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Local Fourier transform and epsilon factors

Ahmed Abbes and Takeshi Saito

Abstract

Laumon introduced the local Fourier transform for `-adic Galois representations of
local fields, of equal characteristic p different from `, as a powerful tool for studying
the Fourier–Deligne transform of `-adic sheaves over the affine line. In this article, we
compute explicitly the local Fourier transform of monomial representations satisfying
a certain ramification condition, and deduce Laumon’s formula relating the ε-factor to
the determinant of the local Fourier transform under the same condition.

1. Introduction

1.1 In his seminal article [Lau87], Laumon introduced the local Fourier transform for `-adic
Galois representations of local fields, of equal characteristic p different from `, providing a
powerful tool for studying the Fourier–Deligne transform of `-adic sheaves over the affine line. He
used it to prove that the constant of the functional equation of the L-function associated to an
`-adic representation of a function field is a product of local constants, also known as ε-factors.
As a key step, he gave a cohomological interpretation of the ε-factor in terms of the determinant
of the local Fourier transform. In this article, we compute explicitly the local Fourier transform
of monomial representations satisfying a certain ramification condition, and deduce Laumon’s
formula for ε-factors under the same condition. Our approach, inspired by our ramification
theory [AS09], is local and geometric, while Laumon’s approach is global, combining arithmetic
and geometric arguments.

1.2 One of the main innovations of [Lau87], leading to the local Fourier transform, is Laumon’s
principle of stationary phase, which has its origins in the classical theory of asymptotic integrals
(cf. [Katz89]). We briefly recall the classical theory [Die68, IV, § 4]. Given two functions
ϕ ∈ C∞(R, R) and f ∈ C∞c (R, C), we are interested in studying the asymptotic behavior at ∞
of the integral, depending on a real parameter t,

I(t) =
∫
f(x)eitϕ(x) dx.

If the derivative of ϕ does not vanish at any point in Supp(f), then I(t) is rapidly decreasing
at ∞. It follows that if ϕ has only finitely many critical points in Supp(f), then the asymptotic
behavior of I(t) at∞ is a finite sum of contributions, one from each critical point of ϕ in Supp(f).
If, moreover, all critical points of ϕ are non-degenerate (i.e. the second derivative of ϕ does not
vanish at these points), then one can give a very explicit description of I(t) as t tends to ∞.
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1.3 Let k be a perfect field of characteristic p, let A = Spec(k[x]) and Ǎ = Spec(k[x̌]) be the
affine lines over k (equipped with coordinates x and x̌), let ` be a prime number different from p,
and let ψ0 : Fp→Q×` be a non-trivial additive character. We denote by P and P̌ the projective
lines over k, completions of A and Ǎ, respectively, and by∞∈ P and ∞̌ ∈ P̌ the points at infinity.
For closed points z ∈ P and ž ∈ P̌, we denote by Tz and Ťž the henselizations of P and P̌ at z
and ž, respectively, and by τz and τ̌ž their generic points. Let F be a Q`-sheaf over A. The
analogue of the integral I(t) is provided by the Fourier–Deligne transform Fψ0(F ), which is
a complex of `-adic sheaves on Ǎ (cf. § 3.2); in fact, the precise analogue of I(t) is the sheaf
H 1(Fψ0(F )) (where t is replaced by x̌). The ‘asymptotic behavior’ of this sheaf at ∞̌ is encoded
in its restriction to τ̌∞̌, which corresponds to an `-adic representation of the absolute Galois
group of the function field k(τ̌∞̌) of Ť∞̌. Let U be a dense open subscheme of A such that
A− U ⊂A(k). If F is the extension by 0 of a smooth Q`-sheaf over U , Laumon proved that we
have a canonical decomposition

H 1(Fψ0(F ))|τ̌∞̌ '
⊕

z∈P−U
F

(z,∞̌)
ψ0

(F |τz), (1.3.1)

where the factor F
(z,∞̌)
ψ0

(F |τz) is the local Fourier transform of F |τz at (z, ∞̌). The latter
transformation is a functor from Q`-sheaves over τz to Q`-sheaves over τ̌∞̌, defined by Laumon
using vanishing cycles (cf. § 3.4).

