IMAGE AREA AND THE WEIGHTED SUBSPACES OF HARDY SPACES

BY
E. G. KWON

Abstract

Let $H^{p, \phi}$ be the subspace of Hardy space H^{p} consisting of those $f \in H^{p}\left(B_{n}\right)$ satisfying $\sup _{z} \phi(|z|)|f(z)|<\infty$, where ϕ is a positive decreasing differentiable function on $[0,1)$ with $\phi(1-)=0$. Concerning image area growth, criteria for f to be of $H^{p, \phi}$ are considered extending known results for H^{p}.

1. Introduction. U will denote the open unit disc of the complex plane \mathbf{C} and $B=B_{n}$ will denote the unit open ball of \mathbf{C}^{n}. For f holomorphic in B and for Ω a subdomain of B, we let

$$
\nabla f(z)=\sum_{j=1}^{n} D_{j} f(z) e_{j}, z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbf{C}^{n}
$$

and let

$$
A(\Omega, f)=\int_{\Omega}|\nabla f(z)|^{2} d m(z)
$$

where D_{j} denotes $\partial / \partial z_{j}, e_{j}$ denotes the unit vector in \mathbf{C}^{n} whose j-th component is 1 and $m=m_{2 n}$ denotes ordinary Lebesgue measure on \mathbf{C}^{n} which is topologically identified with the Euclidean space $\mathbf{R}^{2 n}$. We simply denote $A(\Omega, f)$ by $A(\rho, f)$ in case $\Omega=\rho B \equiv\left\{z \in \mathbf{C}^{n}:|z|<\rho\right\}, 0<\rho \leqq 1$.

Denote by \mathcal{U} the group of all unitary operators on \mathbf{C}^{n}. For a subdomain Ω of B, we say, by definition, that a function f defined in B satisfies "Lusin property with respect to Ω " if

$$
\int_{\mathcal{U}} A(U \Omega, f) d U<\infty
$$

where $U \Omega=\{U z: z \in \Omega\}$ and $d U$ denote the Haar measure on \mathcal{U}. See [6] and [8] for Lusin property.

It is known that if $f \in H^{p}(U)$ [2] for some $p: 0<p \leqq 2$ then $A(\rho, f)=$ $o(1-\rho)^{-2 / p}, \rho \rightarrow 1$, and the result breaks down when $p>2$ [3], [9]. Also known is that if $f \in H^{p}(U)$ then f satisfies the Lusin property with respect to triangular

[^0]subdomains of U, and conversely [6]. Main concern of this note is to extend these one variable results under the following setting.

Let $\phi(r)$ be a positive decreasing differentiable function defined on $[0,1)$ with $\phi(0)=1, \phi(1-)=0$ and extended to B via $\phi(z)=\phi(|z|)$. Let S denote the boundary of B and let $\left(\chi_{\Omega}\right)^{\#}$ denote the radialization of the characteristic function χ_{Ω} [3. p. 49], i.e.

$$
\left(\chi_{\Omega}\right)^{\#}(z)=\int_{\mathcal{U}} \chi_{\Omega}(U z) d U, z \in B .
$$

Let $D(\phi)$ be the family of all subdomains Ω of B such that
(1.1) the boundary $\partial \Omega$ of Ω satisfies that $\partial \Omega \cap S=e_{1}=(1,0, \ldots, 0)$, and
(1.2) there exists r_{o} such that for $r, r_{o}<r<1$,

$$
\left(\chi_{\Omega}\right)^{\#}\left(r e_{1}\right) \approx \int_{r}^{1} \phi(\rho) d \rho,
$$

where and hereafter $a(z) \approx b(z)$ means that there are positive constants A and B independent of z of the given domain such that $A a(z)<b(z)<B a(z)$. It is not difficult to see that if f satisfies the Lusin property with respect to some $\Omega \in D(\phi)$ then it also satisfies the property with respect to the other $\Omega \in D(\phi)$ [See (3.5)]. We denote $f \in L P(\phi)$ if f satisfies the Lusin property with respect to some $\Omega \in D(\phi)$.

