On the deformation of the tangent m-plane of a V_{n}^{m}

By E. T. Davies.
(Received 3rd May, 1938. Read 6th May, 1938.)

1. Schouten and van Kampen (1) ${ }^{1}$ have studied the deformation of a V_{n}^{m}. Applying the methods of that paper to the tangent vectors $B_{i}^{\lambda}(\lambda, \mu, \nu, \ldots=1,2, \ldots, n ; i, j, k, \ldots=1,2, \ldots, m)$, which exist by hypothesis at all points of a certain region $V_{m^{\prime}}\left(m^{\prime}>m\right)$ of V_{n}, we shall have

$$
\left\{\begin{array}{l}
1 \tag{1}\\
d B_{i}^{\lambda}=v^{\mu} d t \partial_{\mu} B_{i}^{\lambda} \\
2 \\
d B_{i}^{\lambda}=-\Gamma_{\mu \nu}^{\lambda} B_{i}^{\mu} v^{\nu} d t, \quad \Gamma_{\mu \nu}^{\lambda}==\left\{\begin{array}{c}
\lambda \\
\mu v
\end{array}\right\} \\
3 \\
d B_{i}^{\lambda}=B_{i}^{\mu} \partial_{\mu} v^{\lambda} d t
\end{array}\right.
$$

whence we define the differentials

$$
\begin{equation*}
\stackrel{r}{d}-\stackrel{g}{d}=\stackrel{(r, s)}{\delta}=\stackrel{(r, s)}{D} d t \quad(r, s=1,2,3 \text { with } r \neq s) \tag{2}
\end{equation*}
$$

In the application of the $\stackrel{(r, s)}{D}$ to B_{i}^{\wedge} the lower index is treated as an ordinal index only. We shall not be concerned with any extension of the ${ }_{(r, s)}^{D}$ to indices other than those of the general V_{n} (see 1, equ. 3.24).

We here consider the application of $\stackrel{(r, s)}{D}$ to the m-vector $B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]}$ determining the m-plane tangent to the facet V_{n}^{m} at any point. This gives

$$
\begin{equation*}
\stackrel{(r, s)}{D}\left(B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m]}\right]}\right)=\left(\stackrel{(r, s)}{D} B_{1}^{\left[\lambda_{1}\right.}\right) B_{2}^{\lambda_{2}} \ldots B_{m}^{\left.\lambda_{m}\right]}+B_{1}^{\left[\lambda_{1}\right.}\left(\stackrel{(r, s)}{D} B_{2^{2}}^{\lambda_{n}}\right) \ldots B_{m}^{\lambda_{m]}} \tag{3}
\end{equation*}
$$

$$
+\ldots+B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m-1}^{\lambda_{m-1}}\left(\stackrel{(r, s)}{D} B_{m}^{\left.\lambda_{m}\right)} .\right.
$$

Since the vector ${ }^{(r, s)} D B_{i}^{\lambda}$ will not be perpendicular to the B_{i}^{λ} in general, it will have a component in the tangent m-plane, and a component perpendicular to it. Consequently from (3) the m-vector $\stackrel{(r, s)}{D} B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]}$ will have two components respectively parallel and perpendicular to the tangent m-plane. We shall study those components in a few special cases.

[^0]The component of the vector $\stackrel{(r, s)}{D} B_{1}^{\lambda_{1}}$ in the tangent m-plane is $B_{\nu}^{\lambda_{\nu}} \stackrel{(r, 8)}{D} B_{1}^{\nu}$, which we may write as

$$
\begin{equation*}
\left(B_{\nu}^{1} \stackrel{(r, s)}{D} B_{1}^{\nu}\right) B_{1}^{\lambda_{1}}+\left(B_{\nu}^{2} \stackrel{\left(r_{,}, s\right)}{D} B_{1}^{v}\right) B_{2}^{\lambda_{1}}+\ldots+\left(B_{v}^{m} \stackrel{(r, s)}{D} B_{1}^{v}\right) B_{m}^{\lambda_{1}} \tag{4}
\end{equation*}
$$

and on inserting this series in the right-hand side of (3), it is evident that only the first term contributes anything, giving therefore

$$
\left(B_{v}^{1} \stackrel{(r, s)}{D} B_{1}^{\nu}\right) B_{1}^{[\lambda,} \ldots B_{m}^{\left.\lambda_{m \mathrm{~m}}\right]}
$$