1.4 We assume in the following that p > 2. Let S be the spectrum of a henselian discrete valuation
ring, η (respectively, s) be its generic (respectively, closed) point, v : S→A and v̌ : S→ P̌ be
two morphisms such that v̌(s) = ∞̌. We put z = v(s) and assume for simplicity (only in the
introduction) that z ∈A(k). We denote by f : S→ Tz and f̌ : S→ Ť∞̌ the morphisms induced
by v and v̌ respectively (cf. § 1.3). Assume that f and f̌ are finite and étale at η. Let G be a
Q`-sheaf of rank one over η. Our main theorem (Theorem 3.7) says that if (G , f, f̌) is a Legendre
triple, a condition that is defined below, then we have a canonical isomorphism of sheaves over τ̌∞̌

F
(z,∞̌)
ψ0

(f∗G )' f̌∗
(

G ⊗Lψ0(bc)⊗K

(
−1

2
dc

db

)
⊗Q

)
, (1.4.1)

where the rank-one sheaf between brackets on the right-hand side is defined as follows: the pull-
backs of the coordinates x and x̌ by f and f̌ define two functions on η, denoted respectively by b
and c. The sheaf Lψ0(bc) is the Artin–Schreier sheaf over η associated to the additive character
ψ0 and the function bc (cf. § 3.1). The sheaf K (−(1/2)(dc/db)) is the Kummer sheaf over η
associated to the unique non-trivial character κ0 : µ2(k)→Q×` and the function −(1/2)(dc/db)
(cf. § 3.3 and Remark 3.8). Finally, Q is the Q`-sheaf of rank one over Spec(k) corresponding to
the quadratic Gauss sum defined by ψ0 and κ0 (see § 3.3).

We also prove variants of (1.4.1) for the local Fourier transforms F
(∞,∞̌)
ψ0

and F
(∞,0̌)
ψ0

(Theorem 3.9).

1.5 The notion of a Legendre triple relies on ramification theory. Let R be the completion of
the local ring of S, K be its fraction field, t be a uniformizer of R, ord be the valuation
of K normalized by ord(t) = 1. For any y ∈K, we put y′ = dy/dt. Ramification theory of
Artin–Schreier–Witt sheaves over Spec(K) is described in terms of the Kato filtration on the

1508

https://doi.org/10.1112/S0010437X09004631 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004631


Local Fourier transform and epsilon factors

ring Wm+1(K) of Witt vectors of length m+ 1, and the homomorphism of de Rham–Witt
Fmd : Wm+1(K)→ Ω1

K . We refer to § 2 for a short review of this theory, and to [AS09, Kato89]
for more details.

Let a= (a0, . . . , am) be a non-zero element of Wm+1(K), α be the element of K defined
by the equation Fm d(a) = α dt (see (2.4.2)), b, c be non-zero elements of K (for which we will
take the functions provided by § 1.4). We say that (a, b, c) is a strong Legendre triple if the
following relations are satisfied:

pm−iord(ai) >−n= ord(tα) (∀0 6 i6m), (1.5.1)
Fmd(a) + cdb= 0, (1.5.2)

2ord(tb′/b) + pord(tc′/c)< (p− 2)n. (1.5.3)

The inequalities in (1.5.1) mean that a belongs to the level n of the Kato filtration of Wm+1(K);
the equality in (1.5.1) implies that n is the Swan conductor of the sheaf of rank one over Spec(K)
defined by a. We may consider equation (1.5.2) as an analogue of the Legendre transform, used
in the method of the saddle point [Die68, IX, § 1], and the ramification condition (1.5.3) as an
analogue of the convexity condition required for this method (or, equivalently, the non-degenerate
critical points condition in the principle of stationary phase).

In general, a and b are given, and c will be defined by the equations above. To allow more
flexibility, we replace (1.5.2) by the following weaker but sufficient condition:

2ord(α+ cb′) >−n+ ord(tc′/c); (1.5.4)

we say then that (a, b, c) is a Legendre triple (cf. § 2.13).

