
Glasgow Math. J. 57 (2015) 173–180. C© Glasgow Mathematical Journal Trust 2014.
doi:10.1017/S0017089514000202.

COMPUTING WITH SUBGROUPS OF THE MODULAR GROUP

MARKUS KIRSCHMER
Lehrstuhl D für Mathematik, RWTH Aachen University,

Templergraben 64, 52062 Aachen, Germany
e-mail: Markus.Kirschmer@math.rwth-aachen.de

and CHARLES LEEDHAM-GREEN
School of Mathematical Sciences,

Queen Mary College University of London,
Mile End Road, London E1 4NS, United Kingdom

e-mail: C.R.Leedham-Green@qmul.ac.uk

(Received 20 November 2012; revised 4 July 2013; accepted 3 December 2013; first published online 26
August 2014)

Abstract. We give several algorithms for finitely generated subgroups of the
modular group PSL2(�) given by sets of generators. First, we present an algorithm
to check whether a finitely generated subgroup H has finite index in the full modular
group. Then we discuss how to parametrise the right cosets of H in PSL2(�), whether
the index is finite or not. Further, we explain how an element in H can be written as a
word in a given set of generators of H.

2010 Mathematics Subject Classification. 20-04, 20H05

1. Introduction. There exist several ways to describe a finitely generated subgroup
H of the modular group PSL2(�). First of all, as a set of generating matrices or a set
of generators given as words in some distinguished generators of PSL2(�). Another
way is as follows. The group PSL2(�) acts on the right cosets of H in PSL2(�) by right
multiplication. So if the index k := [PSL2(�) : H] of H in PSL2(�) is finite, we obtain
a permutation representation from PSL2(�) to the symmetric group on k letters.

In [3], Hsu gave a very efficient criterion to decide whether H is a congruence
subgroup (i.e. it contains the kernel of the canonical epimorphism PSL2(�) →
PSL2(�/N�) for some integer N ≥ 2), provided that H is given by a permutation
representation. However, if H is given by a finite set of generators, it is not obvious
how to decide even whether the index [PSL2(�) : H] is finite or not.

In the present paper, algorithms are presented to solve these problems not only for
PSL2(�) but in a slightly more general setting.

Let G = 〈g1, . . . , ge〉 be a finitely generated group. An element g ∈ G is always
assumed to be given as a word in the generators g1, . . . , ge if not stated otherwise. Then
‖g‖ denotes the length of this word.

Suppose further that the following conditions hold.

(1) G contains a non-abelian normal subgroup N of finite index that is free of finite
rank, say r. Let {x1, . . . , xr} be a basis of N.

(2) There exists a transversal (t1 = 1, t2, . . . , tf) of N in G (i.e. G is a disjoint union
of cosets tiN = Nti) and an Algorithm (A) that, given g ∈ G, returns some
A(g) ∈ {t1, . . . , tf } such that gN = A(g)N.

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

174 MARKUS KIRSCHMER AND CHARLES LEEDHAM-GREEN

(3) There exists an Algorithm (B) that, given g ∈ N (as a word in g1, . . . , ge), writes
g as a word B(g) in {x1, . . . , xr}.

THEOREM 1.1. Let H = 〈h1, . . . , hm〉 be a finitely generated subgroup of G. Then
there exist a transversal SH for the right cosets of H in G and algorithms to solve the
following problems.

(1) Decide if H has finite index in G, and if so, compute the index [G : H].
(2) Given g ∈ G, return s ∈ SH such that Hs = Hg.
(3) Given g ∈ H, write g as a word in {h1, . . . , hm}.
In particular, part 2 of the above theorem implies that membership in subgroups

of G is decidable. Further, these algorithms have been implemented by the authors in
Magma (see [2]) and can be obtained from the homepage of the first author.

Group elements are assumed to be represented by words in some generators. Let
us assume that copying or deleting a single generator or comparing two generators
takes constant time. In this model, forming the product of two words of length ≤ n
takes time O(n).

