of propositional variables, extending
the variables of L is not going to change the theorems of L. Next, note that by a
straightforward inductive argument (left to the reader), if {p} ∈ |φ|+

M
, then p is a

subformula of φ. Since P is infinite, for every formula φ we can find a propositional
variable p that doesn’t occur in φ. We get for this p that {p} /∈ |φ|+

M
by contrapositive

reasoning.

9 For a discussion of concrete philosophical reasons to be interested in distributive exact
entailment, see [17, p. 537].

10 Note that in the case of conjunctive exact entailment, the desired formula φ(p1, ... , pn) does
exists and is, in fact, simply p1 ∧ ··· ∧ pn .
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This means that the logic of exact entailment is “purely inferential.”
Let’s briefly talk about alternative frameworks for exact truthmaker semantics. Note

that by a simple inductive argument, we can establish that Closure (p. 4) extends to
all formulas, i.e., exact truthmakers and exact falsemakers are closed under (finitary)
fusions:11

If s, t ∈ |φ|◦M, then s � t ∈ |φ|◦M, for ◦ = +, – . (Full Closure)

This is why Fine [11, p. 206] calls the present version of exact truthmaker semantics the
“inclusive” semantics. There are two prominent alternatives discussed in the literature:
the non-inclusive semantics and the replete semantics.

On the non-inclusive semantics, essentially due to Fraassen [25], we drop Closure
and change (Sem-∨+) and (Sem-∧–) to

|φ ∨ �|+M = |φ|+M ∪ |�|+M (Sem-∨+
nc) |φ ∧ �|–M = |φ|–M ∪ |�|–M. (Sem-∧–

nc)

The most important difference between the inclusive and the non-inclusive semantics
is that on the latter, the idempotence of conjunction fails. This can be seen by adjusting
our countermodel for p, q �c p from before (see p. 1263):

�������	s3

�������	s1 �������	s2
p, p ∧ p p, p ∧ p

p ∧ p���������

���������

We have |p|+M = {s1, s2} but |p ∧ p|+M = {s1, s2, s3}, and so, since |p ∧ p|+M � |p|+M,
we have that p ∧ p does not exactly entail p on the non-inclusive semantics. This works,
of course, because on the non-inclusive semantics, the interpretation of p no longer
needs to closed under fusions, and with s3 = s1 � s2 not being an exact truthmaker of
p in M while s1, s2 are, this is exactly what we’re exploiting. Note, however, that the
converse direction of idempotence—that φ exactly entails φ ∧ φ—is still valid on the
non-inclusive semantics.

Fine and Jago [17] don’t discuss the non-inclusive semantics and, for ease of
exposition, we shall follow suit. The main complication is that the study of exact
entailment under the non-inclusive semantics requires us to change the notion of our
canonical model. To see this first note that the canonical model defined above has
the (desirable) property that whenever φ � �, then the canonical model M provides a
countermodel, i.e., |φ|+

M
� |�|+

M
(we’ll prove this rigorously in Corollary 3.5). Now,

while the canonical model is a model also in the sense of the non-inclusive semantics, it
no longer has this important property. We can illustrate the issue with our pathological
case of idempotence. When we consider M as a model on the non-inclusive semantics,
we have that |p|+

M
= |p ∧ p|+

M
= {{p}} (note that the clause for conjunction are the

same on the inclusive and non-inclusive semantics). In other words, M doesn’t provide
a countermodel to the failure of the exact entailment form p ∧ p to p.

11 For a proof see [17, Lemma 3.3, p. 541].
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The point is that in order to obtain a counterexample to the inference fromp ∧ p to p,
we need at least two separate states s, t which individually exactly truthmake p but who’s
fusion fails to be an exact truthmaker for p—just like in our modified countermodel
above. Now it is possible to define a canonical modelM†, which has the desired property
for the non-inclusive semantics. To achieve this, we set S† = ℘(Λ × N), �M†=⊆�S† ,
and v+

M†(p) = {{(p, i)} : i ∈ N} as well as v–
M†(p) = {{(¬p, i)} : i ∈ N}. It’s easily

verified that in this model, |p ∧ p|+
M† = {{(p, i), (p, j)} : i, j ∈ N}, where each state

{(p, i), (p, j)} for i �= j provides an example of an exact truthmaker for p ∧ p that
fails to exactly truthmake p.12

It is, in fact, possible to show that the canonical M† can play the same role for
exact entailment on the non-inclusive semantics as M plays for the inclusive (and
replete) semantics (see below). However, the semantic theory of non-inclusive exact
truthmaking is comparatively underdeveloped in the literature. In particular, the
semantic characterization results due to Fine and Jago [17], which play an central role
in our completeness results, are not extended to the non-inclusive system. While it’s
likely that we can generalize these results to the non-inclusive setting, going through
the details and re-proving the relevant semantic theory is unfortunately beyond the
scope of this paper. We shall therefore restrict our attention to the inclusive and replete
semantics (which are covered by Fine and Jago).13

On the “replete semantics,” discovered by Fine [11], instead, we make two additional
philosophical assumptions:

• Every statement has at least one exact truthmaker and at least one exact
falsemaker (“non-vacuity”).

• If a state lies between two exact truthmakers/falsemakers (in the sense of
parthood), it is itself an exact truthmaker/falsemaker (“convexity”).14

There are different ways in which we can formally implement the previous
assumptions (cf. [17, pp. 547–551]). We shall follow the method described by Fine
and Jago [17, pp 550–551]. We say that a model M = (S,�, v) is non-vacuous iff both
v+(p) �= ∅ and v–(p) �= ∅. A straightforward induction on complexity establishes that
in non-vacuous models, the non-emptiness property extends to all exact truthmaker
sets and exact falsemaker sets:

If M is a non-vacuous model, then |φ|◦M �= ∅, for ◦ = +, – . (Non-Vacuity)

Note that the canonical model, in particular, is non-vacuous. In a frame F = (S,�),
we define the convex closure X∗ of a set of states X ⊆ S as {s ∈ S : ∃t, u ∈ X (t �
s and s � u)}. For an X ⊆ S, we set (X )∗ = {(X )∗ : X ∈ X}.

With these notions at hand, we can now define exact entailment on the replete
semantics as follows (cf. [17, definition 7.1, p. 550]):

• Γ �cnv∗ φ iff for all non-vacuous models M, (|
∧

Γ|+M)∗ ⊆ (|φ|+M)∗.
• Γ �dnv∗ φ iff for all non-vacuous models M,

⋂
(|Γ|+M)∗ ⊆ (|φ|+M)∗.

12 Note that we also get counterexamples to the inferences from p ∧ p ∧ p to p ∧ p, from
p ∧ p ∧ p ∧ p to p ∧ p ∧ p, and so on and so forth.

13 We shall, however, sketch the necessary steps throughout a series of footnotes in our paper.
14 Fine and Jago [17] prove that postulating either of these two assumptions by themselves (over

the inclusive semantics) doesn’t change the resulting logic for exact entailment (theorem 6.3,
p. 547, and theorem 6.12, p. 550).
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Note that Propositions 3.1 and 3.2 immediately carry over to �nv∗ (see the so-called
“Convex Selection Lemma” [17, Lemma 6.4]), and just like in the case of �, there is no
premise reduction for �nv∗ either. As a result, we can focus on the distributive variant,
which we’ll denote by �nv∗ using ��nv∗ for equivalence.

Proposition 3.3 (Inclusion of � in �nv∗). If Γ � φ, then Γ �nv∗ φ.

Proof. Since ·∗ is a closure operator in the technical sense, it enjoys the Monotonicity
Property: ifX ⊆ Y , thenX∗ ⊆ Y∗. The claim follows immediately from Monotonicity
and some basic set-theory.

As a consequence, �nv∗ inherits the logical laws of �. The main difference between
� and �nv∗ concerns distributivity, which we’ll discuss in the following section.

Before we move to formulating our proof systems, we would like to point out the
characterization theorems provided by Fine and Jago [17] for both � and �nv∗, since
we’ll rely heavily on them for our completeness proofs.

The theorems are stated in terms of selections. A canonical selection for a set Γ
is a function f : Γ → ℘(Λ) such that f(φ) ∈ |φ|+

M
for all φ ∈ Γ. Intuitively, these

selections give us a syntactic representation of the different exact truthmakers for the
members of Γ. For each φ ∈ Γ, the value f(φ) under a given selection function is a
member of |φ|+

M
, so a set of literals {�1, ... , �n} ⊆ Λ. Now a core lemma of [17], the

so-called “Selection Lemma,” states that for any model M and state s therein,

s ∈ |φ|+M iff for some selection f for {φ}, s ∈ |
∧
f(φ)|+M.

In words: for a state to be an exact truthmaker for φ in some model is for the state
to be an exact truthmaker for the conjunction of some exact truthmaker of φ in the
canonical model (which, crucially, is just a set of literals). It is in terms of these syntactic
representations that Fine and Jago characterize exact entailment:15

Theorem 3.4 [17, Theorem 4.12, p. 546]. The following are equivalent:

1. Γ � φ.
2. For all canonical selections f for Γ, there exists a Δ ∈ |φ|+

M
, such that for some

� ∈ Γ,

f(�) ⊆ Δ ⊆
⋃
�∈Γ

f(�).

Corollary 3.5. φ � � iff |φ|+
M

⊆ |�|+
M

.

Proof. Note that any canonical selection for the premise set {φ} simply picks a
member of |φ|+

M
. So the condition of the theorem applied to the situation at hand boils

down to saying that for each member Γ ∈ |φ|+
M

there exists a member of Δ ∈ |�|+
M

such that Γ ⊆ Δ ⊆ Γ—which immediately gives us |φ|+
M

⊆ |�|+
M

.

The notion of a selection function can straightforwardly be generalized to the
replete semantics, while preserving the underlying motivation sketched above. A convex

15 If we’re working on the non-inclusive semantics, our aim would be to prove a comparable
theorem to the following with respect to M

† (see above). However, this would require re-
proving a significant chunk of semantic theory, specifically [17, lemmas 4.4–10] as well as the
Selection Lemma. Most of the work is relatively straightforward, though occasionally new
arguments are required.
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selection for Γ is a function f∗ : Γ → ℘(Λ), such that f(φ) ∈ (|φ|∗
M

)∗ for all φ ∈ Γ.
Using this concept, we can prove:

Theorem 3.6 [17, theorem 7.4, p. 551]. The following are equivalent:

1. Γ �nv∗ φ.
2. For all convex selections f∗ for Γ,16 there exist a Δ ∈ (|φ|+

M
)∗ and a � ∈ Γ, such

that

f∗(�) ⊆ Δ ⊆
⋃
�∈Γ

f∗(�).

Corollary 3.7. φ �nv∗ � iff (|φ|+
M

)∗ ⊆ (|�|+
M

)∗.

Proof. Analogous to the proof of Corollary 3.5.

§4. Axiomatizing exact entailment. In this section, we directly axiomatize exact
entailment as an asymmetric consequence relation. That is, we view the relation as a
set of consequence pairs of the form (Γ, φ) and we axiomatize membership in this set.
Correspondingly, our system, A, operates on consequence pairs, allowing us to derive
such pairs via inference rules from distinguished axiom pairs. We write Γ �A φ to say
that the pair (Γ, φ) is derivable in our system and we write φ ��A � as an abbreviation
for the conjunction of φ �A � and � �A φ.

The axioms and rules of our system are as follows:

φ �A φ, (ReflexivityA)

Γ �A φ

Γ,Δ �A φ,
(WeakeningA)

Γ �A φ Σ, φ �A �

Γ,Δ �A � ,
(CutA)

φ, φ ∧ � ∧ � �A φ ∧ �, (∧ – ConvexityA)

Γ, φ1 �A �1 Γ, φ2 �A �2

Γ, φ1 ∧ φ2 �A �1 ∧ �2 ,
(∧ – MonotonicityA)

φ ∧ φ ��A φ, (∧ – IdempotenceA)

φ ∧ � ��A � ∧ φ, (∧ – CommutativityA)

φ ∧ (� ∧ �) ��A (φ ∧ �) ∧ �, (∧ – AssociativityA)

φ �A φ ∨ � � �A φ ∨ �, (∨ – IntroductionA)

Γ, φ1 �A � Γ, φ2 �A �

Γ, φ1 ∨ φ2 �A � ,
(∨ – EliminationA)

16 There appears to be a typo in [17, p. 551], where in the statement of the theorem, the closure
operator for the premise set Γ is missing. The proof provided by Fine and Jago [17], however,
covers the result stated here.
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φ ∧ (� ∨ �) ��A (φ ∧ �) ∨ (φ ∧ �), (∧/∨ – DistributionA)

φ ��A ¬¬φ, (Double NegationA)

¬(φ ∨ �) ��A ¬φ ∧ ¬� ¬(φ ∧ �) ��A ¬φ ∨ ¬�. (De Morgan LawsA)

First, a word on notation and implicit reasoning. As we noted in §2, we write
∧

Γ
or

∧
φ∈Γ φ for the conjunction of the Γ’s, and

∨
Γ or

∨
φ∈Γ φ for the disjunction

of the Γs. In the context of this notation, we often rely on implicit applications
of ∧-Idempotence, ∧-Commutativity, and ∧-Associativity, as well as corresponding
reasoning using ∨-Introduction and ∨-Elimination in treating certain expressions are
“notationally equivalent.” For example, we shall treat (

∧
Γ) ∧ (

∧
Δ) and

∧
(Γ ∪ Δ)

as notational variants of each other, though, strictly speaking, we’re just relying on
implicit reasoning in which we’re eliminating duplicates (using ∧-Idempotence) and
re-arranging conjuncts (using ∧-Commutativity and ∧-Associativity). We also refer to
this reasoning as “notational reasoning.”17

Working towards a soundness result, we say that a pair (Γ, φ) is valid iff Γ � φ. The
validity of the axioms follows directly from the corresponding laws for exact entailment
observed by Fine and Jago [17, p. 539] and since the proofs are almost immediate by
definition, we omit them here. We only cover ∧-Convexity, since this law has not been
observed by Fine and Jago [17].