1.6 We take again the notation and assumptions of § 1.4. We say that (G , b, c), or (G , f, f̌),
is a Legendre triple if we can write G as a tensor product of two Q`-sheaves of rank one over
η, G ' Gt ⊗ Gw, where Gt is tamely ramified at s and Gw is trivialized by a cyclic extension
of order pm+1 of η (m> 0) and satisfies the following conditions: there exists a ∈Wm+1(K)
such that (a, b, c) is a Legendre triple and the pull-back of Gw to Spec(K) is associated to a
(cf. Definition 2.16). It follows in particular that G is wildly ramified.

Suppose given the pair (G , f), we would like to compute the local Fourier transform
F

(z,∞̌)
ψ0

(f∗G ). In order to apply (1.4.1), since the morphism f̌ is completely determined by c, the
problem is to find a non-zero function c over η such that (G , b, c) is a Legendre triple. It is clear
that we can first choose a satisfying (1.5.1), and then choose c satisfying (1.5.4); but, in general,
c may not satisfy (1.5.3). In fact, there are pairs (G , b) such that the sheaf F

(z,∞̌)
ψ0

(f∗G ) is not
monomial; therefore, (1.4.1) implies that there is no c such that (G , b, c) is a Legendre triple
for such pairs (G , b). On the other hand, there are extreme cases for which (1.5.3) is implied by
the two other relations, and hence there exists c such that (G , b, c) is a Legendre triple. Indeed,
(1.5.1) and (1.5.4) imply that we have the following relation

deg(f̌) = sw(f∗G ) + deg(f), (1.6.1)

where deg(−) is the degree and sw(−) is the Swan conductor (cf. (5.2.3)). If f is tamely
ramified, sw(f∗G ) = sw(G ) > 1 and sw(G ) + deg(f) is prime to p, then f̌ is tamely ramified, and
hence (1.5.3) is satisfied. Note that under the assumptions on tameness, we have ord(tb′/b) =
ord(tc′/c) = 0.

A special case of formula (1.4.1) was conjectured by Laumon and Malgrange [Lau87, 2.6.3]
and proved by Fu [Fu07]. It corresponds to the extreme case where Gw is an Artin–Schreier sheaf
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(i.e. m= 0) of Swan conductor s, and f is a tamely ramified morphism of degree r, such that
1 6 s < p, r + s is prime to p, and k is algebraically closed.

1.7 The main idea and the key technical tool for the proof of (1.4.1) come from our theory
of ramification [AS09]. We denote by pr1 and pr2 the canonical projections of η ×k η, by
j : η ×k η→ S ×k S the canonical injection, and put b1 = pr∗1(b) and c2 = pr∗2(c). The proof of
(1.4.1) is made in two steps. The first and most important step is a calculus of vanishing cycles
under the Legendre conditions. The second step is a computation of the dimension of the local
Fourier transform, which holds in general without any restriction on the sheaf.

First, we study the complex of vanishing cycles of the sheaf j!(pr∗1(G )⊗Lψ0(b1c2)) relatively
to the second projection S ×k S→ S. By adapting our method in [AS09], we prove that, under
the Legendre conditions, this complex can be explicitly described over an open subscheme
of a suitable blow-up of S ×k S along a closed subscheme of the diagonal S→ S ×k S
(cf. Proposition 4.11). Figuratively speaking, we kill the ramification by blowing-up in the
diagonal, which was the leitmotiv of [AS02, AS03, AS09]. From this, we deduce that the sheaf
f̌∗(F(z,∞̌)

ψ0
(f∗G )) over η has a direct factor isomorphic to

D = G ⊗Lψ0(bc)⊗K

(
−1

2
dc

db

)
⊗Q,

and the morphism f̌∗(D)→ F
(z,∞̌)
ψ0

(f∗G ), induced by the trace homomorphism f̌∗f̌
∗→ id, is

injective (cf. Proposition 4.3).