THEOREM 1.2. Suppose the notation of Theorem 1.1 and suppose further that
Algorithms (A) and (B) satisfy the following conditions.

� Algorithms (A) and (B) run in polynomial time in ‖g‖ when applied to some
g ∈ G.

� There exists some constant c ∈ � such that, for all g ∈ N, the length of B(g)
as a word in {x1, . . . , xr} is at most c · ‖g‖.

Then the first two problems of Theorem 1.1 can be solved in polynomial time in c and the
size of the input.

It is worthwhile to mention that a constant c as in the previous theorem need not
exist. Even in the case where G = N is free, writing elements given as words in one set
of generators as words in another set of generators might have exponential growth as
shown by Example 3.7.

The paper is organised as follows. In Section 2 the concept of Nielsen reduced
sets is recalled. Section 3 contains the algorithms claimed in Theorem 1.1 as well as
a proof of Theorem 1.2. Finally, Section 4 applies the above theorems to the special
linear group SL2(�) and the modular group PSL2(�).

2. Free groups. In this section we recall the concept of Nielsen generators for free
groups.

Let F be a free group with basis {x1, . . . , xr} for some r > 1. A word in these
generators is said to be reduced if it does not contain a substring of the form xix−1

i
or x−1

i xi. Every element g ∈ F is represented by a unique reduced word ρ(g) in the xi,
and we denote by |g| the length of the word ρ(g). We assume that each element in F is
given as a reduced word in the xi if not stated otherwise.

DEFINITION 1.
(1) If V ⊂ F , we write V± for the set V ∪ {v−1 | v ∈ V}.
(2) A finite subset V of F is said to be Nielsen reduced if the following conditions

hold.
• 1 /∈ V ,
• gh = 1 or |gh| > |g| for all g, h ∈ V±,

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

COMPUTING WITH SUBGROUPS OF THE MODULAR GROUP 175

• gh = 1 or hi = 1 or |ghi| > |g| − |h| + |i| for all g, h, i ∈ V±.
(3) Let V be a Nielsen reduced set. Suppose v := gh ∈ V± such that 2|g| = 2|h| =

|v|. Then h is said to be isolated if v is the only element in V± with terminal
segment h.

(4) A Nielsen reduced set V is said to be normalised if the right halves of all
elements of even length in V are isolated.

(5) If V is a normalised Nielsen reduced set, then T (V) denotes the set of all g ∈ F
such that
• g is an initial segment of some v ∈ V such that |g| ≤ |v|/2, or
• g−1 is a terminal segment of some v ∈ V such that |g| < |v|/2.
Note that we do allow g to be the identity element of F . Thus, T (V) will never
be empty.

Every finitely generated subgroup of F is generated by some normalised Nielsen
reduced set V . To state an algorithm that computes such a set V , one needs to define
a total order < on F .

Given g, h ∈ F as reduced words in the xi, we define

g < h ⇐⇒ |g| < |h| or (|g| = |h| and g <l h),

where <l denotes the lexicographical order satisfying

x1 <l x−1
1 <l x2 <l x−1

2 <l

The minimum of two elements of F shall always refer to the minimum with respect
to <.

ALGORITHM 2.1. ([1, Algorithm 1])Given a finite set W ⊂ F, this algorithm computes
a normalised Nielsen reduced set V ⊂ F such that 〈W 〉 = 〈V〉.

(1) Replace each w ∈ W by min{ρ(w), ρ(w−1)}. Then remove all copies of the empty
word from the set W.

(2) If there exist v �= w ∈ W and μ, ν ∈ {±1} such that |vμwν | < |v|, then: if vμwν is
the identity, remove v from W, otherwise replace v by min{ρ(vμwν), ρ(w−νv−μ)}
and repeat this step.

(3) Take the least element v = pq−1 ∈ W (with respect to <) such that:
• 2|p| = 2|q| = |v|.
• There exists some w ∈ W with v �= w that has q as initial or q−1 as terminal

segment.
If v exists, replace w by{

min{ρ(vw), ρ(w−1v−1)} if q is the initial segment of w,
min{ρ(vw−1), ρ(wv−1)} otherwise,

and go to (2). If v does not exist, return V := W.