Treating the vector $\stackrel{(r, 8)}{D} B_{2}^{\lambda_{2}}$ in the same way, giving an expression corresponding to (4) and inserting in (3), we shall have

$$
\left(B_{v}^{2}{ }^{\left(\Gamma_{j}, s\right)} B_{2}^{v}\right) B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\lambda_{m l},}
$$

so that, on treating all the other vectors in the same way, we conclude that the total component of (3) in the original m-plane can be written in the form of the single m-vector

$$
\begin{equation*}
\left(B_{v}^{i} \stackrel{(r, s)}{D} B_{i}^{v}\right) B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]} \tag{5}
\end{equation*}
$$

Let us now put for brevity

$$
\begin{equation*}
P_{j^{j}}^{\lambda_{j}}=C_{\lambda_{j}}^{\lambda_{j}} \stackrel{(r, s)}{D} B_{j}^{v} ; \tag{6}
\end{equation*}
$$

then the component of (3) perpendicular to the tangent m-vector can be written as the sum of m such m-vectors:-

$$
P_{1}^{\left[\lambda_{1},\right.} B_{2}^{\lambda_{2}} \ldots B_{m}^{\left.\lambda_{m}\right]}+B_{1}^{\left[\lambda_{1}\right.} P_{2}^{\lambda_{n}} \ldots B_{m}^{\left.\lambda_{m}\right]}+\ldots+B_{1}^{\lambda_{1}} \ldots B_{m-1}^{\lambda_{m-1}} P_{m}^{\left.\lambda_{m}\right]}
$$

so that (3) becomes

$$
\begin{equation*}
\stackrel{\left(r_{r}, g\right)}{D} B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]}=\left(B_{v}^{i} \stackrel{(r, s)}{D} B_{i}^{v}\right) B_{1}^{\left[\lambda_{1}\right.} \ldots . B_{m}^{\lambda_{m]}}+\sum_{j=1}^{m} B_{1}^{\left[\lambda_{1}\right.} \ldots P_{j}^{\lambda_{j}} \ldots . B_{m}^{\lambda_{m]}} \tag{7}
\end{equation*}
$$

2. Let us now take the special case $\stackrel{(r, 8)}{D}=\stackrel{(1,2)}{D}$, and $v^{\lambda}=B_{\kappa}^{\lambda} u^{\kappa}$. Then

$$
B_{v}^{i} \stackrel{(1,2)}{D} B_{i}^{v}=B_{v}^{i} D_{\kappa} B_{(i)}^{\nu}=\sum_{i=1}^{m}\left\{\begin{array}{c}
i \tag{8}\\
i \kappa
\end{array}\right\} u^{\kappa}
$$

where the index (i) is ordinal.
If the metric coefficients of the V_{n}^{m} are $b_{i j}={ }_{1 .} a_{\lambda \mu} B_{i j}^{\lambda \mu}$, with $b=\left|b_{i j}\right|$, then it is a well-known fact that

$$
\sum_{i=1}^{m}\left\{\begin{array}{c}
i \tag{9}\\
i \kappa
\end{array}\right\}=\frac{\partial \log \sqrt{b}}{\partial \eta^{\kappa}}
$$

where η has the meaning used in 1 , so that $u^{\kappa} d t=d \eta^{\kappa}$ and

$$
\sum_{i=1}^{m}\left\{\begin{array}{c}
i \tag{10}\\
i \kappa
\end{array}\right\}=\frac{d \log \sqrt{b}}{d t}
$$