It turns out that∧-Convexity is of central importance to the logic of exact entailment
and closely related to the Fine–Jago characterization theorems. Note that ∧-Convexity
is the only genuine multi-premise axiom of our system, and other multi-premise laws,
like φ,� �A φ ∧ �, are derived (cf. Proposition 4.7). We shall find it convenient to
prove its validity in the following more general form:

Proposition 4.1 (∧-Convexity). For Γ ⊆ Δ ⊆ Σ, we have that
∧

Γ,
∧

Σ �
∧

Δ.

Proof. It’s straightforward to show this using the Fine–Jago characterization
(Theorem 3.4), but it’s instructive to prove it directly instead. So, suppose that
s ∈ |

∧
Γ|+M and s ∈ |

∧
Σ|+M and Γ ⊆ Δ ⊆ Σ. By application of (Sem-∧+), we get that

for eachφ ∈ Σ, there exists a state sφ ∈ S such that sφ ∈ |φ|+M and s =
⊔
φ∈Σ sφ . We can

infer that for eachφ ∈ Σ, sφ � s . Since Δ ⊆ Σ, we get that for eachφ ∈ Δ, there exists an
sφ ∈ |φ|+M with sφ � s . By (Sem-∧+),

⊔
φ∈Δ sφ ∈ |

∧
Δ|+M. Since s ∈ |

∧
Γ|+M, again

by (Sem-∧+), we get that s �
⊔
φ∈Δ sφ ∈ |

∧
Γ ∧

∧
Δ|+M. But since for each φ ∈ Δ,

sφ � s , s �
⊔
φ∈Δ sφ = s . It’s easily checked that |

∧
Γ ∧

∧
Δ|+M = |

∧
(Γ ∪ Δ)|+M. But

since Γ ⊆ Δ, we have that Γ ∪ Δ = Δ, and so s ∈ |
∧

Δ|+M.

The corresponding generalized axiom for our system,
∧

Γ,
∧

Σ �A

∧
Δ where

Γ ⊆ Δ ⊆ Σ, is easily derived from the official axiom of ∧-Convexity and repeated
applications of ∧-Monotonicity (see Proposition 4.7).

In a rule, we call the expressions on top of the inference line the “premises” of the
rule and the expression below the line its “conclusion.” We say that a rule is sound
iff its conclusion is valid whenever its premises are. The structural rules of Weakening

17 Note that if we’re trying to develop a system for the non-inclusive semantics, we would
use multisets instead of sets in our sequents and drop the axiom φ ∧ φ �A φ from (∧-
IdempotenceA). Consequently, much of the following arguments would need to be adjusted,
especially when they involve notational reasoning.
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and Cut are straightforwardly seen to be valid from the definition of �. Fine and Jago
[17, p. 554, proof of theorem 9.2] effectively prove the soundness of ∧-Monotonicity
and ∨-Elimination by proving the soundness of corresponding rules for their sequent
calculus. Since the corresponding proofs for our system are essentially notational
variants of the proofs for the Fine–Jago system, we shall only provide the argument
for ∧-Monotonicity and leave the case of ∨-Elimination for the reader to work out.

Lemma 4.2. ∧-MonotonicityA is sound on the inclusive semantics.

Proof. We proceed using the Fine–Jago characterization theorem (Theorem 3.4).
So assume that Γ, φ1 � �1 and Γ, φ2 � �2 We wish to show that Γ, φ1 ∧ φ2 � �1 ∧ �2,
which by Theorem 3.4 means that for each selection f for Γ ∪ {φ1 ∧ φ2}, we find a
Δ ∈ |�1 ∧ �2|+M and a � ∈ Γ ∪ {φ1 ∧ φ2} with f(�) ⊆ Δ ⊆

⋃
�∈Γ f(�).

So consider an arbitrary selection function f for Γ ∪ {φ1 ∧ φ2}. Since |φ1 ∧ φ2|+M =
{Σ1 ∪ Σ2 : Σi ∈ |φi |+M}, we can writef(φ1 ∧ φ2) = Σ1 ∪ Σ2 for some Σi ∈ |φi |+M. Based
on this observation, we define selections fi for Γ ∪ {φi}, i = 1, 2, by simply setting
(fi)�Γ\{φi}

= f and fi(φi) = Σi . Our assumption gives us Δi ’s in |�i |+M and �i ’s in

Γ ∪ {φi} with: fi(�i) ⊆ Δi ⊆
⋃
�∈Γ∪{φi} fi(�) via Theorem 3.4. We shall simply set

our desired Δ to be Δ1 ∪ Δ2. We then get that Δ ∈ |�1 ∧ �2|+M, since Δ1 ∈ |�1|+M and
Δ2 ∈ |�2|+M and so Δ1 ∪ Δ2 ∈ |�1 ∧ �2|+M by (Sem-∧+).

We distinguish two cases: either (a) �1 = φ1, �2 = φ2 or (b) some �i ∈ Γ. Either way,
we claim that there’s a � ∈ Γ ∪ {φ1 ∧ φ2} with f(�) ⊆ Δ1 ∪ Δ2. In case (a), we note
again that f1(φ1) ∪ f2(φ2) = Σ1 ∪ Σ2 = f(φ1 ∧ φ2) and so f(φ1 ∧ φ2) ⊆ Δ1 ∪ Δ2. So
we can set � = φ1 ∧ φ2. In case (b), we can simply set � = �i for the �i ∈ Γ since for both
�i ’s we have by simple set-theory that f(�i) ⊆ Δ1 ∪ Δ2. Next, note that by set theory
we have Δ1 ∪ Δ2 ⊆

⋃
�∈Γ∪{φ2} f1(�) ∪

⋃
�∈Γ∪{φ2} f2(�). Since (fi)�Γ\{φi}

= f, we get

Δ1 ∪ Δ2 ⊆
⋃
�∈Γ f(�) ∪ f1(φ1) ∪ f2(φ2). But we have f1(φ1) ∪ f2(φ2) = Σ1 ∪ Σ2 =

f(�1 ∧ �2), so Δ1 ∪ Δ2 ⊆
⋃
�∈Γ∪{φ1∧φ2} f(�), as desired.

Next, we extend our system to a system for exact entailment on the replete semantics.
By Proposition 3.3, all axioms that are valid with respect to � are also valid with respect
to �nv∗. The main difference concerns the distributivity of ∨ over ∧. As the reader will
easily confirm (perhaps using the derived rules given in Proposition 4.7), we can derive

φ ∨ (� ∧ �) �A (φ ∨ �) ∧ (φ ∨ �).

The inverse direction, however, is not derivable—in fact, it is invalid on the inclusive
semantics. Just observe that

|p ∨ (q ∧ r)|+
M

= {{p}, {q, r}, {p, q, r}},

|(p ∨ q) ∧ (p ∨ r)|+
M

= {{p}, {p, r}, {p, q}, {q, r}, {p, q, r}}.

Since |(p ∨ q) ∧ (p ∨ r)|+
M

� |p ∨ (q ∧ r)|+
M

, we get that (p ∨ q) ∧ (p ∨ r) � p ∨
(q ∧ r).

On the replete semantics, instead, the inference becomes valid. Just observe that

(|p ∨ (q ∧ r)|+
M

)∗ = {{p}, {p, r}, {p, q}, {q, r}, {p, q, r}},

(|(p ∨ q) ∧ (p ∨ r)|+
M

)∗ = {{p}, {p, r}, {p, q}, {q, r}, {p, q, r}}.
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Using Corollary 3.7 from Theorem 3.6, we can infer that (p ∨ q) ∧ (p ∨ r) ��nv∗
p ∨ (q ∧ r). Indeed, the law holds in its general form, i.e., (φ ∨ �) ∧ (φ ∨ �) �nv∗ φ ∨
(� ∧ �), as is easily (but perhaps tediously) seen via Theorem 3.4 (left to the reader).

We denote derivability in our system for �nv∗ correspondingly by �Anv∗ . The rules
and axioms for this system are the same as for �A except that we add the missing
distributivity law as an axiom:

(φ ∨ �) ∧ (φ ∨ �) �Anv∗ φ ∨ (� ∧ �).

We note that the arguments for the soundness of the “structural” rules, Weakening
and Cut, are straightforward. The arguments for the soundness of ∧-MonotonicityA
and ∨-EliminationA use Theorem 3.6 in a similar way as the proof of Lemma 4.2 uses
Theorem 3.4. We provide the proof for the soundness of ∨-EliminationA to illustrate
the idea and leave the (easier) case of ∧-MonotonicityA to the interested reader:

Lemma 4.3. The rule ∨-EliminationA is sound on the replete semantics.

Proof. Assume that Γ, φ1 �nv∗ � and Γ, φ2 �nv∗ �. We wish to derive that Γ, φ1 ∨
φ2 �nv∗ �. First, note that by ∧-Monotonicity and ∧-Idempotence, we can infer that
Γ, φ1 ∧ φ2 �nv∗ �. We proceed using the Fine–Jago characterization theorem for the
replete semantics (Theorem 3.6).

We want to show that for each convex selection f∗ for Γ ∪ {φ1 ∨ φ2}, we find a
Δ ∈ (|�|+

M
)∗ such that the conditions of Theorem 3.6.(a and b) are satisfied, i.e., there’s

a � ∈ Γ ∪ {φ1 ∨ φ2} with f∗(�) ⊆ Δ ⊆
⋃
�∈(Γ∪{φ1∨φ2}) f∗(�). So take an arbitrary

convex selectionf∗ for Γ ∪ {φ1 ∨ φ2}. Considerf∗(φ1 ∨ φ2) = Σ. Note that Σ ∈ (|φ1 ∨
φ2|+M)∗ iff there exists Σ↑ ∈ |φ1|+M ∪ |φ2|+M and a Σ↓ ∈ |φ1 ∧ φ2|+M such that Σ↑ ⊆ Σ ⊆
Σ↓. Without loss of generality, we can assume that for our Σ, we have Σ↑ ∈ |φ1|+M since
the case for Σ↑ ∈ |φ2|+M is analogous.

We define a convex selection f↑
∗ for Γ ∪ {φ1} by setting (f↑

∗)�Γ\{φ1}
= f∗ and

f↑
∗(φ1) = Σ↑. By our assumption that Γ, φ1 �nv∗ � and Theorem 3.6, we get that

there exists a �↑ ∈ Γ ∪ {φ1} and a Δ↑ ∈ |�|+
M

with f↑
∗(�) ⊆ Δ↑ ⊆

⋃
�∈Γ∪{φ1} f

↑
∗(�).

We distinguish two cases: (a) �↑ ∈ Γ \ {φ1} and (b) �↑ = φ1. In case (a), we can simply
let Δ↑ be our Δ and �↑ our � since by definition of f↑

∗ we have

f↑
∗(�↑) = f∗(�↑) ⊆ Δ↑ ⊆

⋃
�∈Γ∪{φ1}

f↓
∗(�) ⊆

⋃
�∈Γ∪{φ1∨φ2}

f∗(�).