Second, in order to prove that the morphism f̌∗(D)→ F
(z,∞̌)
ψ0

(f∗G ) is an isomorphism, it is

enough to show that the rank of F
(z,∞̌)
ψ0

(f∗G ) is equal to the degree of f̌ . By (1.6.1), the latter
relation is a special case of a general formula proved by Laumon [Lau87, 2.4.3]: namely, for any
Q`-sheaf F over τz, we have

rk(F (z,∞̌)
ψ0

(F )) = sw(F ) + rk(F ). (1.7.1)

We give in the appendix (Proposition B.6) another proof of this equation using a formula of
Deligne–Kato that computes the dimension of the nearby cycle complex of a sheaf on a smooth
curve over a strictly henselian trait. Deligne considered the case where the sheaf has no vertical
ramification [Lau81, 5.1.1], and Kato extended the formula to the general case [Kato87a, 6.7]. We
give in the appendix (Theorem A.13) a brief review of Kato’s formula for rank-one sheaves, which
is enough for our application, by using his refined Swan conductors. The latter fits perfectly in
our ramification theory as proved in [AS09], and hence in the general philosophy of this article.

1.8 Formula (1.4.1) has strong relations with the theory of ε-factors. First, it was suggested by
explicit formulas for ε-factors of quasi-characters (8.7.3) (cf. also [Hen84]). Second, it implies
Laumon’s formula relating ε-factors and local Fourier transforms. More precisely, if k is finite,
F is a Q`-sheaf over τ0 and F! is the extension of F by 0 to T0, then Laumon [Lau87, 3.6.2]
proved that we have

(−1)d det(RecŤ∞̌(x̌−1), F(0,∞̌)(F )) = ε(T0,F!, dx), (1.8.1)

where d is the dimension of F
(0,∞̌)
ψ0

(F ), ε(T0,F!, dx) is the ε-factor of the sheaf F! over T0, and
RecŤ∞̌ is the reciprocity isomorphism of class field theory for the completion of the function field
k(τ̌∞̌) of Ť∞̌ (cf. § 9.1).
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Under the assumptions of § 1.4, if (G , f, f̌) is a Legendre triple and z = 0, we give in
Theorem 9.2 a new proof of (1.8.1) for the sheaf F = f∗(G ). We deduce it from (1.4.1) by using
three ingredients. The first is a classical explicit formula for ε-factors involving Gauss sums
(Proposition 8.7). The second is a variation on Witt’s explicit reciprocity law due to Fontaine
(Proposition 8.11). The third ingredient is new (Proposition 8.8); it is an explicit formula for the
Langlands λ-factor which appears in the induction formula for ε-factors. We prove the latter by
using Deligne’s formula for the ε-factor of an orthogonal representation in terms of its second
Stiefel–Whitney class [Del76, 1.5], and Serre’s formula for the second Stiefel–Whitney class of
induced representations in terms of the Hasse–Witt invariant of quadratic forms [Ser84].

1.9 This article is divided into two parts and augmented by two appendices. The first part, with
a strong geometric flavor, is devoted to the proof of (1.4.1). Section 2 develops the necessary tools
from ramification theory of Artin–Schreier–Witt sheaves. It contains in particular a computation
of Witt vectors (Proposition 2.7) that plays a crucial role in the following. In § 3, we review the
definition of the local Fourier transform and state the main theorems (Theorems 3.7 and 3.9).
Section 4 is the heart of the article. It contains the analysis of a complex of vanishing cycles
by blowing-up in the diagonal mentioned in § 1.7. The proofs of the main theorems are given in
§ 5. The second part, with a more arithmetic flavor, is devoted to the proof of (1.8.1). It starts
by a brief review of Stiefel–Whitney classes and a formula of Serre in § 6, followed by a short
complement on refined logarithmic differents in § 7. In § 8, we review the theory of ε-factors and
develop the necessary ingredients for the proof of (1.8.1). Finally, the proof of this formula is
completed in § 9. In Appendix A we review the Deligne–Kato formula for the dimension of the
nearby cycle complex of a sheaf of rank one on a smooth curve over a strictly henselian trait. In
Appendix B we apply this formula to compute the dimension of the local Fourier transform.