For $0<p<\infty, H^{p, \phi}(B)$ and $A_{p, \phi}(B)$ are defined to be the spaces of those holomorphic functions f in B respectively for which

$$
\begin{equation*}
\max \left\{\|f\|_{p}, \mid\|f\|_{\phi}\right\}<\infty \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{p, \phi}<\infty \tag{1.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\|f\|_{p} & =\sup _{0 \leqq r<1}\left\{\int_{S} \mid f(r \zeta)^{p} d \sigma(\zeta)\right\}^{1 / p} \\
\mid\|f\|_{\phi} & =\sup _{z \in B} \phi(z)|f(z)|
\end{aligned}
$$

and

$$
\|f\|_{p, \phi}=\left\{-\int_{0}^{1} d \phi(r) \int_{S}|f(r \zeta)|^{p} d \sigma(\zeta)\right\}^{1 / p}
$$

Here σ denote the rotation invariant probability measure on S.
Our $H^{p, \phi}$ version on the growth of area is as follows.
Theorem. Let $0<p \leqq 2$. If

$$
\begin{equation*}
f \in H^{p, \phi} \tag{1.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{0}^{1} \phi(\rho)^{2-p} A(\rho, f) d \rho<\infty \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in L P\left(\phi^{2-p}\right) \tag{1.7}
\end{equation*}
$$

Conversely, let $2 \leqq p<\infty$ and let f be holomorphic in B with $f(z)=O\left(\phi(z)^{-1}\right)$. Then (1.6) or (1.7) implies (1.5).

This theorem, of course, has a corollary concerning little (big) " o " argument. Because the proofs are identical, we state it only for $H^{p}\left(B_{n}\right)$ case.

Corollary. Let $0<p \leqq 2 \leqq q<\infty$, and let f be holomorphic in B_{n}.

$$
\begin{equation*}
\text { If } f \in H^{p}\left(B_{n}\right) \quad \text { then } A(\rho, f)=o(1-\rho)^{-1-n(2-p) / p} \tag{1.8}
\end{equation*}
$$

(1.9) If $A(\rho, f)=O(1-\rho)^{-\gamma}$ for some $\gamma, 0<\gamma<1+n(2-q) / q$ then $f \in H^{q}\left(B_{n}\right)$.
2. Weighted subspaces of Hardy spaces. Note that $H^{p, \phi}$ and $A_{p, \phi}$ are complete topological vector spaces equipped with the translation invariant metric appeared in (1.3) and (1.4).

Lemma 1. Let $0<p<q<\infty$. Then there is the continuous inclusion

$$
\begin{equation*}
H^{p, \phi}\left(B_{n}\right) \subset A_{q, \phi^{q-p}}\left(B_{n}\right) \tag{2.1}
\end{equation*}
$$

The case where $n=1$ and $\phi(r)=(1-r)^{\gamma}, 0<\gamma \leqq 1 / p$ was proved by P. Ahern and appeared in [4. Theorem B]. The inclusion (2.1) cannot be improved to a fully Hardy-Littlewood type [5. Theorem 2]. The proof of Lemma 1 presented below is rather elementary but different from that of one variable case of Ahern. We present it for the sake of completeness.

Proof. Let $f \in H^{p, \phi}$ and $\alpha=q-p$. We may assume f is nonconstant and $f(0)=0$. Denote $f_{\zeta}(\lambda)=f(\zeta \lambda), \lambda \in U$ and $f_{\zeta}(\theta)$ the radial limit of f_{ζ} at $e^{i \theta}$. Note that $f_{\zeta} \in H^{p}(U)$ a.e. ζ. If we set

$$
\begin{align*}
\left(f_{\zeta}\right)(p, \lambda) & =\left|f_{\zeta}\right|^{p-2}\left|(d / d \lambda)\left(f_{\zeta}\right)\right|^{2}(\lambda), \lambda \in U, \quad \text { and } \tag{2.2}\\
A_{p}\left(\rho, f_{\zeta}\right) & =\int_{\rho U}\left(f_{\zeta}\right)(p, \lambda) d m_{2}(\lambda)
\end{align*}
$$

then the Green's formula followed by a familiar limiting process gives that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f_{\zeta}(\theta)\right|^{p} d \theta=p^{2} \int_{0}^{1} \rho^{-1} A_{p}\left(\rho, f_{\zeta}\right) d \rho, \text { a.e. } \zeta . \tag{2.3}
\end{equation*}
$$