In case (b), we have f↑
∗(φ1) ⊆ Δ↑ ⊆

⋃
�∈Γ∪{φ1} f

↑
∗(�). We define another convex

selection f↓
∗ , this time for Γ ∪ {φ1 ∧ φ2} by setting (f↓

∗)�Γ\{φ1∧φ2}
= f∗ and f↓

∗(φ1 ∧
φ2) = Σ↓. Since we’ve already seen that Γ, φ1 ∧ φ2 � �, we can apply Theorem 3.6 to
infer that there exists a �↓ ∈ Γ ∪ {φ1 ∧ φ2} and a Δ↓ ∈ (|�|+

M
) where f↓

∗(�↓) ⊆ Δ↓ ⊆⋃
�∈Γ∪{φ1∧φ2} f

↓
∗(�). We again distinguish two cases: (a.1) �↓ /∈ Γ \ {φ1 ∧ φ2} and

(a.2) �↓ = φ1 ∧ φ2.
In case (a.1), we can set � = �↓ and Δ = Δ↑ ∪ f∗(�↓). To establish this, we first

note that since �↓ ∈ Γ, we have f↓
∗(�↓) = f↑

∗(�↓) = f∗(�↓) by the definition of
f↓

∗ . We then infer using basic set-theory that f↓
∗(�↓) ⊆ Δ↑ ∪ f↓

∗(�↓). Furthermore,

https://doi.org/10.1017/S175502032200020X Published online by Cambridge University Press

https://doi.org/10.1017/S175502032200020X


1272 J. KORBMACHER

since Δ↑ ⊆
⋃
�∈Γ∪{φ1} f

↑
∗(�), we can infer that Δ↑ ∪ f↓

∗(�↓) ⊆
⋃
�∈Γ∪{φ1} f

↑
∗(�) ∪

f↓
∗(�↓) =

⋃
�∈Γ∪{φ1} f

↑
∗(�). We now have that

f∗(�↓) ⊆ Δ↑ ∪ f∗(�↓) ⊆ Δ↑ = Δ ⊆
⋃

�∈Γ∪{φ1}
f↓

∗(�) ⊆
⋃

�∈Γ∪{φ1∨φ2}
f∗(�).

What remains to be shown is that Δ↑ ∪ f∗(�↓) ∈ (|�|+
M

)∗. To see this note that since
Δ↑,Δ↓ ∈ (|�|+

M
)∗, by Full Closure we have Δ↑ ∪ Δ↓ ∈ (|�|+

M
)∗. We already know

that f∗(�↓) = f↓
∗(�↓) ⊆ Δ↓, so it follows that Δ↑ ⊆ Δ↑ ∪ f∗(�↓) ⊆ Δ↑ ∪ Δ↓. By the

convexity of (|�|+
M

)∗, we can infer that Δ↑ ∪ f∗(�↓) ∈ (|�|+
M

)∗ as desired.
We’ve arrived at our final case, viz. �↑ = φ1 and �↓ = φ1 ∧ φ2. We summarize

f↓
∗(φ1 ∧ φ2)⊆Δ↓⊆

⋃
�∈Γ∪{φ1∧φ2}

f↓
∗(�),

f↑
∗(φ1)⊆Δ↑⊆

⋃
�∈Γ∪{φ1}

f↑
∗(�) =

⋃
�∈Γ

f∗(�) ∪ f↑
∗(φ1).

Set Σ∗ = Σ \ Σ↑. Since f↑
∗(φ1) = Σ↑, we get that

Σ↑ ∪ Σ∗︸ ︷︷ ︸
=Σ=f∗(φ1∨φ2)

⊆ Δ↑ ∪ Σ∗ ⊆
⋃
�∈Γ

f∗(�) ∪ Σ↑ ∪ Σ∗︸ ︷︷ ︸
=f∗(φ1∨φ2)

=
⋃

�∈Γ∪{φ1∨φ2}
f∗(�).

Since f↓
∗(φ1 ∧ φ2) = Σ2 and Σ∗ ⊆ Σ2, we get that Δ↑ ⊆ Δ↑ ∪ Σ∗ ⊆ Δ↑ ∪ Δ↓. And just

like in case (a.1), �↓ ∈ Γ \ {φ1 ∧ φ2}, we can infer that Δ↑ ∪ Σ∗ ∈ (|�|+
M

)∗. So in our
final case, we can set � = φ1 ∨ φ2 and Δ = Δ↑ ∪ Σ∗, establishing our claim.

Summarily, we get:

Theorem 4.4 (Soundness for A and Anv∗). We have:

1. If Γ �A φ, then Γ � φ.
2. If Γ �Anv∗ φ, then Γ �nv∗ φ.

Before turning to completeness, we observe some facts about the logic of exact
entailment via our proof system. As Odintsov and Wansing [23, p. 51] point out,
thinking about Cresswell’s definition of hyperintensional contexts as ones that do not
respect logical equivalence, naturally leads us to the notion of self -extensionality of
a logic. A logic is called fully self-extensional or congruential iff all the operators
respect logical equivalence in that logic. In our case, that means that exact entailment
is congruential (on the inclusive semantics) iff

If φ ��A �, then ¬φ ��A ¬�. (¬-Congruency)

If φ1 ��A �1 and φ2 ��A �2, then φ1 ∧ φ2 ��A �1 ∧ �2. (∧-Congruency)

If φ1 ��A �1 and φ2 ��A �2, then φ1 ∨ φ2 ��A �1 ∨ �2. (∨-Congruency)
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We observe that exact entailment on the inclusive semantics is not fully congruential
since it is not ¬-congruential. To see this, note first that by ∧/∨-Distributivity, we have
that ¬p ∧ (¬q ∨ ¬r) ��A (¬p ∧ ¬q) ∨ (¬p ∨ ¬r). But observe that

|¬(¬p ∨ (¬q ∧ ¬r))|+
M

= {{¬p}, {¬q,¬r}, {¬p,¬q,¬r}},
|¬((¬p ∨ ¬q) ∧ (¬p ∨ ¬r))|+

M
= {{¬p}, {¬p,¬r}, {¬p,¬q}, {¬q,¬r}, {¬p,¬q,¬r}}.

It follows that ¬((p ∧ q) ∨ (p ∨ r)) � ¬(p ∧ (q ∨ r)) and so ¬((p ∧ q) ∨ (p ∨ r)) �A

¬(p ∧ (q ∨ r)) by Soundness.18

An immediate consequence of this observation is that the following pair of rules is
not sound:

φ ��A �

�(φ) �A �(�)

φ ��A �

�(�) �A �(φ)
, (Replacement)

where �(p) is any formula in the propositional variable p. That is, on the inclusive
semantics, we cannot replace exactly equivalent formulas in all contexts while
preserving exact entailment—in contexts involving negation, things might break down.

It is, however, easy to establish that our logic is what we might call positively
congruential:

Proposition 4.5 (Positive congruence). The logic of exact entailment on the inclusive
semantics is both ∧-Congruential and ∨-Congruential.

Proof. ∧-Congruency is easily derived using ∧-Monotonicity and ∨-Congruency
using ∨-Introduction and ∨-Elimination.

We can use this observation to show that positive replacement rules are admissible
in our system. By the “admissibility” of a rule we mean that whenever premises of the
rule are derivable, so is the conclusion. Remember that an occurrence of a subformula
within a formula is positive iff the occurrence is not within the scope of an odd number
of negations. The rules we shall prove admissible, then, are

φ ��A �

�(φ) �A �(�)

φ ��A �

�(�) �A �(φ)
, (Positive Replacement)

where p occurs only positively in �(p). We have:

Proposition 4.6. Positive Replacement is admissible in the system for the inclusive
semantics.

Proof. By a straightforward induction on � following the construction from literals.
We only sketch the argument. There are two base cases: p and ¬p. But both are trivial:
in the case of p, �(φ) ��A �(�) is just φ ��A �; and in the case of ¬p, p does not
occur positively in �, so the claim holds vacuously. The inductive steps for �1 ∧ �2

and �1 ∨ �2 are immediate using ∧-Congruency and ∨-Congruency and the fact that
(�1 ◦ �2)(φ) = �1(φ) ◦ �2(φ) for ◦ = ∧,∨. The remaining three cases, ¬¬� ′,¬(�1 ∧ �2),
and ¬(�1 ∨ �2) are covered by the de Morgan laws, ∧-Congruency and ∨-Congruency,
and the observation that if p occurs positively in ¬¬� ′ or ¬(�1 ◦ �2), then p occurs
positively in � ′,¬�1, and ¬�2.

18 This example was discovered and brought to me by Simone Picenni. It plays an important
role in future joint work.
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This means that we can freely use Positive Replacement in our system. It shall be
convenient to abbreviate a certain pattern of reasoning involving Positive Replacement.
It’s easily seen that using Positive Replacement and Cut, we can replace exactly
equivalent formulas for one another anywhere within a derivation given that they
occur positively. To see this, consider the following example:

φ ∧ φ ��A φ
∧-Idempotence

φ ∨ � �A (φ ∧ φ) ∨ �
Pos. Repl.

.... Some reasoning
(φ ∧ φ) ∨ �, � �A ((φ ∧ φ) ∨ �) ∧ �

φ ∨ �, � �A ((φ ∧ φ) ∨ �) ∧ � Cut.

To see that the application of Positive Replacement is indeed valid, just note that p
occurs positively in p ∨ �, as well as (p ∨ �)(φ ∧ φ) = (φ ∧ φ) ∨ � and (p ∨ �)(φ) =
φ ∨ �. For conciseness’ sake, we shall abbreviate the reasoning pattern as in the
following example:

(φ ∧ φ) ∨ �, � �A ((φ ∧ φ) ∨ �) ∧ �
φ ∨ �, � �A ((φ ∧ φ) ∨ �) ∧ �

Pos. Repl. + ∧ -Idem.

The fact that the logic of exact entailment on the inclusive semantics is not ¬-
congruential means that the logic is not only hyperintensional in the usual sense of
distinguishing classically equivalent formulas,19 but also hyperintensional in the sense
of Odintsov and Wansing [23]: it is hyperintensional by its own logical standards.
Odintsov and Wansing [23, p. 53] argue for a conception of hyperintensionality where
(a) a logic is only hyperintensional if it is not congruential and (b) a connective is
hyperintensional within a logic only if it is not congruential in the logic. So, one
way to summarize our observations so far is that exact entailment on the inclusive
semantics is hyperintensional in the sense of Odintsov and Wansing because negation is
hyperintensional in the logic. This result has the potential for philosophical application
when one tries to determine the most appropriate system for hyperintensional logic.

There is a debate in the literature on which concept(s) to build a basic system
of hyperintensional logic. Fine [14, p. 565], for example, argues in favor of using
exact truthmaking over an alternative inexact notion, which doesn’t require complete
relevance but only partial relevance. Deigan [6], instead, argues for taking the inexact
notion as our starting point and Leitgeb [22] provides further arguments to support
this position. Odintsov and Wansing [23] show that Leitgeb’s HYPE, a system of
hyperintensional logic based on an inexact conception of truthmaking, does not qualify
as hyperintensional by their standards. Together with our previous observation, we can
use this result to argue in favor of exact truthmaker semantics over HYPE: if Odintsov–
Wansing hyperintensionality is what you’re after (for all the reasons given by them), you
should go with exact truthmaking rather than HYPE. We leave further philosophical
exploration of the result, e.g., of how the behavior of negation can be used to capture
certain philosophical phenomena, for future work.

If, instead, a fully congruential is what we’re after, there are some options. One way to
go would be to impose additional constraints on exact entailment that ensure its self-

19 Take p and p ∨ (p ∧ q) as a particularly instructive example. We have |p|+
M

= {{p}} and
|p ∨ (p ∧ q)|+

M
= {{p}, {p, q}}. Using Corollary 3.5, we get p ∨ (p ∧ q) � p.
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extensionality, such as exact falsemaker anti-inclusion, or formally, |φ|– ⊆
⋃

|Γ|–.20

As it turns out, however, we’ve already described a fully congruential logic for exact
entailment, viz. the logic on the replete semantics. We shall prove this next.

First, we note for later use:

Proposition 4.7. The following are derivable:

1. Γ �A

∧
Γ. (∧-Introduction)

2.
∧

Γ �A

∨
Γ. (Closure)

3. If Γ ⊆ Δ ⊆ Σ, then
∧

Γ,
∧

Σ �A

∧
Δ. (∧-Convexity)

4. If Γ ⊆ Δ ⊆ Σ, then
∧

Δ �Anv∗
∧

Γ ∨
∧

Σ. (∨-Convexity)

Proof. Most arguments are standard and/or straightforward. Since the general
arguments are somewhat opaque, we give derivations of simplified cases that are
easily seen to generalize. 1. is derived using ∧-Monotonicity and ∧-Idempotence as
the following simplified example:

φ �A φ

φ,� �A φ
Weakening

� �A �

φ,� �A �
Weakening

φ,� ∧ � �A φ ∧ �
∧-Monotonicity

φ,� �A φ ∧ �
Cut + ∧ -Idem.