1.10 C. Sabbah proved an explicit formula for the local Fourier transform of a formal germ
of meromorphic connection of one complex variable using a blow-up technique [Sab08]. The
relation between our approaches is not clear. During the preparation of this article, we learned
from M. Strauch that he made some expectations on a local principle of stationary phase, without
giving precise formulas. He is motivated by applications to the cohomology of Lubin–Tate spaces.
We are grateful to an anonymous referee for his thorough reading of the manuscript and helpful
comments. The first author would like to acknowledge the hospitality of the Department of
Mathematical Sciences at the University of Tokyo where this work was achieved.

We finish this section with some notation and conventions.

1.11 In this article (except in §§ 7 and 8 and the appendix), we fix a prime number p > 2, a perfect
field k of characteristic p and an algebraic closure k of k. For q a power of p, we denote by Fq the
unique subfield of k with q elements. We also fix a prime number ` different from p, an algebraic
closure Q` of the field Q` of `-adic numbers and a non-trivial additive character ψ0 : Fp→Q×` . For
every integer m> 0, we fix an injective homomorphism ψm : Z/pm+1Z→Q×` such that for any
a ∈ Fp, we have ψm(pma) = ψ0(a), where pma denotes the embedding Fp→ Z/pm+1Z induced by
the multiplication by pm on Z.

1.12 If X is a scheme and x ∈X, we denote by κ(x) the residue field of X at x and by
ix : Spec(κ(x))→X the canonical morphism.
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1.13 For a scheme X, a ‘Q`-sheaf over X’ stands for a ‘constructible Q`-sheaf over X’ in the
sense of [Del80, 1.1.1]. We denote by Db

c(X,Q`) the derived category of `-adic sheaves defined
in [Del80, 1.1.2 and 1.1.3].

2. Calculus on Witt vectors

2.1 Let R be a complete discrete valuation ring of equal characteristic p, with residue field k,
equipped with a uniformizer t, K be the fraction field of R, ord be the valuation of K normalized
by ord(t) = 1. We identify R with the ring of power series k[[t]]. For any x ∈K, we denote by
x(i) the ith iterated derivative of x relatively to t (i> 1); we put x(0) = x and x′ = x(1).

2.2 The module Ω1
R is free of rank one over R, and hence complete and separated. We

identify it with a submodule of Ω1
K . For a ∈K×, we put d log(a) = da/a ∈ Ω1

K . We denote
by Ω1

R(log) the sub-R-module of Ω1
K generated by Ω1

R and the elements of the form d log a
for a ∈R− {0}. Then Ω1

R(log) is a free R-module of rank one generated by d log(t). We put
Ω1
k(log) = Ω1

R(log)⊗R k = k · d log(t). We define an increasing exhaustive filtration on Ω1
K by

setting, for n ∈ Z, filnΩ1
K = t−nΩ1

R(log). We have

GrnΩ1
K = filnΩ1

K/filn−1Ω1
K ' (t−nR/t−n+1R) · d log(t).

2.3 Let m be an integer >0, Wm+1(K) be the ring of Witt vectors of length m+ 1.
Following [Bry83, Kato89], we define an increasing exhaustive filtration on the group of
Witt vectors Wm+1(K) by setting, for n ∈ Z, filnWm+1(K) to be the subgroup of elements
(x0, . . . , xm) such that

pm−iord(xi) >−n for all 0 6 i6m. (2.3.1)

We put

GrnWm+1(K) = filnWm+1(K)/filn−1Wm+1(K).

Let V: Wm+1(K)→Wm+2(K) be the verschiebung morphism. We have

V(filnWm+1(K))⊂ filnWm+2(K).