Since $f \in H^{p, \phi}$,

$$
\left(f_{\zeta}\right)(p, \lambda) \geqq\left[\phi(\lambda)^{-1} \mid\|f\| \|_{\phi}\right]^{-\alpha}\left(f_{\zeta}\right)(q, \lambda), \zeta \in S, \lambda \in U
$$

iot follows from (2.3) that

$$
\begin{align*}
\int_{0}^{2 \pi}\left|f_{\zeta}(\theta)\right|^{p} d \theta & \geqq p^{2} \mid\|f\|_{\phi}^{-\alpha} \int_{0}^{1} \rho^{-1} \phi(\rho)^{\alpha} A_{q}\left(\rho, f_{\zeta}\right) d \rho \tag{2.4}\\
& =-p^{2} \mid\|f\|_{\phi}^{-\alpha} \int_{0}^{1} d \phi(r) \int_{0}^{r} \rho^{-1} A_{q}\left(\rho, f_{\zeta}\right) d \rho
\end{align*}
$$

a.e. $\zeta \in S$. Now, another application of the Green's formula as in (2.3) gives

$$
\begin{equation*}
q^{2} \int_{0}^{r} \rho^{-1} A_{q}\left(\rho, f_{\zeta}\right) d \rho=\int_{0}^{2 \pi}\left|f_{\zeta}\left(r e^{i \theta}\right)\right|^{q} d \theta \tag{2.5}
\end{equation*}
$$

Inserting (2.5) into the right hand side of (2.4) and then integrating (2.4) with respect to $d \sigma$ therefore gives

$$
\left.\left|\|f\|_{\phi}^{\alpha}\|f\|_{p}^{p} \geqq-\frac{p^{2}}{q^{2}} \int_{0}^{1} d \phi^{\alpha}(r) \int_{S}\right| f(r \zeta)\right|^{q} d \sigma(\zeta)
$$

This completes the proof.
3. Proofs. Our proof depends essentially on the following elementary lemma.

Lemma 2. For holomorphic f in B, the following are equivalent.

$$
\begin{gather*}
f \in A_{2, \phi}(B), \tag{3.1}\\
\int_{0}^{1} \phi(\rho) A(\rho, f) d \rho<\infty \tag{3.2}\\
f \in L P(\phi) \tag{3.3}
\end{gather*}
$$

Proof of lemma 2. If f is a monomial $z^{\alpha}, \alpha \geqq 0$, then it follows from [7. pp. 16-17] that

$$
\begin{equation*}
\int_{S}|f(r \zeta)|^{2} d \sigma(\zeta)=|f(0)|^{2}+\frac{2(n-1)!}{\pi^{n}} \int_{0}^{r} \rho^{1-2 n} A(\rho, f) d \rho \tag{3.4}
\end{equation*}
$$

By orthogonality, (3.4) holds for polynomials, and hence for holomorphic f. Now, integrating (3.4) with respect to $d \phi$,

$$
\|f\|_{2, \phi}=|f(0)|^{2}-\frac{2(n-1)!}{\pi^{n}} \int_{0}^{1} d \phi(r) \int_{0}^{r} \rho^{1-2 n} A(\rho, f) d \rho .
$$

While, the last integral is

$$
\frac{2(n-1)!}{\pi^{n}} \int_{0}^{1} \rho^{1-2 n} \phi(\rho) A(\rho, f) d \rho,
$$

so that the equivalence of (3.1) and (3.2) follows.
Next, let $\Omega \in D(\phi)$. By (1.2),

$$
\begin{aligned}
& \int_{0}^{1} \chi_{\{|z|<\rho\}}(z) \phi(\rho) d \rho=\int_{|z|}^{1} \phi(\rho) d \rho \\
& \approx \int_{\mathcal{U}} \chi_{\Omega}(U z) d U, \text { for }|z| \text { close to } 1,
\end{aligned}
$$

where $\chi_{\{.\}}(z)$ of course denote characteristic functions. Hence it follows that

$$
\begin{align*}
\int_{0}^{1} \phi(\rho) A(\rho, f) d \rho & =\int_{0}^{1} \phi(\rho) d \rho \int_{\rho B}|\nabla f(z)|^{2} d m(z) \tag{3.5}\\
& =\int_{B}|\nabla f(z)|^{2}\left[\int_{|z|}^{1} \phi(\rho) d \rho\right] d m(z) \\
& \approx \int_{\mathcal{U}} d U \int_{U \Omega}|\nabla f(z)|^{2} d m(z)
\end{align*}
$$