The derivation for 2. is a generalization of the following:

φ �A φ ∨ � � �A φ ∨ �
φ ∧ � �A (φ ∨ �) ∧ (φ ∨ �)

∧-Mon.

φ ∧ � �A φ ∨ �
Cut + ∧ -Idem.

We call 2. “Closure,” since it’s another syntactic expression of the semantic fact that
truthmakers are closed under fusions next to ∧-Idempotence. The derivation for 3. is
simply repeated applications of∧-Monotonicity to∧-Convexity. Finally, the derivation
of 4. is a generalization of the following sketch:

φ �Anv∗ φ ∨ φ � �Anv∗ φ ∨ �
φ ∧ � �Anv∗ (φ ∨ �) ∧ (φ ∨ �)

∧-Mon.
φ �Anv∗ φ ∨ �

φ ∧ � ∧ φ �Anv∗ (φ ∨ φ) ∧ (φ ∨ �) ∧ (φ ∨ �)
∧-Mon.

φ ∧ � ∧ φ �Anv∗ φ ∨ (φ ∧ � ∧ �)
∨/∧-Distr., Cut

φ ∧ � �Anv∗ φ ∨ (φ ∧ � ∧ �)
Pos. Repl. ∧ -Idem.,∧-Com.

The proof that exact entailment on the replete semantics is fully congruential relies
on one of the core theorems for exact entailment, viz. its Disjunctive Normal Form
(DNF) theorem. We shall now state and prove this theorem, which plays a central role
in our completeness argument.

A conjunctive clause is a formula of the form
∧

Γ for Γ ⊆ Λ. A formula φ is in DNF
iff it is of the form

∨
φi , where the φi ’s are conjunctive clauses.

20 We leave it to the interested reader to verify that this constraint indeed makes exact entailment
self-extensional.
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Theorem 4.8 (DNF theorem). We have:

1. φ ��A

∨
Γ∈|φ|+

M

∧
Γ.

2. (a) φ ��Anv∗
∨

Γ∈(|φ|+
M

)∗

∧
Γ.

(b) ¬φ ��Anv∗
∧

Γ∈(|φ|+
M

)∗

∨
¬Γ, where ¬Γ = {¬� : � ∈ Γ}.

Proof. The proof of 1. is by induction on φ following the construction from literals.
The proof is more or less the same as the standard proof of the DNF theorem for
classical logic with an additional use of the fact that φ ∨ � ��A (φ ∨ �) ∨ (φ ∧ �),
which is quickly derived using Proposition 4.7. We cover only one case besides the base
case to illustrate the relevant reasoning.

The base cases are straightforward, since |p|+
M

= {{p}} and |¬p|+
M

= |p|–
M

=
{{¬p}}. Next, we cover the case for φ1 ∨ φ2. By the induction hypothesis, we
have φ1 ��A

∨
Γ∈|φ1|+M

∧
Γ and φ2 ��A

∨
Γ∈|φ2|+M

∧
Γ. By ∨-Elimination and ∨-

Introduction, we get

φ1 ∨ φ2 ��A

⎛
⎜⎝ ∨

Γ∈|φ1|+M

∧
Γ

⎞
⎟⎠ ∨

⎛
⎜⎝ ∨

Γ∈|φ2|+M

∧
Γ

⎞
⎟⎠ .

The right-hand side of this equivalence is easily seen to be notationally equivalent to∨
Γ∈|φ1|+M∪|φ2|+M

∧
Γ. Using φ ∨ � ��A (φ ∨ �) ∨ (φ ∧ �) repeatedly, we get

φ1 ∨ φ2 ��A

⎛
⎜⎝ ∨

Γ∈|φ1|+M∪|φ2|+M

∧
Γ

⎞
⎟⎠ ∨

⎛
⎜⎝ ∨

Γi∈|φi |+M

(∧
Γ1 ∧

∧
Γ2

)⎞
⎟⎠ .

Since
∧

Γ1 ∧
∧

Γ2 is notationally equivalent to
∧

(Γ1 ∪ Γ2) and |φ1 ∧ φ2|+M = {Γ1 ∪
Γ2 : Γi ∈ |φi |+M} (by Sem-∧+), we get that

∨
Γi∈|φi |+M

(
∧

Γ1 ∧
∧

Γ2) is notationally
equivalent to

∨
Γ∈|φ1∧φ2|+M

∧
Γ. This gives us, again via notational equivalence, that

φ1 ∨ φ2 ��A

∨
Γ∈|φ1|+M∪|φ2|+M∪|φ1∧φ2|+M

∧
Γ.

Since |φ1 ∨ φ2|+M = |φ1|+M ∪ |φ2|+M ∪ |φ1 ∧ φ2|+M by Sem-∨+ the case is complete.
We leave the remaining cases to the interested reader and turn our attention to 2.

First, we establish (a). Since (|φ|+
M

)∗ = |φ|+
M

∪ {Δ : ∃Γ1,Γ2 ∈ |φ|+
M

with Γ1 ⊆ Δ ⊆
Γ2}, we know that

∨
Γ∈(|φ|+

M
)∗

∧
Γ is notationally equivalent to

⎛
⎜⎝ ∨

Γ∈|φ|+
M

∧
Γ

⎞
⎟⎠ ∨

⎛
⎜⎝ ∧

∃Γ1,Γ2∈|φ|+
M
,Γ1⊆Δ⊆Γ2

∧
Δ

⎞
⎟⎠ .
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By 1., we know that φ ��Anv∗
∨

Γ∈|φ|+
M

∧
Γ. Repeatedly using ∨-Convexity

(Proposition 4.7), we can derive

∨
Γ∈|φ|+

M

∧
Γ ��Anv∗

⎛
⎜⎝ ∨

Γ∈|φ|+
M

∧
Γ

⎞
⎟⎠ ∨

⎛
⎜⎝ ∧

∃Γ1,Γ2∈|φ|+
M
,Γ1⊆Δ⊆Γ2

∧
Δ

⎞
⎟⎠ .

From this, our claim quickly follows via Cut and notational reasoning.
Finally, we establish 2.(b) by induction on φ following the construction from literals.

We only sketch the argument since it’s essentially a dual version of the proof for 1. The
base cases are again trivially since (|p|◦

M
)∗ = |p|◦

M
for ◦ = +, –. The most interesting

case is for φ1 ∨ φ2, since it involves an argument via ∨/∧-Distribution, which is not
available for �A. Hence this case shows why we can’t prove a comparable theorem
for �A.

By the induction hypothesis, we have φ1 ��Anv∗
∧

Γ1∈|φ1|+M

∨
¬Γ1 and φ2 ��Anv∗∧

Γ1∈|φ2|+M

∨
¬Γ2. Using ∨-Congruence, we can derive

φ1 ∨ φ2 ��Anv∗

⎛
⎜⎝ ∧

Γ1∈(|φ1|+M)∗

∨
¬Γ1

⎞
⎟⎠ ∨

⎛
⎜⎝ ∧

Γ1∈(|φ2|+M)∗

∨
¬Γ2

⎞
⎟⎠ .

Using ∨/∧-Distribution repeatedly as well as notational reasoning, we can derive⎛
⎜⎝ ∧

Γ1∈(|φ1|+M)∗

∨
¬Γ1

⎞
⎟⎠ ∨

⎛
⎜⎝ ∧

Γ1∈(|φ2|+M)∗

∨
¬Γ2

⎞
⎟⎠ ��Anv∗

∧
Γ∈((|φ1|+M)∗∪(|φ2|+M)∗)

∨
¬Γ.

From here, we can reason as in 1. using φ ∨ � ��A (φ ∨ �) ∨ (φ ∧ �), as in
2.(a) using ∨-Convexity, and using the (rather convoluted) semantic fact that
(|φ1 ∨ φ2|+M)∗ = (|φ1|+M)∗ ∪ (|φ2|+M)∗ ∪ (|φ1 ∧ φ2|+M)∗ ∪ {Δ : ∃Γ1,Γ2 ∈ (|φ1|+M)∗ ∪
(|φ2|+M)∗ ∪ (|φ1 ∧ φ2|+M)∗,Γ1 ⊆ Δ ⊆ Γ2}, to derive∧

Γ∈((|φ1|+M)∗∪(|φ2|+M)∗)

∨
¬Γ ��Anv∗

∧
Γ∈(|φ1∨φ2|+M)∗

∨
¬Γ.

From this our claim follows via a series of CutA’s.

Note that the DNFs in our theorem are indeed canonical DNFs:
∨

Γ∈|φ|+
M

∧
Γ is

what’s known as the “standard” DNF of φ, and
∨

Γ∈(|φ|+
M

)∗

∧
Γ is what Fine [11, p.

215] calls “maximally standard” DNFs. Note also that these DNFs are unique up
to logical equivalence since by Soundness (Theorem 4.4), we get: if φ ��A �, then
|φ|+

M
= |�|+

M
; and if φ ��Anv∗ �, then (|φ|+

M
)∗ = (|�|+

M
)∗.

We get now as straightforward corollaries:

Corollary 4.9 (Full congruence). The logic of exact entailment on the replete
semantics is fully congruential.
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Proof. It suffices to show that the logic is ¬-Congruential since the arguments for ∧-
Congruentiality and∨-Congruentiality go through as for�A. So, suppose thatφ ��Anv∗

�. By Theorem 4.8, we have

¬φ ��Anv∗
∧

Γ∈(|φ|+
M

)∗

∨
¬Γ ¬� ��Anv∗

∧
Γ∈(|�|+

M
)∗

∨
¬Γ.

But since DNFs are unique up to logical equivalence, we get that
∧

Γ∈(|φ|+
M

)∗

∨
�∈Γ ¬�

and
∧

Γ∈(|�|+
M

)∗

∨
�∈Γ ¬� are identical. So we can derive ¬φ ��Anv∗ ¬� by a single

application of CutA.

Corollary 4.10 (Full). Replacement is admissible in the system for the replete
semantics.

Proof. By induction using the Congruence laws.

We conclude the section by proving completeness.

Lemma 4.11. We have:

1. If Δ ∈ |φ|+
M

, then
∧

Δ �A φ.
2. If Δ ∈ (|φ|+

M
)∗, then

∧
Δ �Anv∗ φ.

Proof. Since φ ��A

∨
Γ∈|φ|+

M

∧
Γ by Theorem 4.8, 1. follows using ∨-Intro and Cut.

2. follows analogously from Theorem 4.8.

Theorem 4.12 (Completeness for A and Anv∗). We have:

1. If Γ � φ, then Γ �A φ.
2. If Γ �nv∗ φ, then Γ �Anv∗ φ.

Proof. For 1. take Γ = {�1, ... , �n} with Γ �A φ. By the Fine–Jago theorem for the
inclusive semantics (Theorem 3.4), we get that for each selection function f for |Γ|+

M
,

there exists a Δ ∈ |φ|+
M

, such that for some �i ∈ Γ, f(|�i |+M) ⊆ Δ ⊆
⋃
�i∈Γ f(|�i |+M).

For �i ∈ Γ, we can write |�i |+M = {Γ1
i , ... ,Γ

j(i)
i }, where j maps i to the number of

elements in |�i |+M. Now pick a selection function such that f(|�i |+M) = Γ1
i for 1 ≤ i ≤

n. We get that there exists a Δ ∈ |φ|+
M

such that for some Γ1
i , Γ1

i ⊆ Δ ⊆
⋃

1≤i≤n Γ1
i .

Using ∧-Convexity, Proposition 4.7, we get that
∧

Γ1
i ,

∧
1≤i≤n Γ1

i �A

∧
Δ. Using ∧-

Introduction, Proposition 4.7, together with Cut, we can infer that
∧

Γ1
1, ... ,

∧
Γ1
n �A∧

Δ. Using Lemma 4.11 and Cut, we get that
∧

Γ1
1, ... ,

∧
Γ1
n �A φ. Completely

analogously, just by choosing f(|�1|+M) = Γ2
1 and f(|�i |+M) = Γ1

i for 1 < i ≤ n, we
get

∧
Γ2

1,
∧1

2, ... ,
∧

Γ1
n �A φ. And so on, giving us∧

Γ1
1 ,Γ

1
2, ... ,Γ

1
n �A φ

...
...

...∧
Γj(1)

1 ,Γ1
2, ... ,Γ

1
n �A φ.

Repeated application of ∨-Elimination gives us
∨

Γ∈|�1|+M

∧
Γ,Γ1

2, ... ,Γ
1
n �A φ. By

the DNF theorem (Theorem 4.8), we have
∨

Γ∈|�1|+M

∧
Γ ��A �1, so by Cut, we get
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�1,Γ1
2, ... ,Γ

1
n �A φ. We repeat this reasoning with suitable selection functions to obtain

�1 ,Γ1
2, Γ1

3, ... ,Γ
1
n �A φ

...
...

...

