Seventh Meeting, 10th June 1904.
Mr Charles Tweedie, President, in the Chair.

The Turning-Values of a Cubic Function and the nature of the roots of a Cubic Equation.

By P. Pinkerton, M.A.

The first part of this paper depends on the theorem that if a, b, c are three positive quantities such that

$$
a+b+c=\mathbf{a} \text { constant }
$$

then $a b c$ is a maximum when $a=b=c$; with the corollary that if a, b, c are three negative quantities such that

$$
a+b+c=a \text { constant }
$$

then $a b c$ is a minimum when $a=b=c$.

1. Consider the graph of

$$
y=x(x-a)^{2},
$$

where a is positive.
The graph meets OX at the points $(0,0)(a, 0)$. The graph has a minimum point at ($a, 0$), for on shifting the origin to $(a, 0)$ the equation becomes $\quad y=(\xi+a) \xi^{2}$,
and a first approximation at the new origin is

$$
y=a \xi^{2}
$$

so that the graph close to that point is of the form of a festoon. There is also a maximum point in the interval between $x=0$ and $x=a$. To determine the point we observe that $x(x-a)^{2}$ is a maximum when $2 x(a-x)(a-x)$ is a maximum. Now each of these factors is positive in the interval considered and their sum is constant ($=2 a$) ; \therefore a maximum value occurs when

$$
2 x=a-x \text { i.e., when } x=\frac{a}{3} .
$$

The maximum value is therefore $\frac{a}{3}\left(\frac{a}{3}-a\right)^{2}=\frac{4 a^{3}}{27}$.
2. Again considering the graph of

$$
y=x(x+a)^{2}
$$

where a is positive, we observe that if the origin is shifted to the point ($-a, 0$) a first approximation at the new origin is

$$
y=-a \xi^{2}
$$

which represents an inverted festoon. There is therefore a maximum point at ($-a, 0$) and a minimum point in the interval $x=0$ to $x=-a$. To find this point we observe that $x(x+a)^{2}$ has its minimum value when $2 x(-a-x)(-a-x)$. is a minimum. Each of these factors is negative in the interval considered and their sum is constant ($=-2 a$);

$$
\begin{aligned}
& \therefore \quad 2 x=-a-x \text { for the minimum point; } \\
& \therefore \quad x=-\frac{a}{3} ;
\end{aligned}
$$

and the minimum value is $-\frac{4 a^{3}}{27}$.
3. In general let

$$
y=x^{3}+p x^{2}+q x+r=(x+a)(x+b)^{2}+c .
$$

Equating coefficients, we have

$$
\begin{align*}
& p=a+2 b, \tag{1}\\
& q=2 a b+b^{2} \tag{2}\\
& r=a b^{2}+c \tag{3}
\end{align*}
$$

Eliminating a from (1) and (2),

$$
3 b^{2}-2 b p+q=0 ;
$$

\therefore real values of a, b, c can be found if

$$
p^{2} \equiv 3 q
$$

If $p^{2}=3 q$, it is clear that we can write

$$
y=x^{3}+p x^{2}+q x+r=\left(x+\frac{p}{3}\right)^{3}+\left(r-\frac{p^{3}}{27}\right)
$$

and by changing the origin to $\left(-\frac{p}{3}, r-\frac{p^{3}}{27}\right)$ the equation takes the form $\eta=\xi^{3}$ which has a point of inflexion at the new origin and no turning-points.

If $p^{2}>3 q, y=(x+a)(x+b)^{2}+c$ where a, b, c are real.
Shift the origin to ($-a, c$) and the equation becomes

$$
\eta=\xi(\xi-\overline{\xi-b})^{2}
$$

Hence, if $a-b$ is positive, there is a minimum turning-point at

$$
\xi=a-b, \eta=0 \text { i.e., at } x=-b, y=c
$$

Also there is a maximum turning-point at

$$
\begin{gathered}
\xi=\frac{1}{3}(a-b), \eta=\frac{4}{37}(a-b)^{3} \\
\text { i.e., at } x=-a+\frac{1}{3}(a-b), y=c+\frac{4}{27}(a-b)^{3} .
\end{gathered}
$$

If $(a-b)$ is negative, there is a maximum turning-point at

$$
\xi=a-b, \eta=0 \text { i.e., at } x=-b, y=c
$$

and a minimum turning-point at

$$
\begin{aligned}
\xi & =\frac{1}{3}(a-b), \eta=\frac{4}{27}(a-b)^{3} \\
\text { i.e., at } x & =-a+\frac{1}{3}(a-b), y=c+\frac{4}{27}(a-b)^{3} .
\end{aligned}
$$

The graph whose equation is

$$
y=\mathbf{A} x^{3}+p x^{2}+q x+r
$$

can clearly be reduced to the above case.
4. The nature of the roots of a cubic equation can be deduced from our knowledge of the above graphs.

Suppose the equation first brought to the form

$$
x^{3}+q x+r=0
$$

Let

$$
\begin{align*}
& y=x^{3}+q x+r=(x+a)(x+b)^{2}+c . \\
& a+2 b=0,\left(1^{\prime}\right) \\
& 2 a b+b^{2}=q,\left(2^{\prime}\right) \\
& a b^{2}+c=r .\left(3^{\prime}\right)
\end{align*}
$$

Here

If two roots are equal then clearly $c=0$;
\therefore by (1^{\prime}) and (2^{\prime})
$-3 b^{2}=q$,
and by (1^{\prime}) and (3^{\prime})

$$
-2 b^{3}=r
$$

$$
\therefore \quad 4 q^{3}+27 r^{2}=0 .
$$

If the three roots are unequal $c \neq 0$.
In this case it is clear that if a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are the two sets of solutions of $\left(1^{\prime}\right),\left(2^{\prime}\right),\left(3^{\prime}\right)$, then

$$
\begin{aligned}
& a_{1}+a_{2}=0, b_{1}+b_{2}=0 ; \\
\therefore \quad & \left(a_{1}-b_{1}\right)=-\left(a_{2}-b_{2}\right) .
\end{aligned}
$$

Suppose $a_{1}-b_{1}$ to be positive and write

$$
y=\left(x+a_{1}\right)\left(x+b_{1}\right)^{2}+c_{1} .
$$

It follows from the above that the minimum turning value is given by $y=c_{1}$.

Next, writing $\quad y=\left(x+a_{2}\right)\left(x+b_{2}\right)^{2}+c_{2}$, we observe that the maximum turning value is given by

$$
y=c_{2} ;
$$

\therefore OX will cut the graph of

$$
y=x^{3}+q x+r
$$

in three different real points if $\frac{c_{1}}{c_{2}}$ is negative, and in one real point and two imaginary points if $\frac{c_{1}}{c_{2}}$ is positive.
There are therefore three different real solutions of the equation, or one real and two imaginary,

	according as	$\frac{c_{1}}{c_{2}}$	is negative or positive,			
\therefore	$"$	$"$	$\frac{c_{1}}{c_{1} c_{2}}$	$"$	$"$	$"$

\therefore according as $4 q^{3}+27 r^{2}$ is negative or positive.

Note on the Problem: To draw through a given point a transversal to (a) a given triangle (b) a given quadrilateral so that the intercepted segments may have (a) a given ratio (b) a given cross ratio.

By P. Pinkerton, M.A.