2.4 Let F: W•+1Ω1
K →W•Ω1

K be the Frobenius morphism of the de Rham–Witt complex of K
over k. The homomorphism

Fmd : Wm+1(K)→ Ω1
K (2.4.1)

is given by the formula

Fm d(x0, . . . , xm) =
m∑
i=0

xp
m−i−1
i dxi. (2.4.2)

Therefore, for any integer n, we have

Fmd(filnWm+1(K))⊂ filnΩ1
K . (2.4.3)

We deduce a canonical homomorphism

grn(Fmd) : GrnWm+1(K)→GrnΩ1
K . (2.4.4)

2.5 The exact sequence

0 // Z/pm+1Z // Wm+1
F−1 // Wm+1

// 0 (2.5.1)
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induces a surjective homomorphism

δm+1 : Wm+1(K)→H1(K, Z/pm+1Z). (2.5.2)

We define an increasing exhaustive filtration on H1(K, Z/pm+1Z) by setting (for n ∈ Z)

filnH1(K, Z/pm+1Z) = δm+1(filnWm+1(K)). (2.5.3)

We put

GrnH1(K, Z/pm+1Z) = filnH1(K, Z/pm+1Z)/filn−1H1(K, Z/pm+1Z).

By [Kato89, 3.2] and [AS09, 10.7], for any integer n> 1, there exists a unique homomorphism

ψm,n : GrnH1(K, Z/pm+1Z)→GrnΩ1
K (2.5.4)

making the following diagram commutative.

GrnWm+1(K)
−grn(Fmd) //

grn(δm+1)

��

GrnΩ1
K

GrnH1(K, Z/pm+1Z)

ψm,n

44jjjjjjjjjjjjjjjjj
(2.5.5)

For any χ ∈H1(K, Z/pm+1Z), the Swan conductor of χ, sw(χ), is the smallest integer
n> 0 such that χ ∈ filnH1(K, Z/pm+1Z) (cf. [Bry83, corollary of Theorem 1] and [Kato89]).
Kato defined the refined Swan conductor of χ, rsw(χ), as the image of the class of χ by the
homomorphism

ψm,sw(χ) : Grsw(χ)H
1(K, Z/pm+1Z)→Grsw(χ)Ω

1
K .

2.6 Let k(θ) be the field of rational functions in one variable θ over k, RL = k(θ)[[t]] be the
ring of power series in the variable t over k(θ), L be the fraction field of RL. We consider L as
an extension of K by the k-homomorphism v : K→ L defined by v(t) = t. Let r be an integer
greater than or equal to one, u : K→ L be the k-homomorphism defined by u(t) = t(1 + trθ). In
[AS09, 13.4], we proved that for any integer n, the group homomorphism

u− v : Wm+1(K)→Wm+1(L) (2.6.1)

maps filnWm+1(K) to filn−rWm+1(L), and we expressed the induced homomorphism on the
graded pieces

GrnWm+1(K)→Grn−rWm+1(L).

We refine this result as follows.

Proposition 2.7. Let n be an integer, a= (a0, . . . , am) ∈ filnWm+1(K), α be the element of K
such that Fm da= α dt. Then ord(tα) >−n and we have

u(a)− a≡Vm

(p−1∑
i=1

tiα(i−1)

i!
(trθ)i

)
mod filn−prWm+1(L). (2.7.1)

First, we prove some preliminary results. We define a sequence of polynomials (n> 0)

Qn ∈ Z
[

1
p

]
[X0, . . . , Xn, Y0, . . . , Yn]
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by the inductive formula
n∑
i=0

pi(Xi(1 + Yi))p
n−i

=
n∑
i=0

piXpn−i

i +
n∑
i=0

piQp
n−i

i . (2.7.2)

Observe that for a commutative ring A and elements x= (x0, . . . , xm), y = (y0, . . . , ym) and
z = (z0, . . . , zm) of Wm+1(A) such that zi = xi(1 + yi) for all 0 6 i6m, we have

z − x= (Q0(x, y), Q1(x, y), . . . , Qm(x, y)). (2.7.3)

We denote by λ(Y ) the shifted p-truncated logarithm, that is, the polynomial of Z(p)[Y ]
defined by

λ(Y ) =
p−1∑
i=1

(−1)i+1Y
i

i
. (2.7.4)

Lemma 2.8.