�1,Γ
j(2)
2 ,Γ1

3, ... ,Γ
1
n �A φ.

From this we get �1, �2,Γ1
3, ... ,Γ

1
n �A φ using ∨-Elimination, the DNF theorem and

Cut. By repeating this reasoning, we finally obtain �1, ... , �n �A φ.
The proof for 2. proceeds exactly analogously just that it relies on Theorem 3.6,

Lemma 4.11 and Theorem 4.8.

Note that while the proof of completeness is direct (i.e., not via contrapositive
reasoning), it is not constructive (i.e., it doesn’t generate a proof, it just shows that
one exists). This is because of the non-constructive application of the Fine–Jago
characterization theorem in our proof.

§5. Hilbert calculus. In this section, we present two Hilbert calculi for exact
entailment, one for the inclusive semantics and one for the replete semantics. The calculi
are inspired by the Hilbert calculus for FDE described by Font [18], which in turn relies
on ideas used by Rebagliato and Ventura [24] to obtain a calculus for the implicationless
fragment of intuitionistic logic. In these calculi, certain logical inferences are “nested”
within disjunctive contexts, as for example in the inference from ¬¬φ ∨ � to φ ∨ �,
where � provides a “disjunctive context” for the logical inference from ¬¬φ to φ. The
use of disjunctive contexts essentially allows us to absorb disjunction-elimination-style
reasoning—inferences from Γ, φ � � and Γ, � � � to Γ, φ ∨ � � �—as a meta-rule
(see Proposition 5.5). Without the disjunctive contexts, this meta-rule would need to
become an explicit rule of our calculus. This would change the nature of our calculus
from a Hilbert calculus for formula-to-formula inferences to something more akin to
the direct axiomatization from the previous section.

It turns out that in order to accommodate exact entailment on the inclusive
semantics, in particular in light of the failure of ∧-Elimination, we need an additional
conjunctive context, nested within the disjunctive context as in the inference from
(¬¬φ ∧ �) ∨ � to (φ ∧ �) ∨ �. Just like the disjunctive contexts allow us to absorb the
disjunction elimination as a meta-rule, the conjunction ultimately allow us to prove
∧-Monotonicity as a meta-rule (see Lemma 5.3 and Proposition 5.5). The use of
disjunctive and conjunctive contexts together is what allows us to formulate a proper
formula-to-formula Hilbert calculus for exact entailment.

Since exact entailment has no theorems (Proposition 3.2), there are no axioms. The
calculus, H, consists entirely of the following rules:

φ ∨ � � ∨ �
(φ ∧ �) ∨ � ,

(R1) (φ1 ∧ ··· ∧ φn) ∨ �
(φ	(1) ∧ ··· ∧ φ	(n)) ∨ �,

(R2)

	 a permutation of (1, ... , n)∧
(Γ1 ∧ ··· ∧ Γn) ∨ �∧
(Γ1 ∪ ··· ∪ Γn) ∨ �,

(R3) φ ∨ � (φ ∧ � ∧ �) ∨ �
(φ ∧ �) ∨ � ,

(R4)
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φ

φ ∨ �
,

(R5) φ ∨ φ
φ ,

(R6)

� ∨ φ
φ ∨ �,

(R7) φ ∨ (� ∨ �)

(φ ∨ �) ∨ �,
(R8)

∧
(Γ ∪ {φ ∧ (� ∨ �)}) ∨ �∧

(Γ ∪ {(φ ∧ �) ∨ (� ∧ �)}) ∨ �,
(R9)

∧
(Γ ∪ {(φ ∧ �) ∨ (� ∧ �)}) ∨ �∧

(Γ ∪ {φ ∧ (� ∨ �)}) ∨ � ,
(R10)

∧
(Γ ∪ {¬¬φ}) ∨ �∧

(Γ ∪ {φ}) ∨ � ,
(R11)

∧
(Γ ∪ {φ}) ∨ �∧

(Γ ∪ {¬¬φ}) ∨ �,
(R12)

∧ (
Γ ∪ {¬(φ ∧ �)}) ∨ �∧

(Γ ∪ {¬φ ∨ ¬�}) ∨ �,
(R13)

∧
(Γ ∪ {¬φ ∨ ¬�}) ∨ �∧ (
Γ ∪ {¬(φ ∧ �)}) ∨ �,

(R14)

∧ (
Γ ∪ {¬(φ ∨ �)}) ∨ �∧

(Γ ∪ {¬φ ∧ ¬�}) ∨ �,
(R15)

∧
(Γ ∪ {¬φ ∧ ¬�}) ∨ �∧ (
Γ ∪ {¬(φ ∨ �)}) ∨ �.

(R16)

First, a quick remark on notation. Observe that we’ve absorbed the idempotence,
associativity, and commutativity of conjunction in the single rule R3.21 The rule R2 is
still necessary since in §2, we’ve decided on a canonical background ordering which
the

∧
and

∨
notation respects.

We write Γ �H φ to say that there is a derivation of φ using the above rules from
assumptions exclusively in Γ. Just like before, we write φ ��H � as an abbreviation for
both φ �H � and � �H φ.

Rather than proving soundness and completeness of the system directly, we shall
show that the system is deductively equivalent to A.

Proposition 5.1. We have the following:

1. φ,� �H φ ∧ �. (∧-IntroductionH)
2. φ ∧ φ ��H φ. (∧-IdempotenceH)
3. φ ∧ � ��H � ∧ φ. (∧-CommutativityH)
4. (φ ∧ �) ∧ � ��H φ ∧ (� ∧ �). (∧-AssociativityH)
5. φ �H φ ∨ � � �H φ ∨ �. (∨-IntroductionH)
6. φ ∧ (� ∨ �) ��H (φ ∧ �) ∨ (φ ∧ �). (∧/∨-DistributionH)
7. φ, φ ∧ � ∧ � �H φ ∧ �. (∧-ConvexityH)
8. ¬¬φ ��H φ. (Double NegationH)
9. ¬(φ ∨ �) ��H ¬φ ∧ ¬� ¬(φ ∧ �) ��H ¬φ ∨ ¬�. (De MorganH)

Proof. The arguments are all analogous: in each case, the idea is to use R5 to
introduce the desired conclusion as a disjunctive context, apply the relevant rule, and
then use R6 to infer the conclusion. We provide the derivation for 1. as an example:

φ

φ ∨ (φ ∧ �)
R5

�

� ∨ (φ ∧ �)
R5

(φ ∧ �) ∨ (φ ∧ �)
R1

φ ∧ � R6.

21 Note that if we’re interested in developing a calculus for exact entailment on the non-inclusive
semantics, we’d be formulating R3 as well as the rules R9–16 using multisets instead of sets.
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We leave verifying the remaining cases to the interested reader.

Next, we establish that the rules of our previous calculus hold as meta-theorems
for our Hilbert calculus. First, note that Reflexivity, Weakening, and Cut are covered
using standard structural reasoning about Hilbert calculi.

Proposition 5.2. We have:

1. φ �H φ. (ReflexivityH)
2. If Γ �H φ, then Γ,Δ �H φ. (WeakeningH)
3. If Γ �H φ and Σ, φ �H �, then Γ,Σ �H �. (CutH)

The following lemma is where the additional conjunctive contexts are really put to
work.

Lemma 5.3. We have:

1. (a) For i = 1, 4, if φ1 φ2
�

is an instance of Ri , then φ1 ∧ �, φ2 ∧ � �H � ∧ �.

(b) For i �= 1, 4, if φ
�

is an instance of Ri , then φ ∧ � �H � ∧ �.

2. (a) For i = 1, 4, if φ1 φ2
�

is an instance of Ri , then φ1 ∨ �, φ2 ∨ � �H � ∨ �.

(b) For i �= 1, 4, if φ
�

is an instance of Ri , then φ ∨ � �H � ∨ �.

Proof. The arguments for 1. are all analogous in that they essentially rely on
permuting the relevant rules with ∨/∧-DistributionH. We shall show (φ ∨ �), (� ∨
�) ∧ � �H ((φ ∧ �) ∨ �) ∧ � as an example:

(φ ∨ �) ∧ �
� ∧ (φ ∨ �)

R2

(φ ∧ �) ∨ (� ∧ �)
∨/∧-Distribution

(� ∨ �) ∧ �
� ∧ (� ∨ �)

R2

(� ∧ �) ∨ (� ∧ �)
∨/∧-Distribution

((φ ∧ �) ∧ (� ∧ �)) ∨ (� ∧ �)
R1

((φ ∧ �) ∧ �) ∨ (� ∧ �)
R2, R3

� ∧ ((φ ∧ �) ∨ �)
∨/∧-Distribution

((φ ∧ �) ∨ �) ∧ �
R2.

For 1.(b), we show R3 as an example:

(
∧

(Γ1 ∧ ··· ∧ Γn) ∨ φ) ∧ �
� ∧ (

∧
(Γ1 ∧ ··· ∧ Γn) ∨ φ)

R2∧
(Γ1 ∧ ··· ∧ Γn ∧ �) ∨ (φ ∧ �)

∧/∨-Distribution∧
(Γ1 ∪ ··· ∪ Γn ∪ {�}) ∨ (φ ∧ �)

R3

(
∧

(Γ1 ∪ ··· ∪ Γn) ∧ �) ∨ (φ ∧ �)
R2

� ∧
(∧

(Γ1 ∪ ··· ∪ Γn) ∨ φ)
∨/∧-Distribution

(∧
(Γ1 ∪ ··· ∪ Γn) ∨ φ) ∧ �

R2.

The cases 2. are all straightforward given the disjunctive contexts in the premises.

Note the crucial role played by the conditional contexts in the derivation for R3

in 1.(b).
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Using the previous lemma, we prove:

Lemma 5.4. We have:

1. If Γ, φ �H �, then Γ, φ ∧ � �H � ∧ �.
2. If Γ, φ �H �, then Γ, φ ∨ � �H � ∨ �.

Proof. 1. Assume that Γ, φ �H � and suppose that Γ = {φ1, ... , φn}. Using
Lemma 5.3, a straightforward induction on the length of derivations establishes
that φ1 ∧ �, ... , φn ∧ �, φ ∧ � � � ∧ �. Observe that for each φi , 1 ≤ i ≤ n, we
can deduce as follows:

φi

φ ∧ � φi
φ ∧ � ∧ φi

∧-IntroductionH

(φi ∧ �) ∧ φ
R2

φi ∧ �
∧-ConvexityH.

By repeated applications CutH, we get φ1, ... , φn, φ ∧ � �H � ∧ � as desired.
2. Assume that Γ, φ �H � and suppose that Γ = {φ1, ... , φn}. Using Lemma

5.3, a straightforward induction on the length of derivations establishes
that φ1 ∨ �, ... , φn ∨ �, φ ∨ � � � ∨ �. Applying CutH and φi �H φi ∨ � (∨-
IntroductionH), we get φ1, ... , φn, φ ∨ � �H � ∨ �.

We’re now in a position to prove that the rules of our axiomatic system from §4 hold
as meta-theorems for our Hilbert calculus.

Proposition 5.5. We have:

1. If Γ, φ1 �H �1 and Γ, φ2 �H �2, then Γ, φ1 ∧ φ2 �H �1 ∧ �2.
2. If Γ, φ1 �H � and Γ, φ2 �H �, then Γ, φ1 ∨ φ2 �H �.

Proof. For 1., assume that Γ, φ1 �H �1 and Γ, φ2 �H �2. Using Lemma 5.4, we
get Γ, φ1 ∧ φ2 �H �1 ∧ φ2 and, additionally using ∧-CommutativityH, Γ, �1 ∧ φ2 �H

�1 ∧ �2. The claim follows by one application of CutH.
For 2., Γ, φ1 �H � and Γ, φ2 �H �. Using Lemma 5.4 and R7, we get Γ, φ1 ∨ φ2 �H

φ2 ∨ � from the first assumption. The second assumption similarly gives us Γ, φ2 ∨ � �H

� ∨ �. Reasoning with CutH, we get Γ, φ1 ∨ φ2 �H � ∨ �, from which we get the our
claim via R6.

Putting Propositions 5.1–5.5 together in a straightforward induction on the length
of derivations, we get:

Theorem 5.6. If Γ �A φ, then Γ �H φ.

In order to establish the converse of the previous theorem, thereby giving us that �A

and �H are deductively equivalent, we first establish:

Lemma 5.7. We have:

1. For i = 1, 4, if φ1 φ2
�

is an instance of Ri , then φ1, φ2 �A �.

2. For i �= 1, 4, if φ
�

is an instance of Ri , then φ �A �.
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Proof. For 1., we sketch the derivation for R1 and leave the analogous derivation for
R2 to the interested reader:

φ, � � φ ∧ �
Prop. 7.1

.... ∨-Intro., Cut

φ, � � (φ ∧ �) ∨ �
� � (φ ∧ �) ∨ �

∨-Intro.