As explained in [1, pp 65–66], the algorithm gives correct output and runs in time
O(n4 · (#W)2), where n denotes the length of the largest word in W .

THEOREM 2.2 (Karrass and Solitar). Let F be a free group of finite rank r > 1,
and let V be a finite normalised Nielsen reduced subset of F. Further, let T (V) be as in

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

176 MARKUS KIRSCHMER AND CHARLES LEEDHAM-GREEN

Definition 1. Then 〈V〉 has finite index in F if and only if

#T (V) · (r − 1) = #V − 1 .

Further, if the index is finite, it equals #T (V).

Proof. See [4, Theorem 4]. �

It is clear that, given V , one can compute the set T (V) in time O(n3 · (#V)2), where
n denotes the length of the largest word in V .

LEMMA 2.3. Suppose V ⊂ F is a normalised Nielsen reduced set. Then

S(V) := {g ∈ F | |vg| > |g| for all v ∈ V and |v−1g| ≥ |g| for all v ∈ V}

is a system of representatives for the right cosets of 〈V〉 in F.

Proof. See for example [1, Lemma 3.1]. �

ALGORITHM 2.4. Given g ∈ F and a normalised Nielsen reduced set V ⊂ F, this
algorithm returns a word w in the elements of V±, and s ∈ S(V), such that g = ws.

(1) Initialize (w, g) = (1, ρ(g)).
(2) While there exists some v ∈ V± such that |vg| < |g| or there exists some v ∈ V

such that |vg| = |g|, replace (w, g) by (wv−1, ρ(vg)).
(3) Return w and s := g.

It is clear that if the algorithm terminates, then the returned values s and w satisfy
g = ws and s ∈ S(V). Suppose that g is given as a (not necessarily reduced) word in the
xi of length of at most n. Then the algorithm terminates after at most n + 1 iterations
as explained in [1, p. 69]. Since the computation of ρ(g) runs in time O(n) and each
iteration in step 2 has cost O(n · #V), the total cost is O(n2 · #V).

3. Algorithms. Assume the notation of Section 1. Then G acts on the cosets
N, t2N, . . . , tf N by left multiplication. Clearly, the stabiliser of N under the action of
the subgroup H ⊂ G equals N ∩ H and the union of the cosets in the H-orbit of N is
HN.

As in the case of free groups, the algorithms claimed in Theorem 1.1 require some
preprocessing stage, which we state first.

ALGORITHM 3.1 Preprocessing.
(1) Using orbit enumeration and Algorithm (A), compute the following.

(a) A set W of generators of N ∩ H as words in {h1, . . . , hm}.
(b) For each 1 ≤ j ≤ f , store

ij = min{1 ≤ i ≤ f | tjN and tiN are in the same H-orbit}

and some h̃j as a word in {h1, . . . , hf } such that tjN = h̃jtij N.
(2) Using Algorithm (B), write the elements of W ⊂ N as words in the xi.
(3) Compute a normalised Nielsen reduced set V (as words in the xi) generating

〈W 〉 = N ∩ H with Algorithm 2.1.

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

COMPUTING WITH SUBGROUPS OF THE MODULAR GROUP 177

REMARK 3.2. Suppose the situation of the previous algorithm and let n =∑m
i=1 ‖hi‖ + ∑f

j=1 ‖tj‖. Further, suppose that Algorithms (A) and (B) satisfy the
assumptions of Theorem 1.2.

� The orbit enumeration in step 1 multiplies each tj with each hi. Since both
elements have length of at most n, the costs of this step are O(nm f). Further,
this step makes f m calls to Algorithm (A), each time with words of length ≤ 2n as
input. The elements h̃j are products of at most f elements from {h±1

i | 1 ≤ i ≤ m}.
� Let k := #{1 ≤ j ≤ f | ij = 1}. The second step calls Algorithm (B) at most

#W ≤ km ≤ f m times with input words of length of at most f n. The words
returned by Algorithm (B) thus have length ≤ f nc in {x1, . . . , xr}.