Also for this case

$$
\begin{equation*}
P_{j}^{\lambda_{j}}=C_{\nu^{j}}^{\lambda_{j}} D_{\kappa} B_{(j)}^{\nu}=H_{j{ }_{j}}{ }^{\lambda} u^{\kappa} \tag{11}
\end{equation*}
$$

where $H_{j \times} \cdot \lambda_{j}$ is the first tensor of Eulerian Curvature. Using (8), (10) and (11) we have

$$
\begin{align*}
& \stackrel{(1,2)}{D} B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\lambda_{m]}}=\frac{d}{d t} \log \sqrt{ } b . B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\lambda_{m]}} \tag{12}\\
& \\
& \quad+u^{\kappa} \sum_{j=1}^{m} B_{1}^{\left[\lambda_{1}\right.} \ldots H_{j k}^{\lambda_{j}} \ldots \ldots B_{m}^{\left.\lambda_{m}\right]}
\end{align*}
$$

A sufficient condition for V_{n}^{m} to be geodesic is that $H_{j_{k}}^{\lambda_{j}}=0$, in which case (12) becomes

$$
\begin{equation*}
\stackrel{(1.2)}{D} B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]}-\frac{d}{d t} \log \sqrt{\bar{b}} B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]}=0 \tag{13}
\end{equation*}
$$

If, instead of a V_{n}^{m}, we have a single curve V_{1}, and if the displacement $d \xi^{\lambda}=v^{\lambda} d t$ is along the tangent, then by taking t to be the parameter of the curve, the $B_{1}^{\lambda}=\frac{d \xi^{\lambda}}{d l}$ becomes the (non-unit) tangent vector, so that, if s is the length of arc reckoned from a certain point, then

$$
\sqrt{ } b=\sqrt{ } b_{11}=\sqrt{ }\left(a_{\lambda \mu} \frac{d \xi^{\lambda}}{d t} \frac{d \xi^{\mu}}{d t}\right)=\frac{d s}{d t}
$$

and consequently

$$
\frac{d \log \sqrt{ } b}{d t}=\frac{d \log \frac{d s}{d t}}{d t}=\frac{\frac{d^{2} s}{d t^{2}}}{\frac{d s}{d t}}
$$

and (13) becomes

$$
\frac{d^{2} \xi^{\mu}}{d t^{2}}+\left\{\begin{array}{c}
\mu \tag{14}\\
\rho \nu
\end{array}\right\}-\frac{d \xi^{\rho}}{d t} \frac{d \xi^{\nu}}{d t}-\frac{\frac{d^{2} s}{d t^{2}}}{\frac{d s}{d t}} \frac{d \xi^{\mu}}{d t}=0
$$

which is the well-known form for the equation of geodesic lines when t is not the arc length.
3. If ${ }^{(7,8)}{ }^{(3,2)}=\stackrel{(1)}{D}$, whall have ${ }^{(3,2)} D_{i}^{\lambda}=D_{i} v^{\lambda}$, and consequently

$$
B_{v}^{i} \stackrel{(3,2)}{D} B_{i}^{v}=B_{v}^{i} D_{i} v^{\nu}=\frac{1}{2} b^{i j} B_{i j}^{\lambda \mu} D a_{\lambda \mu},
$$

where D is the "Lie derivative" (1).
${ }^{5}$
If $d \tau$ is the element of volume in the local R_{m}, with (see 1 , formula 3.50)

$$
d \tau^{m}=(d \eta)^{1}(d \eta)^{2} \ldots(d \eta)^{m} \sqrt{ } b
$$

then the deformation of that element of volume is of amount

$$
d_{\tau}^{m} \frac{m}{2} b^{i j} B_{i j}^{\lambda \mu} ~_{L} a_{\lambda \mu}=d_{\tau}^{m} B_{p}^{i} D_{i} v^{\nu} d t,
$$

so that if $d \tau^{\prime}$ denotes the deformed volume element, we can write

$$
\begin{equation*}
\frac{\frac{m}{\tau^{\prime}}}{d \tau}=1+B_{v}^{i} D_{i} v^{v} d t \tag{15}
\end{equation*}
$$