�, � � (φ ∧ �) ∨ � Weak.

φ, � ∨ � � (φ ∧ �) ∨ �
∨-Elim.

� � (φ ∧ �) ∨ �
∨-Intro.

� ∨ �, � � (φ ∧ �) ∨ � Weak.

φ ∨ �, � ∨ � � (φ ∧ �) ∨ �
∨-Elim.

For 2., first note that R5–8 are standard using ∨-Introduction and ∨-Introduction.
The arguments for the remaining rules are all analogous applications of Positive
Replacement with the formula

∧
(Γ ∪ {p}) ∨ � and the corresponding axioms for

�A as in the following example:

φ ∧ (� ∨ �) ��A (φ ∧ �) ∨ (φ ∧ �)
∧/∨-Distr.∧

(Γ ∪ {(φ ∧ �) ∨ (φ ∧ �)}) ∨ � �A

∧
(Γ ∪ {φ ∧ (� ∨ �)}) ∨ �

Pos. Repl.

A straightforward inductive argument using the previous lemma then gives us:

Theorem 5.8. If Γ �H φ, then Γ �A φ.

So, we’ve seen that H is deductively equivalent to A. To obtain a calculus for exact
entailment on the replete semantics, we simply add the following two rules to H:∧

(Γ ∪ {φ ∨ (� ∧ �)}) ∨ �∧
(Γ ∪ {(φ ∨ �) ∧ (� ∨ �)}) ∨ �,

(R17)
∧

(Γ ∪ {(φ ∨ �) ∧ (� ∨ �)}) ∨ �∧
(Γ ∪ {φ ∨ (� ∧ �)}) ∨ � .

(R18)

We write Γ �Hnv∗ φ for derivability in the resulting calculus and φ ��Hnv∗ � as an
abbreviation for φ �Hnv∗ � and � �Hnv∗ φ.

For soundness and completeness, we can be quick: Proposition 5.2 carries over to
�Hnv∗ without any adjustments:

Proposition 5.9. We have:

1. φ �Hnv∗ φ. (ReflexivityHnv∗)
2. If Γ �Hnv∗ φ, then Γ,Δ �Hnv∗ φ. (WeakeningHnv∗)
3. If Γ �Hnv∗ φ and Σ, φ �Hnv∗ �, then Γ,Σ �Hnv∗ �. (CutHnv∗)

For Proposition 5.5, just note that R17,18 are of the same form as R9,10 and thus we
can carry over all the arguments building up to the relevant proof:

Proposition 5.10. We have:

1. If Γ, φ1 �Hnv∗ �1 and Γ, φ2 �Hnv∗ �2, then Γ, φ1 ∧ φ2 �Hnv∗ �1 ∧ �2.
2. If Γ, φ1 �Hnv∗ � and Γ, φ2 �H �, then Γ, φ1 ∨ φ2 �Hnv∗ �.

And finally, again using the fact that R17,18 are of the same form as R9,10, we can
easily adjust the proof of Lemma 5.7 to include R17,18:

Lemma 5.11. We have:

1. For i = 1, 4, if φ1 φ2
�

is an instance of Ri , then φ1, φ2 �Anv∗ �.

2. For i �= 1, 4, if φ
�

is an instance of Ri , then φ �Anv∗ �.
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We summarily conclude:

Theorem 5.12. Γ �Anv∗ φ iff Γ �Hnv∗ φ.

We conclude the section by noting that since A and H are deductively equivalent, we
shall simply write Γ � φ and φ �� � (and similarly for the nv∗ variants).

§6. Sequent calculus. In this section, we present a sequent calculus for exact
entailment. We begin by reviewing the calculus presented by Fine and Jago [17, pp.
551–556].

What sets the calculus apart from ordinary sequent calculi is that it operates on
sequents of the form {Γ1, ... ,Γn} ⇒ Δ. That is, a sequent in the Fine–Jago calculus
has a (finite) set of sets of formulas on the left and a single set of formulas on the
right. The intended reading of a sequent is

∧
Γ1, ... ,

∧
Γn �

∧
Δ. That is, the Γi ’s

and Δ are read conjunctively, while {Γ1, ... ,Γn} is read distributively. This makes the
Fine–Jago calculus akin to a single-conclusion sequent calculus. In the following, we’ll
use X ,Y ,Z, ... as variables for finite sets of sets of formulas. So, we can represent the
form of a sequent as X ⇒ Δ.22 To cut down on set-braces, we use “;” to separate the
members of X and we use “,” to separate the members of Δ and of the Γ ∈ X . So, for
example, φ,�; � ⇒ �, 
 is shorthand for {{φ,�}, {�}} ⇒ {�, 
}.

Note that the following structural rules are absorbed in the notation:

X ; Γ, φ, φ ⇒ Δ
X ; Γ, φ ⇒ Δ

(W,L)
X ; Γ ⇒ Δ, φ, φ
X ; Γ ⇒ Δ, φ

(W,R)
X ; Γ; Γ ⇒ Δ
X ; Γ ⇒ Δ

(W ;L)

X ⇒ φ,�,Δ
X ⇒ �, φ,Δ (Ex,L)

X ;φ,�,Γ ⇒ Δ
X ;�, φ,Γ ⇒ Δ

(Ex,R)
Z;X1;X2 ⇒ Δ
Z;X2;X1 ⇒ Δ

(Ex;L).

From a proof-theoretic perspective, this is slightly unsatisfactory since it gives us less
control over the structural aspects of the calculus. Semantically, however, the issue is
immaterial: the validity of (W,L), (W,R), (Ex,L), and (Ex,R) follows immediately
from the idempotence and commutativity of conjunction and the validity of (W ;L)
and (Ex;L) follows from the definition of exact entailment.

The Fine–Jago calculus, GFJ , has the following axioms and rules:

Logical Axioms Structural Rules

Γ ⇒ Γ X ⇒ Δ
X ; Γ ⇒ Δ

(Weak)
X ⇒ Γ X ; Γ ⇒ Δ

X ⇒ Δ
(CutGFJ )

X ; Γ ⇒ Σ X ; Δ ⇒ Π
X ; Γ,Δ ⇒ Σ,Π

(, 1)
X ⇒ Γ X ⇒ Δ,Σ

X ⇒ Γ,Δ
(, 2)

Logical Rules

X ; Γ, φ, � ⇒ Δ
X ; Γ, φ ∧ � ⇒ Δ

(∧LGFJ )
X ⇒ Δ, φ, �
X ⇒ Δ, φ ∧ � (∧RGFJ )

22 Note that if we’re working on the non-inclusive semantics, however, we need to use a set (!)
of multisets in the antecedent.
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X ; Γ, φ ⇒ Δ X ; Γ, � ⇒ Δ
X ; Γ, φ ∨ � ⇒ Δ

(∨LGFJ )
X ⇒ Δ, φi

X ⇒ Δ, φ1 ∨ φ2
(∨RiGFJ )

X ; Γ, φ ⇒ Δ
X ; Γ,¬¬φ ⇒ Δ

(¬¬LGFJ )
X ⇒ Δ, φ

X ⇒ Δ,¬¬φ (¬¬RGFJ )

X ; Γ,¬φ ⇒ Δ X ; Γ,¬� ⇒ Δ

X ; Γ,¬(φ ∧ �) ⇒ Δ
(¬∧LGFJ )

X ⇒ Δ,¬φi
X ⇒ Δ,¬(φ1 ∧ φ2)

(¬∧RiGFJ )

X ; Γ,¬φ,¬� ⇒ Δ

X ; Γ,¬(φ ∨ �) ⇒ Δ
(¬∨LGFJ )

X ⇒ Δ,¬φ,¬�
X ⇒ Δ,¬(φ ∨ �)

(¬∨RGFJ ).

We write X �GFJ Δ to say that the sequent X ⇒ Δ is derivable in the calculus.
We say that a sequent X ⇒ Δ is valid, symbolically X � Δ, iff {

∧
Γ : Γ ∈ X} �

∧
Δ.

In a rule, we call the sequents above the inference line “upper sequents” and the one
below the “lower sequent.” A rule is sound iff its lower sequent is valid whenever its
upper sequents are. Fine and Jago [17, theorem 9.2, p. 554, and theorem 9.6, p. 555]
establish:

Theorem 6.1 (Soundness and completeness for GFJ ). X � Δ iff X �GFJ Δ.

Since their proof doesn’t make use of CutGFJ , Fine and Jago [17, theorem 9.7,
p. 556] infer as a corollary that their calculus has the Cut-elimination property, i.e., if
X �GFJ Δ, then the sequent is derivable without any applications of Cut. We shall now
investigate the calculus in more detail from a proof-theoretic perspective.

First, note that the rule Weak cannot be eliminated from the calculus: without
the rule we already couldn’t derive p; q ⇒ p.23 Having a weakening rule around in a
sequent calculus is not ideal since it complicates proof searches (though it is, of course,
strictly speaking not problematic). But this is an easy fix: just take as axioms all sequents
of the form X ,Γ ⇒ Γ. Call the resulting calculus GFJ ′ . Then it’s straightforward to
see:

Proposition 6.2 (Weak-eliminability). IfX �GFJ ′ Γ, then there’s a derivation without
applications of Weak.

Proof. By a straight-forward induction on derivations using that all rules are context
preserving in X .

Since all axioms of GFJ are also axioms of GFJ ′ (just let X = ∅), the two calculi are
clearly deductively equivalent.

It turns out that once we’ve eliminated Weak, we can straightforwardly eliminate
(, 1) as well!

Proposition 6.3 ((, 1)-eliminability). If X �GFJ ′ Γ, then there’s a derivation without
applications of (, 1).

23 Note that the “other” weakening rules

X ; Γ ⇒ Δ
X ; Γ, φ ⇒ Δ

(Weak,L)
X ; Γ ⇒ Δ

X ; Γ ⇒ Δ, φ
(Weak,L)

are not sound with respect to exact entailment and thus not included in the calculus.
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Proof. We show that for every derivation with exactly one application of (, 1), there
exists a derivation without (, 1). The theorem then follows by a simple inductive
argument.

Without loss of generality, we can focus on derivations without Weak where the
application of (, 1) is the last step in the derivation:

.... D1

X ; Γ ⇒ Σ

.... D2

X ; Δ ⇒ Π
X ; Γ,Δ ⇒ Σ,Π

(, 1).

We prove the claim by an induction on the height of this derivation, that is on
max(|D1|, |D2|).

For the base case, note that if max(|D1|, |D2|) = 0, then both premises of (, 1) are
axioms, that is, the derivation looks like this:

X ; Γ ⇒ Γ X ; Δ ⇒ Δ
X ; Γ,Δ ⇒ Γ,Δ

(, 1).

But then also the conclusion is an axiom.
We need to go through the possible last rules of D1 and of D2. Though there are

many such possibilities, they reduce to a manageable amount of cases by relying on the
duality of the ¬-rules and the positive rules. Here we only show the case where the left
upper sequent was derived via (, 2) and the right upper sequent via (¬¬R) to illustrate
the idea. Consider:

.... D1
1

X ; Γ ⇒ Σ1

.... D2
1

X ; Γ ⇒ Σ2,Θ
X ; Γ ⇒ Σ1,Σ2

(, 2)

.... D′
2

X ; Δ, φ ⇒ Π
X ; Δ,¬¬φ ⇒ Π ¬¬R

X ; Γ,Δ,¬¬φ ⇒ Σ1,Σ2,Π
(, 1).

This derivation can be transformed into:
.... D1

1
X ; Γ ⇒ Σ1

.... D′
2

X ; Δ, φ ⇒ Π
X ; Γ,Δ, φ ⇒ Σ1,Π

(, 1)

.... D2
1

X ; Γ ⇒ Σ2,Θ

.... D′
2

X ; Δ, φ ⇒ Π
X ; Γ,Δ, φ ⇒ Σ2,Π,Θ

(, 1)

X ; Γ,Δ, φ ⇒ Σ1,Σ2,Π
(, 2)

X ; Γ,Δ,¬¬φ ⇒ Σ1,Σ2,Π
(¬¬R).

Since max(|D1
1|, |D′

2|), max(|D2
1|, |D′

2|) < max(|D1|, |D2|), we can derive the conclu-
sions of the (, 1)-applications without (, 1) by the induction hypothesis, giving us a
(, 1)-free derivation of the final sequent. We leave verifying the remaining cases to the
interested reader.

Note that if we hadn’t absorbed (Weak), the argument wouldn’t straightforwardly
go through, since (, 1) requires shared contexts in the premises and (Weak) applied
backwards might delete formulas from the context.