� The third step runs in time O((f nc)4(f m)2) as explained in Section 2.
Thus, the preprocessing runs in polynomial time in c and the size of the input.

We are now ready to give the first algorithm claimed in Theorem 1.1.

ALGORITHM 3.3. The following algorithm computes the index of H in G.
(1) From the preprocessing, get k := #{1 ≤ j ≤ f | ij = 1} and V.
(2) From V, compute the set T (V) as in Definition 1.
(3) Using Theorem 2.2, decide whether N ∩ H = 〈V〉 has finite index in N. If not,

return ∞. Otherwise, return #T (V) · f/k.

Proof. The group H acts on G/N. The stabiliser of N is N ∩ H. Thus, k equals the
index of N ∩ H in H. Further,

[G : H] · k = [G : H] · [H : N ∩ H] = [G : N] · [N : N ∩ H] = f · [N : N ∩ H] .

Now if [N : N ∩ H] is finite, it equals #T (V) by Theorem 2.2. �
As an immediate consequence, one obtains the following corollary.

COROLLARY 1. If H = 〈h1, . . . , hm〉 is a finite index subgroup of G, then

[G : H] < m f/(r − 1) .

Proof. Assume the notation of Algorithm 3.3. Then [G : H] = f/k · #T (V) (loc.
cit.), and Theorem 2.2 shows that #T (V) = (#V − 1)/(r − 1). Further, #V ≤ #W ≤
km by Remark 3.2. Thus,

[G : H] ≤ f/k · (km − 1)/(r − 1) < f m/(r − 1) .

�
Now we turn to the other algorithms of Theorem 1.1. For this, we need to define

a system of representatives of the right cosets of H in G similar to Lemma 2.3.

LEMMA 3.4. Suppose the notation of Algorithm 3.1. If I = {ij | 1 ≤ j ≤ f }, then

SH := {s · ti | s ∈ S(V), i ∈ I}
is a transversal for the right cosets of H in G. Here S(V) is defined as in Lemma 2.3.

Proof. Let g ∈ G. By the choice of I , there exists some h ∈ H and some i ∈ I such
that gN = htiN = hNti. Thus, h−1gt−1

i ∈ N can be written as xs with x ∈ 〈V〉 = H ∩ N
and s ∈ S(V) by Lemma 2.3. Hence, g = (hx)sti ∈ Hsti. So SH represents all cosets. It

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

178 MARKUS KIRSCHMER AND CHARLES LEEDHAM-GREEN

remains to show that each coset is represented only once. So assume s, s′ ∈ S(V) and
i, k ∈ I such that Hsti = Hs′tk. Then HtiN = HNti = HNtk = HtkN and the choice
of I implies i = k. Hence, s′s−1 ∈ H ∩ N and Lemma 2.3 shows s = s′. �

The above proof immediately gives rise to the following algorithm which solves
the second problem of Theorem 1.1.

ALGORITHM 3.5. Given g ∈ G, the algorithm returns s ∈ SH such that Hg = Hs.
(1) Using Algorithm (A), compute 1 ≤ j ≤ f such that gN = tjN.
(2) From the preprocessing, get V, ij and h̃j.
(3) Call Algorithm (B) to write h̃−1

j gt−1
ij ∈ N as a word w in {x1, . . . , xr}.

(4) Using Algorithm 2.4, write w as vs′ with v a word in V and s′ ∈ S(V).
(5) Write s′tij as a word s in {g1, . . . , ge} and return s.

REMARK 3.6. The element g ∈ G of the above algorithm lies in H if and only if
s = 1 if and only if ij = 1 and s′ = 1. The latter condition can be easily checked since s′

is given as a word in the basis {x1, . . . , xr}. Further, if g ∈ H, then g = h̃jv. The element
v is given as a word in V . If one keeps track of the substitutions made in Algorithm 2.1,
one can express each element in V as a word in W . Since elements in W are given as
words in {h1, . . . , hm}, one can thus write g = h̃jv as a word in the given generating set
{h1, . . . , hm} of H. This solves Problem 3 of Theorem 1.1. Unfortunately, writing the
elements in V as words in W may produce words of exponential size as the following
example shows.