(i) The polynomials Qn belong to the ideal of Z[X0, . . . , Xn, Y0, . . . , Yn] generated by
(Y0, . . . , Yn).

(ii) If we attach the weight pi to the variable Xi and the weight 0 to the variable Yi, the
polynomial Qn is homogeneous of weight pn.

(iii) We have the following relation in Z(p)[X0, . . . , Xn, Y0, . . . , Yn]

Qn ≡
n−1∑
i=0

Xpn−i

i λ(Yi) +XnYn mod (p) + (Y0, . . . , Yn)p. (2.8.1)

Propositions (i) and (ii) are easy. We prove proposition (iii). Since Qi belongs to the ideal
(Y0, . . . , Yi), we have

pnQn ≡
n∑
i=0

piXpn−i

i ((1 + Yi)p
n−i − 1) mod (Y0, . . . , Yn)p.

So the required relation follows from the following congruence, for i6 n− 1 and 1 6 j 6 p− 1,

1
pn−i

(
pn−i

j

)
≡ (−1)j+1 1

j
mod p.

Lemma 2.9.

(i) For any x ∈K, we have

u(x)− x≡
p−1∑
i=1

tix(i)

i!
(trθ)i mod xtprRL. (2.9.1)

(ii) For any x ∈K×, we have

ord
(
u(x)
x
− 1
)

> r. (2.9.2)

(iii) For any x ∈K×, if we put y = x′/x, we have

λ

(
u(x)
x
− 1
)
≡

p−1∑
i=1

tiy(i−1)

i!
(trθ)i mod tprRL. (2.9.3)
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(i) Since ord(tx′) > ord(x) for any x ∈K, we are reduced by the Leibniz rule to proving
(2.9.1) for x= t, for x= t−1 and for x ∈R×. The first two cases are obvious, and the last one
follows from Taylor expansion.

(ii) It follows immediately from part (i) and the fact that ord(tix(i)) > ord(x) for all i> 1.
(iii) Since both sides of (2.9.3) define group homomorphisms from K× to RL/t

prRL, it is
enough to prove (2.9.3) for x= t and for x ∈R×. For x= t, both sides are equal to λ(trθ). For
x ∈R×, we are reduced by truncation to the case where x is a polynomial in t with a non-
vanishing constant term. Then after replacing k by an algebraic closure, we are further reduced
to the case where x= 1− ct with c ∈ k. In this case, both sides of (2.9.3) are equal since

λ

(
−ct

1− ct
trθ

)
=

p−1∑
i=1

(−1)i−1

i

(
−ct

1− ct

)i
(trθ)i, (2.9.4)

and, for 1 6 i6 p− 1, (
−c

1− ct

)(i−1)

= (−1)i−1(i− 1)!
(
−c

1− ct

)i
. (2.9.5)

2.10 We can now prove 2.7. We set b= (b0, . . . , bm) ∈ Lm+1, where bi = (u(ai)/ai)− 1 if ai 6= 0,
and bi = 0 if ai = 0; so we have bi ∈ trRL (see (2.9.2)). It follows from 2.8(ii) and (2.8.1) that
we have

pm−iord(Qi(a, b)) >−n+ pm−ir, (2.10.1)

ord
(
Qm(a, b)−

m−1∑
i=0

ap
m−i

i λ(bi)− u(am) + am

)
>−n+ pr. (2.10.2)

We put ci = a′i/ai if ai 6= 0, and ci = 0 if ai = 0. It follows from (2.9.1) and (2.9.3) that we have
m−1∑
i=0

ap
m−i

i λ(bi) + u(am)− am

≡
m−1∑
i=0

ap
m−i

i

p−1∑
j=1

tjc
(j−1)
i

j!
(trθ)j +

p−1∑
j=1

tja
(j)
m

j!
(trθ)j mod tpr−nRL

≡
p−1∑
j=1

tj
(m−1∑
i=0

ap
m−i

i c
(j−1)
i + a(j)

m

)
(trθ)j

j!
mod tpr−nRL. (2.10.3)

The proposition follows since we have by definition

α=
m−1∑
i=0

ap
m−i

i ci + a′m. (2.10.4)