This leaves us with (, 2) as the last remaining structural rule. Unfortunately, however,
it turns out that (, 2) cannot be eliminated fromGFJ ′ . To see this, consider the following
derivation:

p;p, q, r ⇒ p p;p, q, r ⇒ p, q, r
p;p, q, r ⇒ p, q (, 2).
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A very simple inductive argument on the height of derivations without (, 2) establishes
that p;p, q, r ⇒ p, q is not derivable without the rule. Given Propositions 6.2 and 6.3,
we can focus our attention on derivations without (Weak) and (, 1). Now, clearly
p;p, q, r ⇒ p, q is not a logical axiom. And since all the remaining rules of GFJ ′
introduce connectives and p;p, q, r ⇒ p, q is connective free, the rules couldn’t have
been used to derive the sequent. Since GFJ and GFJ ′ are deductively equivalent, the
sequent is not derivable in the original calculus without (, 2) either. In short, (, 2) is
not eliminable GFJ .

In fact, we can use the above derivation to show thatGFJ doesn’t enjoy the subformula
property, i.e., it’s not the case that every formula that occurs in a derivation is a
subformula of a formula in the derived sequent. Consider:

p;p, q, r ⇒ p
p;p, q, r ⇒ p, q, r
p;p, q, r ⇒ p, q, r ∨ s (∨R1)

p;p, q, r ⇒ p, q (, 2).

The formula r ∨ s , which we first introduce via (∨R1) only to immediately delete it via
(, 2), does not occur as a subformula in the derived sequent p;p, q, r ⇒ p, q. Hence,
the subformula property fails.

An unfortunate consequence of this observation is that the Fine–Jago calculus
doesn’t allow for proof searches. In general, the idea of a proof search algorithm
is to consider all the possible ways in which a given sequent could have been derived. In
a calculus that absorbs all the structural rules and enjoys the subformula property, the
search-space is finite. To see this, note that by the subformula property, we can restrict
our attention to derivations involving only subformulas of formulas in the sequent.
Since the structural rules are absorbed, the only way in which a sequent can be derived
is either as an axiom or by means of a left or right rule applied to the immediate
subformulas of a formula in the sequent. Putting these two observations together, it
follows that the search space is finite. In fact, the height of a derivation of a sequent is
bounded by the maximum complexity of the formulas in the sequent.

In the presence of (, 2), however, this observation fails. Since (, 2) deletes formulas
from a derivation, a derivation may involve formulas which don’t occur in the final
sequent. In fact, since we can always first introduce some formula and then delete it
via a (superfluous) application of (, 2), the height of derivations of a sequent is not
finitely bound. Since there are sequents that can only be derived using (, 2), this means
that a search algorithm may fail to terminate.

It’s worth thinking about the role that (, 2) plays in the Fine–Jago calculus. Essentially
what it allows us to do is to derive instances of ∧-Convexity. To see this, suppose that
Γ ⊆ Δ ⊆ Σ. We get the following derivation:

Γ; Σ ⇒ Γ Γ; Σ ⇒
=Σ︷ ︸︸ ︷

Δ ∪ (Σ \ Δ)
Γ; Σ ⇒ Γ ∪ Δ︸ ︷︷ ︸

=Δ

(, 2)

.... multiple applications of ∧ L and ∧R
.∧

Γ;
∧

Σ ⇒
∧

Δ

Note especially that Γ; Σ ⇒ Γ and Γ; Σ ⇒ Δ ∪ (Σ \ Δ) are axioms. Note further that
no rules other than (, 2) and (∧L) and (∧R) are used in this derivation. Since the use of
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(∧L) and (∧R) in the derivation is simply to make the reading of the sequent Γ,Σ ⇒ Δ
explicit, this indicates that the role of (, 2) is precisely to derive ∧-Convexity.

At this point, we have a couple of options if we wish to develop a sequent calculus
with the subformula property. The first would be to rely on a formulation of (, 2) that
doesn’t eliminate formulas. An example of such a rule would be

X ; Γ; Γ,Σ ⇒ Π
X ; Γ; Γ,Σ,Δ ⇒ Π

(, 2′).

The idea is that rather than deleting formulas on the right, we can just introduce
formulas on the left. It’s straightforward to see that (, 2) and (, 2′) are inter-derivable:

• (, 2) ⇒ (, 2′)

X ; Γ,Σ,Δ; Γ ⇒ Γ X ; Γ; Γ,Σ,Δ ⇒ Γ,Σ,Δ
X ; Γ; Γ,Σ,Δ ⇒ Γ,Σ

(, 2) X ; Γ; Γ,Σ ⇒ Π
X ; Γ; Γ,Σ ⇒ Π

CutGFJ .

• (, 2′) ⇒ (, 2)

X ⇒ Γ

X ⇒ Γ X ⇒ Σ,Δ
X ⇒ Γ,Σ,Δ

(, 1)
X ; Γ; Γ,Σ ⇒ Γ,Σ

X ; Γ; Γ,Σ,Δ ⇒ Γ,Σ
(, 2′)

X ; Γ ⇒ Γ,Σ
CutGFJ .

X ⇒ Γ,Σ
CutGFJ

Since (, 2′) doesn’t eliminate formulas, there would no longer be formula-deleting rules
were we to replace (, 2) with (, 2′). Consequently, the resulting calculus would indeed
have the subformula property—as desired.

While we do obtain a calculus with the subformula property in this way, from a
proof-theoretic perspective, the resulting calculus is still not ideal. It’s easily seen, via
an analogous argument as for (, 2), that the rule (, 2′) would not be eliminable. Just
consider the derivation

p;p, q ⇒ p, q
p;p, q, r ⇒ p, q (, 2′).

For the same reasons why this sequent wasn’t derivable without (, 2), it is not derivable
without (, 2′). Though (, 2′) is not problematic in itself, just like (Weak), the rule is not
ideal for proof-searches. We shall now develop a calculus that absorbs all structural
rules. It turns out that we can use the same idea as in the case of (Weak): we can
absorb (, 2) on the axiomatic level.

To further facilitate proof searches, we shall move to a multi-conclusion sequent cal-
culus, the benefits of which we shall reap in our completeness proof. Correspondingly,
our sequents shall now be of the form X ⇒ Y . The notational conventions for sequents
carry over to these sequents in a straightforward way. The intended reading of a sequent
of the form Γ1; ... ; Γn ⇒ Δ1; ... ; Δm is that

∧
Γ1, ... ,

∧
Γn �

∧
Δ1 ∨ ··· ∨

∧
Δm. That

is, we read sets of formulas conjunctively as before, but the reading of X and
Y in X ⇒ Y is different: while the former is read distributively, the latter is read
disjunctively.24

24 Note that this works because of different behaviors of conjunction and disjunction with
respect to exact entailment. While conjunction behaves “intensionally,” as it were, disjunction
behaves “extensionally” (cf. [20]), i.e., conjunction satisfies the usual rule of conjunction
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In our new setting, the following structural rules are absorbed in notation:

X ; Γ, φ, φ ⇒ Y
X ; Γ, φ ⇒ Y (W,L)

X ⇒ Y ; Δ, φ, φ
X ; Γ ⇒ Y ; Δ, φ

(W,R)

X ; Γ; Γ ⇒ Y
X ; Γ ⇒ Y (W ;L)

X ⇒ Y ; Δ; Δ
X ⇒ Y ; Δ

(W ;R)

X ⇒ Y ; Δ, φ, �
X ⇒ Y ; Δ, �, φ

(Ex,L)
X ;φ,�,Γ ⇒ Y
X ;�, φ,Γ ⇒ Y (Ex,R)

Z;X1;X2 ⇒ Y
Z;X2;X1 ⇒ Y (Ex;L)

X ⇒ Z;Y1;Y2

X ⇒ Z;Y2;Y1
(Ex;R).

The validity of the new right rules is straightforwardly justified using the idempotence,
associativity, and commutativity of disjunction.

In line with the intended reading of our sequents, we say that X ⇒ Y is valid iff
{
∧

Γ : Γ ∈ X} �
∨
{
∧

Δ : Δ ∈ Y}. What our calculus will do is to derive all valid
sequences from valid sequences only involving literals, while essentially following the
construction of the formulas from literals.

To motivate our choice of axioms, we shall begin with a couple of semantic
observations. First, note that if Γ ⊆ Λ, then |

∧
Γ|+

M
= {Γ}, as is easily seen via

(Sem-∧+). Let’s further define cl(X ), for X ⊆ ℘(L), to be the closure of X under
∪, i.e., cl(X ) =

⋂
{Z : X ⊆ Z and whenever X,Y ∈ Z, then X ∪ Y ∈ Z}. Relying on

the previous observation and (Sem-∨+), we can show that if Y ⊆ ℘(Λ), then
|
∨

Δ∈Y
∧

Δ|+
M

= cl(Y) using a straightforward induction on cardinality of Y . Using
Theorem 3.4, we’re now in a position to prove:

Lemma 6.4. If X ,Y ⊆ ℘(Λ), then X � Y iff there are Γ ∈ X and Δ ∈ cl(Y) with
Γ ⊆ Δ ⊆

⋃
X .

Proof. Just note that by the first observation all the members of {|
∧

Γ|+
M

: Γ ∈
X} are singletons, so there is just one selection function for this set: the one with
f(|Γ|+

M
) = Γ. From here Theorem 3.4 gives the desired conclusion via the second

semantic observation.

Note that the condition that one might expect in light of the Fine–Jago characteriza-
tion theorem (Theorem 3.4), viz. that there be Γ ∈ X and Δ ∈ Y with Γ ⊆ Δ ⊆

⋃
X ,

will not suffice to characterize all valid sequents. Take, for example, {p, q} ⇒ {p}, {q}.
This sequent is clearly valid since p ∧ q � p ∨ q (cf. Proposition 4.7), but it doesn’t
satisfy the above constraint. The issue is, of course, that for an application of Theorem
3.4, we need to recruit our Δ from |

∨
{
∧

Δ : Δ ∈ Y}|+
M

, which is identical to cl(Y) and
not Y . In our example, we can indeed pick {p, q} ∈ cl({{p}, {q}}) as our Δ, which
witnesses the validity of {p, q} ⇒ {p}, {q} since trivially {p, q} ⊆ {p, q} ⊆ {p, q}.

introduction but not of conjunction elimination, while disjunction satisfies both the
usual introduction and elimination rules. Correspondingly, in order to accommodate the
conjunctive reading of the premises, we need take special precautions (viz. the multiset
antecedents in the premises), while the disjunctive reading of the conclusions works “as
usual.”
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Now it’s precisely the sequents that satisfy the constraint of Lemma 6.4 that will be
the axioms of our calculus:

Logical Axioms

X ⇒ Y ,
where X ,Y ⊆ ℘(Λ) and X � Y .
Note that by Lemma 6.4, the condition that characterizes our axioms, X � Y for

X ,Y ⊆ ℘(Λ), is really just shorthand for the syntactic condition there are Γ ∈ X and
Δ ∈ cl(Y) with Γ ⊆ Δ ⊆

⋃
X .

Our calculus has no structural rules and the following logical rules:

Logical Rules

X ; Γ, φ, � ⇒ Y
X ; Γ, φ ∧ � ⇒ Y (∧LG)

X ⇒ Δ, φ, �;Y
X ⇒ Δ, φ ∧ �;Y (∧RG)

X ; Γ, φ ⇒ Y X ; Γ, � ⇒ Y
X ; Γ, φ ∨ � ⇒ Y (∨LG)

X ⇒ Δ, φ; Δ, �;Y
X ⇒ Δ, φ ∨ �;Y (∨RG)

X ; Γ, φ ⇒ Y
X ; Γ,¬¬φ ⇒ Y (¬¬LG)

X ⇒ Δ, φ;Y
X ⇒ Δ,¬¬φ;Y (¬¬RG)

X ; Γ,¬φ ⇒ Y X ; Γ,¬� ⇒ Y
X ; Γ,¬(φ ∧ �) ⇒ Y (¬∧LG)

X ⇒ Δ,¬φ; Δ,¬�;Y
X ⇒ Δ,¬(φ ∧ �);Y (¬∧RG)

X ; Γ,¬φ,¬� ⇒ Y
X ; Γ,¬(φ ∨ �) ⇒ Y (¬∨LG)

X ⇒ Δ,¬φ,¬�;Y
X ⇒ Δ,¬(φ ∨ �);Y (¬∨RG).

We shall refer to this calculus as G and correspondingly denote derivability by X �G Y .
First, soundness:

Theorem 6.5 (Soundness for G). If X �G Y , then X � Y .