EXAMPLE 3.7 [1, p. 66]. Let N be freely generated by x and y. Consider the two
sequences

vj = xjyx1−j for j ∈ �, w1 = xy and wi =
{

xwi−1y if i is even,

xwi−1x−1 if i > 1 is odd.

For m ∈ �, let Wm := {wi | 1 ≤ i ≤ m} and Vm := {vi | 1 ≤ i ≤ m}. Then Wm

consists of m elements each of length of at most 2m as words in {x, y}. Further, Vm is
normalised Nielsen reduced and by induction, it follows that vi = wi(vi−1vi−3vi−5 . . .)−1

for all i ≥ 1.
Thus, Vm and Wm generate the same subgroup of N and the length of vm when

written as a word in Wm is not polynomial in m. (The length grows faster than the
Fibonacci sequence.)

Finally, for the proof of Theorem 1.2, it remains to analyse the running time of
the above algorithms.

Proof of Theorem 1.2. Let n = ‖g‖ + ∑m
i=1 ‖hi‖ + ∑f

j=1 ‖tj‖ + ∑r
k=1 ‖xk‖. We first

discuss Algorithm 3.3. The preprocessing step runs in polynomial time in c and the size
of the input as seen in Remark 3.2. Further, the set V consists of at most #W ≤ f m
elements of length of (in the xi) at most c f n. Thus, the computation of T (V) runs in
time O((c f n)3 · (f m)2). The last step runs in constant time.
Now we discuss Algorithm 3.5. By assumption, the first step runs in polynomial time
and so does the preprocessing. The length of h̃j as a word in {h1, . . . , hm} is at most m.
Thus, ‖h̃−1

j gt−1
ij ‖ ≤ (m + 2)n. Hence, the third step runs in polynomial time. Further,

the length of w (and thus of s′) as a word in {x1, . . . , xr} is at most c(m + 1)n. Thus, the
fourth step runs in time O((c(m + 2)n)2 · f m). Finally, tij is a word of length ≤ f m in

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

COMPUTING WITH SUBGROUPS OF THE MODULAR GROUP 179

{h1, . . . , hm}. Since we assume that ‖xi‖ ≤ n and ‖hk‖ ≤ n for all i and k, the last step
runs in polynomial time in n, m, f and c. �

4. Examples PSL2(�) and SL2(�). In this section, let G be either the special linear
group SL2(�) or the modular group PSL2(�) = SL2(�)/{±1}. Further, let S = (0 −1

1 0)
and U = (0 −1

1 1) be elements in G.
We will show that Algorithms 1.1 and 1.2 can be applied to G, provided that

the elements of G are given as words in S and U . For this, we have to give a finite
index-free normal subgroup of G, and a transversal of this subgroup in G, as well as
the corresponding algorithms (A) and (B).

Let o be the order of S in G, i.e. o = 4 if G = SL2(�) and o = 2 otherwise. Then,

SL2(�) = 〈S〉 ∗{±I2} 〈U〉 ∼= C4 ∗C2 C6,

PSL2(�) = 〈S〉 ∗ 〈U〉 ∼= C2 ∗ C3
(1)

are amalgamated and free products respectively (see for example [6]). Thus, every
element g ∈ G can be written as a word in S and U . The length of such a word will
be denoted by ‖g‖. Moreover, from the above isomorphism it follows that every g ∈ G
can be written uniquely as a word

τ (g) = Si0 Ui1 SUi2 S . . . (2)

such that 0 ≤ i0 ≤ o − 1 and ik ∈ {±1} for k ≥ 1.