The equivalence of (3.2) and (3.3) follows from (3.5).
Proof of theorem. The first part follows directly from Lemmas 1 and 2. For the converse, suppose $2 \leqq p<\infty$ and f is holomorphic in B with $\mid\|f\| \|_{\phi}<\infty$. It suffices to prove that (1.6) implies (1.5). We may assume $f(0)=0$. Recall $\left(f_{\zeta}\right)(p, \lambda)$ in (2.2). Since

$$
\left(f_{\zeta}\right)(p, \lambda) \leqq\left[\phi(\lambda)^{-1} \mid\|f\|_{\phi}\right]^{p-2}\left|f_{\zeta}(\lambda)\right|^{2}, \zeta \in S, \lambda \in U,
$$

it follows by (2.5) that
(3.6) $\int_{0}^{2 \pi}\left|f_{\zeta}\left(r e^{i \theta}\right)\right|^{p} d \theta=p^{2} \int_{0}^{r} \rho^{-1} d \rho \int_{\rho U}\left(f_{\zeta}\right)(p, \lambda) d m_{2}(\lambda)$

$$
\leqq\left. p^{2}\left|\|f\|_{\phi}^{p-2} \int_{0}^{r} \rho^{-1} \phi(\rho)^{2-p} d \rho \int_{\rho U}\right|(d / d \lambda) f_{\zeta}(\lambda)\right|^{2} d m_{2}(\lambda) .
$$

Now, it is not difficult to see that

$$
\int_{S} d \sigma(\zeta) \int_{\rho U}\left|(d / d \lambda) f_{\zeta}(\lambda)\right|^{2} d m_{2}(\lambda)=\frac{(n-1)!}{\pi^{n-1}} \frac{A(\rho, f)}{\rho^{2 n-2}}
$$

so that slice integration makes (3.6) into

$$
\|f\|_{p}^{p} \leqq C(p, n)\| \| f \|_{\phi}^{p-2} \int_{0}^{1} \rho^{1-2 n} \phi(\rho)^{2-p} A(\rho, f) d \rho
$$

which completes the proof.
Proof of corollary. Let $\phi(r)=(1-r)^{\tau}, \tau>0$. Since $A(\rho, f)$ is nondecreasing function of ρ,

$$
\begin{equation*}
(1-\rho)^{1+\tau} A(\rho, f) \leqq(1+\tau) \int_{\rho}^{1}(1-r)^{\tau} A(r, f) d r . \tag{3.7}
\end{equation*}
$$

If $\tau=n / p$ then $H^{p, \phi}\left(B_{n}\right)=H^{p}\left(B_{n}\right)$ [7. Theorem 7.2.5], so that all $f \in H^{p}\left(B_{n}\right)$ satisfy, by Theorem and (3.7), that $A(\rho, f)=o(1-\rho)^{-1-n(2-p) / p}$. This proves (4.1).

For the converse, suppose $A(\rho, f)=O(1-\rho)^{-\gamma}$ for some $\gamma, 0<\gamma<1$. Then obviously,

$$
\begin{equation*}
\int_{0}^{1}(1-\rho)^{-\delta} A(\rho, f) d \rho<\infty \quad \text { for } \delta<1-\gamma \tag{3.8}
\end{equation*}
$$

In particular, by (3.4), $f \in H^{2}\left(B_{n}\right)$, so that

$$
\begin{equation*}
f(z)=O(1-|z|)^{-n / 2} \tag{3.9}
\end{equation*}
$$

Hence it follows from (3.8), (3.9), and Theorem that f is a member of $H^{q_{1}}\left(\boldsymbol{B}_{n}\right)$, $q_{1}=2+2 \delta / n$, and this in turn gives $f(z)=O(1-|z|)^{-n / q_{1}}$. Continuing this way using (3.8), we conclude by induction that $f \in H^{q}\left(B_{n}\right)$ for all $q<2 n /(n-1+\gamma)$. Now, (1.9) follows.