Proof. The soundness of the rules can, in most cases, be shown in the same way
as for GFJ , so we can rely on the proof provided by Fine and Jago [17, p. 554]. The
only real exceptions are genuinely the new rules ∨RG and ¬∧RG. The reasoning is
straightforward relying on our previous proof systems (A and H). We cover ∨RG as
an example. Suppose that X � Δ, φ; Δ, �;Y . By definition, this means that

∧
{
∧

Γ :
Γ ∈ X} �

∨
{
∧

(Δ ∪ {φ}),
∧

(Δ ∪ {�}),
∧

Σ : Σ ∈ Y}. Using ∧/∨-Distribution, it’s
easily shown (in A or H) that

∧
(Δ ∪ {φ}) ∨

∧
(Δ ∪ {�}) ��

∧
(Δ ∪ {φ ∨ �}). From

here the claim follows quickly via Positive Replacement (applied semantically via
completeness).

Since Lemma 6.4 says that all the axioms are valid and we’ve observed that all rules
are sound, we can infer soundness of the calculus.

There are several routes to completeness, but our calculus allows for a particularly
pleasing proof, which relies on the following lemma:

Lemma 6.6 (Invertibility of G). For all rules of G, if the lower sequent of the rule is
valid, then all its upper sequents are valid, too.
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Proof. In most cases, the proof is completely analogous to the proof of soundness.
Note, for example, that the argument we gave for the soundness of ∨RG in the proof
sketch for Theorem 6.5 also works the other way around (since we’re just relying on
exact equivalences and not entailments).

The only new cases are the two premise rules ∨LG and ¬∧LG. The arguments are
analogous, so we shall only give it for ∨LG as an example. So assume that X ; Γ, φ ∨
� � Y , i.e., {

∧
Σ,

∧
(Γ ∪ {φ ∨ �}) : Σ ∈ X} �

∨
{
∧

Δ : Δ ∈ Y}. Now note that it’s
straightforward to show in A using ∧-Monotonicity and ∨-Introduction, that

∧
(Γ ∪

{φ}) �
∧

(Γ ∪ {φ ∨ �}) and
∧

(Γ ∪ {�}) �
∧

(Γ ∪ {φ ∨ �}). Using Cut semantically,
we get {

∧
Σ,

∧
(Γ ∪ {φ ∨ �}) : Σ ∈ X} �

∨
{
∧

Δ : Δ ∈ Y} and {
∧

Σ,
∧

(Γ ∪ {φ ∨
�}) : Σ ∈ X} �

∨
{
∧

Δ : Δ ∈ Y}, i.e., X ; Γ, φ � Y and X ; Γ, � � Y , as desired.

Using this insight, we are now in the position to show:

Theorem 6.7 (Completeness for G). If X � Y , then X �G Y .

Proof. The proof makes use of a measure of complexity tracking the construction
from literals:

• cΛ(�) = 0.
• cΛ(φ ◦ �) = cΛ(φ) + cΛ(�) + 1 for ◦ = ∨,∧.
• cΛ(¬¬φ) = cΛ(φ) + 1.
• cΛ(¬(φ ◦ �)) = cΛ(¬φ) + cΛ(¬�) + 1 for ◦ = ∨,∧.

We proceed by induction on cΛ(X ⇒ Y) :=
∑
φ∈

⋃
(X∪Y) cΛ(φ).

For the base case, note that
∑
φ∈

⋃
(X∪Y) cΛ(φ) iff cΛ(φ) = 0 for all φ ∈

⋃
(X ∪ Y),

i.e., all these φ’s are literals. But this just means that X ,Y ⊆ Λ and so, by Lemma 6.4,
X � Y iff it’s an initial sequent, and thus provable.

For the induction step, assume that
∑
φ∈

⋃
(X∪Y) cΛ(φ) = n. Now pick any formula

φ ∈ ∪(X ∪ Y) with cΛ(φ) �= 0 (such a φ will exist by the assumption that cΛ(X ⇒
Y) = n > 0). What we’ll do is to backwards apply a suitable rule of our calculus to get
valid (Lemma 6.6) sequents of a lower measure which by the induction hypothesis will
be provable. Then we simply apply the rule forwards to get a prove of our sequent.

To illustrate, assume that φ = ¬(φ1 ∧ φ2) and Γ ∪ {φ} ∈ X , i.e., our sequent is of the
form X ′; Γ,¬(φ1 ∨ φ2) ⇒ Y . Since X ′; Γ,¬(φ1 ∨ φ2) � Y , applying Lemma 6.6 with
(¬∨LG), we get that X ′; Γ,¬φ1 � Y and X ′; Γ,¬φ2 � Y . Since cΛ(X ′; Γ,¬φi � Y) =
n – 1, our induction hypothesis gives us X ′; Γ,¬φi �G Y with witnessing derivations
Di . We get

D1....
X ′; Γ,¬φ1 ⇒ Y

D2....
X ′; Γ,¬φ2 ⇒ Y

X ′; Γ,¬(φ1 ∨ φ2) ⇒ Y
¬∨LG.

We leave verifying the remaining cases to the interested reader.

Note that our completeness proof is essentially just a convenient proof-search
method, based on invertability. Indeed, we can look at the method described in the
proof as a concrete implementation (and slight simplification) of the decision procedure
sketched by Fine and Jago [17, p. 547]: each leaf in our proof-search corresponds to
a selection function for our initial sequent, and the leaves are axioms just in case they
satisfy the condition of the Fine–Jago theorem.
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Theorem 6.8. The logic of exact entailment on the inclusive semantics is decidable.

Proof. Just observe that the proof-search in the proof of Theorem 6.7 must terminate
after cΛ(X ⇒ Y)-many steps.

Note also that our calculus absorbs the relevant structural rules:

Theorem 6.9 (Admissibility of the structural rules). The following rules are admissible
in the sense that if their upper sequents are derivable, then their lower sequent is derivable,
too:

X ⇒ Y
X ; Γ ⇒ Y (;WeakLG)

X ⇒ Y
X ⇒ Γ;Y (;WeakRG)

X ; Γ ⇒ Σ;Y X ; Δ ⇒ Π;Y
X ; Γ,Δ ⇒ Σ,Π;Y (, 1G)

X ⇒ Γ;Y X ⇒ Δ,Σ;Y
X ⇒ Γ,Δ;Y (, 2G)

X ⇒ Γ;Y X ; Γ ⇒ Y
X ⇒ Y (CutG).

Proof. Simply note that the rules are validity preserving, and the claim then follows
by completeness.

It is, in fact, also possible to prove the admissibility of the structural rules using
genuinely proof-theoretic methods. The idea is, in each case, that applications of the
structural rules can be pushed to the axioms (by means of an induction on the height
of derivations) where they are very easily absorbed. Note, in particular, that this also
works for (, 2G), which wasn’t the case with (, 2) in the original Fine–Jago calculus.
Since the arguments are more or less standard (modulo our new notation), we shall
leave verifying these claims to the interested reader.

We shall conclude this section by extending G to the replete semantics. Luckily, this
is rather simple: we just need to add certain logical axioms. First, we straightforwardly
extend the notion of validity to the replete semantics by setting X �nv∗ Y iff {

∧
Γ :

Γ ∈ X} �nv∗
∨
{
∧

Δ : Δ ∈ Y}.

Lemma 6.10. If X ,Y ⊆ ℘(Λ), then X �nv∗ Y iff there are Γ,Δ ⊆ L, such that Γ ∈ X
and there is a Σ ∈ Y with Σ ⊆ Δ ⊆

⋃
Y and Γ ⊆ Δ ⊆

⋃
X .

Proof. The proof is via the Fine–Jago theorem for the replete semantics (Theorem
3.6) using some semantic facts. Remember from the proof of Lemma 6.4, that if Γ ⊆ Λ,
then |

∧
Γ|+

M
= {Γ}. Since |

∧
Γ|+

M
is a singleton set, it follows that (|

∧
Γ|+

M
)∗ =

|
∧

Γ|+
M

. It follows that there is only one selection function for {(|
∧

Γ|+
M

)∗ : Γ ∈ X},
the one withf((|Γ|+

M
)∗) = Γ. The main difference to before is that we need to consider

the convex closure (|
∨

Δ∈Y
∧

Δ|+
M

)∗ of |
∨

Δ∈Y
∧

Δ|+
M

= {Δ1 ∪ Δ2 : Δi ∈ Y}. But it’s
easily checked that(

|
∨

Δ∈Y

∧
Δ|+

M

)
∗

= {Δ : ∃Σ ∈ Y with Σ ⊆ Δ ⊆
⋃

Y}.

From these observations, our claim follows by Theorem 3.6.

We define the calculus Gnv∗ to be the calculus where the axioms are all the valid
sequents X ⇒ Y with X ,Y ⊆ ℘(Λ) such that X �nv∗ Y . The rules remain the same as
in G.
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To obtain soundness and completeness, we observe that our arguments for the
validity and invertability of our rules go through on the replete semantics, as well.

Theorem 6.11 (Soundness for Gnv∗). If X �Gnv∗ Y , then X �nv∗ Y .

Proof. Analogous to the proof of Theorem 6.5. Note, in particular, that the argument
using ∧/∨-Distribution we provided also goes through on the replete semantics. Note
further that our the soundness of ∨RG on the replete semantics can be established
straightforwardly relying on the soundness of ∨-EliminationA on the replete semantics
(cf. Lemma 4.3).

Lemma 6.12 (Invertibility for Gnv∗). For all rules of Gnv∗, if the lower sequent of the
rule is valid (on the replete semantics), then all its upper sequents are valid (on the replete
semantics), too.

Proof. Analogous to the proof of Lemma 6.6.

This means virtually the same completeness proof is available for Gnv∗ as for G:

Theorem 6.13. If X �nv∗ Y , then X �Gnv∗ Y .

We conclude with an example derivation of the crucial direction of∨/∧-Distribution
in Gnv∗ since it’s both an instructive example for our proof-search method and for the
axiom choice in Gnv∗

p ⇒ p; q, r p, r ⇒ p; q, r
p, p ∨ r ⇒ p; q, r ∨LG

q, p ⇒ p; q, r q, r ⇒ p; q, r
q, p ∨ r ⇒ p; q, r ∨LG

p ∨ q, p ∨ r ⇒ p; q, r ∨LG

(p ∨ q) ∧ (p ∨ r) ⇒ p; q, r
∧LG

(p ∨ q) ∧ (p ∨ r) ⇒ p; q ∧ r
∧RG

(p ∨ q) ∧ (p ∨ r) ⇒ p ∨ (q ∧ r)
∨RG.

To see that the sequents at the top are all axioms of Gnv∗ note from left to right
that: {p} ⊆ {p} ⊆ {p, q, r}, {p} ⊆ {p, r} ⊆ {p, q, r}, {p} ⊆ {q, p} ⊆ {p, q, r}, and
{q, r} ⊆ {q, r} ⊆ {p, q, r}.

§7. Conclusion. We have presented three proof systems for exact entailment on the
inclusive semantics, all of which have natural extensions for the replete semantics:

• A is a direct axiomatization of exact entailment viewed as a relation between
premise sets and conclusions. This proof system characterizes exact entailment
in terms of its laws.

• H is an axiomless Hilbert system in the style Hilbert system for FDE provided
by Font [18]. This system characterizes exact entailment in terms of inferences
from formulas to formulas. The particularity of the system is that the inferences
are essentially embedded within context formulas.

• G is a G3-style sequent calculus, which absorbs all the structural rules and
allows for proof searches. The system essentially builds valid exact entailments
recursively from the entailments among sets of literals. In this way, the system
displays how the connectives interact with exact entailment.

Note that the extensions for the replete semantics, Anv∗,Hnv∗, and Gnv∗ are the first
known proof systems for exact entailment on the replete semantics.
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In addition to the fundamental insights these systems provide into the nature of
exact entailment, they have several use-cases. Here are some examples:

1. Still on the more theoretical side, the systems are promising starting points for
determining the algebra of exact entailment—a project we wish to pursue in
another paper.

2. By the well-known connection between exact entailment and metaphysical
grounding (cf. [9]), our systems can help formulate proof systems for logics
of ground.

3. The systems can be the starting point for proof systems for hyperintensional
logics defined in an exact truthmaker setting. To illustrate consider the semantics
for permission statements proposed by Fine [10, p. 335]. On this semantics,
Pφ (“φ is permitted”) is true iff every exact truthmaker of φ lies within a
distinguished set of admissible states. To obtain a proof system for the resulting
logic of permission (with consequence defined as truth-preservation across all
models), we combine two derivability relations, a classical relation � governed
by the laws of classical logic and a relation �e for exact entailment defined by
one of our systems. We then connect these systems by the following rule:

φ �e �
P� � Pφ P-Antitonicitye .

We leave proving completeness of the resulting system for future work, but
soundness is easily seen: If φ �e �, then for all models M, |φ|+M ⊆ |�|+M; so if
|�|+M is a subset of the admissible states, so is |φ|+M.
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