$B_{v}^{i} D_{i} v^{v}$ being therefore the "dilatation" at the point. If we are dealing with a curve, whose element of arc is $d s$ and whose unit tangent vector is $i^{\lambda}=\frac{d \xi^{\lambda}}{d s}$, then if $d s^{\prime}$ is the element of arc of the deformed curve, the above equation becomes

$$
\begin{equation*}
\frac{d s^{\prime}}{d s}=1+\phi d t, \text { with } \phi=i_{\lambda} \frac{D}{D s} v^{\lambda} . \tag{16}
\end{equation*}
$$

If $C_{v^{\lambda}}^{\lambda,} \stackrel{(3,2)}{D} B_{j}^{v}=0,(j=1,2, \ldots, m)$, then the deformed m-vector $B_{1}^{\lambda,} \ldots B_{m}^{\left.\lambda_{n}\right]}$ will be parallel to the original one. For a curve, the resulting equations

$$
\begin{equation*}
\stackrel{(3,2)}{D} i^{\lambda}=\phi i^{\lambda} \tag{17}
\end{equation*}
$$

determine the parallel-tangent deformations (Hayden, 2).
4. We pass now to the component of the m-vector (3) perpendicular to the tangent plane. For this purpose we remark that if $d \alpha$ is the angle between the two m-vectors v and $v+w d t$, and if $w=w^{\prime}+w^{\prime \prime}$. where w^{\prime} is parallel to v and $w^{\prime \prime}$ is perpendicular to it, then

$$
\begin{equation*}
\frac{\sin d a}{d t}=\frac{\mid w^{\prime \prime} i}{|v|} \tag{18}
\end{equation*}
$$

where $|v|$ denotes the "measure" (3, Chapter 1) of the m-vector v.

Applying this to the case where v and w have the components

$$
v^{\lambda_{1}} \quad . \lambda_{m}=B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]} \text { and } w^{\lambda_{1}} \ldots \lambda_{1_{2}}=\stackrel{\left(\gamma_{D} s\right)}{D} B_{1}^{\left[\lambda_{1}\right.} \ldots B_{m}^{\left.\lambda_{m}\right]}
$$

we obtain on simplification

$$
\begin{equation*}
\frac{\sin d a}{d t}=\sqrt{ }\left(b^{i j} a_{\lambda \mu} P_{i}^{\lambda} P_{j}^{\mu}\right) \tag{19}
\end{equation*}
$$

If $\stackrel{(r, r}{D}^{8}=\stackrel{(1,2)}{D}$, and if we are dealing with a curve, with $v^{\lambda}=\frac{d \xi^{\wedge}}{d t}$ as the tangent vector, the P_{i}^{λ} reduces to the left-hand side of equation (14), so that the invariant $\sin d \alpha / d t$ is the first curvature of the curve. For an isolated V_{n} in general, with $\stackrel{(r, s)}{D}=\stackrel{(1,2)}{D}$ and $v^{\lambda}=B_{i}^{\lambda} u^{i}$, the right-hand side of (19) becomes the square root of the "forma angolare" of Bortolotti, which can therefore be regarded as the first curvature of the V_{n} in V_{n}. The particular form taken by (19) in that case has already been given (4, p. 294), together with its expression when $\stackrel{(r, s)}{D}=\stackrel{(3,2)}{D}$ and $v^{\lambda}=C_{p}^{\lambda} w^{p}$.

1. J. A. Schouten and E. R. van Kampen, "Beiträge zur Theorie der Deformation," Prace Mat. Fiz. Warszawa, 41 (1933), 1-19.
2. H. A. Bayden, "Deformations of a curve in a Riemannian space," Proc. London Math. Soc. (2), 32 (1931), 321-336.
3. E. Cartan, "Leçons sur la Géométrie des Espaces de Riemann," Paris, GauthierVillars, 1928.
4. E. T. Davies, "On the second and third fundamental forms of a sub-space," Journal London Math. Soc., 12 (1937), 290-295.

King's College, London, W.C. 2.

[^0]: ${ }^{1}$ These numbers refer to the list of papers at the end.