4. Remarks.

(1) We present the following example as for the sharpness of Theorem 1; If $n=2$, $\phi(r)=1-r$, and $(3 / 2)<p<2$, then there exists $f \in H^{p, \phi}$ such that

$$
\begin{equation*}
\int_{0}^{1} \phi(\rho)^{\alpha} A(\rho, f) d \rho=\infty \quad \text { for } \alpha>2-p \tag{4.1}
\end{equation*}
$$

(So that $f \in L P\left(\phi^{\alpha}\right)$ for $\left.\alpha>2-p\right)$.
Fix a $p, 3 / 2<p<2$. Let

$$
d_{k}=\left[k^{1-p}(\log k)^{1 /(p-1)}\right]^{1 /(2-p)}, \quad k=2,3, \ldots
$$

Then $\sum d_{k}<\infty$, and $\sum\left(d_{k} / k\right)^{s}<\infty$ if and only if $s \geqq 2-p$. Let $g(z)$ be the Blaschke product formed by $\left\{1-d_{k}\right\}$. Then it follows from [1. Theorem 6.2] that

$$
\begin{equation*}
g^{\prime} \in H^{p-1}(U) \text { and } g^{\prime} \in H^{q}(U) \text { for } q>p-1 . \tag{4.2}
\end{equation*}
$$

Since $g^{\prime}(z)=O(1-|z|)^{-1}, g^{\prime}$ is a member of $H^{p-1, \phi}(U)$, and so by Lemma 1,

$$
\begin{equation*}
g^{\prime} \in L^{p}(U) \tag{4.3}
\end{equation*}
$$

Now, let $f(z, w)=g^{\prime}(z),(z, w) \in B_{2}$. Then, by [7. p. 15] and (4.3),

$$
\|f\|_{p}^{p}=\int_{U}\left|g^{\prime}(z)\right|^{p} d \nu_{1}(z)<\infty
$$

Hence $f \in H^{p, \phi}\left(B_{2}\right)$. On the other hand, since

$$
\begin{aligned}
\|f\|_{2, \phi^{\alpha}}^{2} & =\alpha \int_{0}^{1}(1-r)^{\alpha-1} d r \int_{U}\left|g^{\prime}(r z)\right|^{2} d \nu_{1}(z) \\
& =\alpha \int_{U}\left[\int_{|z|}^{1}(1-r)^{\alpha-1} r^{-2} d r\right]\left|g^{\prime}(z)\right|^{2} d \nu_{1}(z) \\
& \approx \int_{U}(1-|z|)^{\alpha}\left|g^{\prime}(z)\right|^{2} d \nu_{1}(z)
\end{aligned}
$$

for $\alpha>0$, by (4.2) and [1. Theorem 6.2 a$) \leftrightarrow \mathrm{c})$], the last integral is finite if and only if $\alpha \leqq 2-p$. Therefore we conclude (4.1) by Lemma 2 .
(2) $f(z)=\left(1-z_{1}\right)^{-\tau}$ for appropriate positive constants τ show that the exponents of Corollary are best possible.
(3) If $f \in(L H)^{p}\left(B_{n}\right)$ i.e. $|f|^{p}$ has pluriharmonic majorants [5. p. 145] then $f(z)=$ $O(1-|z|)^{-1 / p}$, so that by Theorem $A(\rho, f)=o(1-\rho)^{-2 / p}$.

References

1. P. R. Ahern, The mean modulus and derivatives of an inner function, Indianna University Math. J., 28 No. 2 (1979), 311-347.
2. P. L. Duren, Theory of H^{p} spaces, Academic Press, New York, NY 1970.
3. F. Holland and J. B. Twomey, On Hardy classes and the area function, J. London Math. Soc., (2) 17 (1978), 275-283.
4. H. O. Kim, Derivatives of Blaschke products, Pacific J. Math., 114 (1984), 175-191.
5. H. O. Kim, S. M. Kim and E. G. Kwon, A note on the space $H^{p, a}$, Communications of the Korean Math. Soc., Vol. 2 No. 1 (1981), 47-51.
6. G. Piranian and W. Rudin, Lusin's theorem on areas of conformal maps, Michigan Math. J., 3 (1955-1956), 191-199.
7. W. Rudin, Function theory in the unit ball of \mathbf{C}^{n}, Springer Verlag, New York, 1980.
8. S. Yamashita, Criteria for functions to be Hardy class H^{p}, Proceedings of A.M.S., Vol. 75 No. 1 (1979), 69-72.
9. - Holomorphic functions and area integrals, Bollettino U.M.I. (6) 1-A (1982), 115-120.

Department of Mathematics Education
Andong National University
Andong 760-749,
(South) Korea

[^0]: Received by the editors August 9, 1988.
 This research was partially supported by KOSEF.
 1980 AMS Subject Classification 32A35.
 © Canadian Mathematical Society 1988.