LEMMA 4.1. The commutator subgroup G′ of G is a free group of index

[G : G′] =
{

12 if G = SL2(�)

6 if G = PSL2(�)

with basis {x := SUS−1U−1, y := S−1U−1SU}.
Proof. The fact that G′ is free is well known and the index [G : G′] follows

immediately from equation (1). Suppose now 1 �= g ∈ G′ such that g = τ (g). Then
a case by case discussion of the possible terminal words of g shows that there exists
some z ∈ {x, y, x−1, y−1} such that ‖τ (gz)‖ < ‖g‖. Thus, {x, y} generates G′. �

� From the isomorphisms in equation (1) it follows that there exists an
epimorphism ϕ : G → �/[G : G′]� such that ϕ(S) = 3 and ϕ(U) = 2. The kernel
of ϕ coincides with G′. Hence, a transversal of G′ in G is given by

{SiUj | 0 ≤ i ≤ o − 1, −1 ≤ j ≤ 1} .

� Algorithm (A): Given g ∈ G return SiUj, where 1 ≤ i ≤ o − 1 and −1 ≤ j ≤ 1 such
that ϕ(g) = 3i + 2j mod [G : G′].

� Algorithm (B): Given g ∈ G′ as a word in S and U , the following algorithm writes
g as a word w in x and y.

(1) Initialise (g, w) by (τ (g), 1).
(2) While g �= 1, find z ∈ {x, x−1, y, y−1} such that ‖τ (gz)‖ < ‖g‖ and
replace (g, w) by (τ (gz), z−1w).
(3) Return w.

Note that Algorithm (B) terminates by the proof of Lemma 4.1.

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

180 MARKUS KIRSCHMER AND CHARLES LEEDHAM-GREEN

It is clear that both algorithms run in time O(‖g‖) and the word w returned
by Algorithm (B) has at most length ‖g‖. Hence, the algorithms of Theorem 1.1 are
applicable to (P)SL2(�). Moreover, by Theorem 1.2, these algorithms run in polynomial
time in the size of the input.

REMARK 4.2. Suppose H is a finitely generated subgroup of PSL2(�). Then
Algorithm 3.3 can decide if the index k := [PSL2(�) : H] is finite. If so, right
multiplication of PSL2(�) on H \ PSL2(�) induces a homomorphism π : PSL2(�) →
Sym(k), where Sym(k) denotes the symmetric group on k letters. The images π (S) and
π (U) can be worked out by 2k calls to Algorithm 3.5. Using Hsu’s criterion [3, Theorem
3.1] one can then decide whether H is a congruence subgroup, i.e. whether there
exists some � ≥ 2 such that H contains the full kernel of the canonical epimorphism
PSL2(�) → PSL2(�/��). One only has to check whether the permutations π (S) and
π (U) satisfy a few short relations. This can be done in time O(k).

REMARK 4.3. By Kurosh’s subgroup theorem, every subgroup H of PSL2(�) is
a free product H1 ∗ H2 ∗ H3, where H3 is free and H1, H2 are freely generated by
elements of order 2 and 3 respectively. A constructive decomposition of H into free
generators of Hi can be accomplished by using Nielsen reductions as in Algorithm 2.1
(see [5, Propositions 2.2 and 2.3). Note that in this case, the reduction operator ρ has
to be replaced with τ from equation (2) and we use the lexicographical order satisfying
S <l U <l U−1.

REFERENCES

1. J. Avenhaus and K. Madlener, The Nielsen reduction and p-complete problems in free
groups, Theor. Comput. Sci. 32 (1984), 61–76.

2. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language,
J. Symb. Comput. 24(3–4) (1997), 235–265.

3. T. Hsu, Identifying congruence subgroups of the modular group, Proc. Amer. Math.
Soc. 124(5) (1996), 1351–1359.

4. A. Karrass and D. Solitar, On finitely generated subgroups of a free group, Proc. Amer.
Math. Soc. 22(1) (1969), 209–213.

5. R. C. Lyndon and P. E. Schupp, Combinatorial group theory (Springer, New York, NY,
1977).

6. J.-P. Serre, Trees (Springer, New York, NY, 1980).

https://doi.org/10.1017/S0017089514000202 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000202