Corollary 2.11. We keep the notation of 2.7; moreover, let b, c be non-zero elements of K,
ν(b) = ord(tb′/b), ν(c) = ord(tc′/c). Assume that α+ cb′ = 0 and ν(b) + ν(c)< (p− 2)r. Then we
have

u(a)− a+ Vm(c(u(b)− b)) ∈ filn−ν(c)−2r(Wm+1(L)) (2.11.1)
and

u(a)− a+ Vm(c(u(b)− b))≡Vm

(
1
2
tα
tc′

c
(trθ)2

)
mod filn−ν(c)−2r−1(Wm+1(L)). (2.11.2)
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Observe first that we have

α′ + cb(2) = α
c′

c
, (2.11.3)

and, for any i> 2,

ord(tiα(i−1) + tib(i)c) > ord
(
tα
tc′

c

)
. (2.11.4)

Indeed, the equation α+ cb′ = 0 implies immediately (2.11.3) and the following equation

tiα(i−1) + ctib(i) =−
∑i−1

j=1

(
i− 1
j

)
tib(i−j)c(j).

The relation ord(tz′) > ord(z) for any z ∈K, implies that each term of the right-hand side has
bigger valuation than t2b′c′ =−t2αc′/c.

We have ord(tα) >−n (Proposition 2.7), ord(bc) >−n− ν(b) and ord(t2αc′/c) >−n+ ν(c).
Hence, we deduce from (2.7.1) and (2.9.1) that we have

u(a)− a+ Vm(c(u(b)− b))

≡Vm

(p−1∑
i=2

ti

i!
(α(i−1) + cb(i))(trθ)i

)
mod filn+ν(b)−prWm+1(L). (2.11.5)

The corollary follows from (2.11.5), (2.11.3), (2.11.4) and the assumptions.
We can replace the condition α+ cb′ = 0 of 2.11 by a weaker condition (2.12.2) as follows.

Corollary 2.12. We keep the notation of 2.7; moreover, let b, c be non-zero elements of K,
ν(b) = ord(tb′/b), ν(c) = ord(tc′/c). Assume that the following conditions are satisfied

ord(tα) =−n, (2.12.1)
ord(α+ cb′) >−n+ ν(c) + r, (2.12.2)

ν(b) + ν(c)< (p− 2)r. (2.12.3)

Then we have

u(a)− a+ Vm(c(u(b)− b)) ∈ filn−ν(c)−2r(Wm+1(L)) (2.12.4)

and

u(a)− a+ Vm(c(u(b)− b))≡Vm

(
1
2
tα
tc′

c
(trθ)2

)
mod filn−ν(c)−2r−1(Wm+1(L)). (2.12.5)

Let c0 be the element of K such that α+ c0b
′ = 0. Since α 6= 0, we have c0 6= 0 and

1− c

c0
=
α+ cb′

α
.

We deduce that ord(1− c/c0)> ν(c) + r > 0; in particular, we have ord(c) = ord(c0). The relation
ord(tz′) > ord(z) for any z ∈K, implies that

ord
(
t

(
c′

c
− c′0
c0

))
= ord

(
t
c′c0 − cc′0

c2
0

)
> ν(c) + r, (2.12.6)

and, hence, we have ν(c) = ν(c0). By (2.9.1), we have

(c− c0)(u(b)− b) =
p−1∑
i=1

(c− c0)ti
b(i)

i!
(trθ)i mod (c− c0)btprRL.
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Taking into account the relations ord(tz′) > ord(z) for any z ∈K,

ord(b(c− c0))> ord(bc0) =−n− ν(b), ord(b′(c− c0)) >−n+ ν(c) + r

which is (2.12.2), and (2.12.3), we deduce that

ord((c− c0)(u(b)− b))>−n+ ν(c) + 2r. (2.12.7)

The proposition follows from (2.12.3), (2.12.6), (2.12.7) and 2.11.

2.13 Let a be a non-zero element of Wm+1(K), let b, c be non-zero elements ofK. We denote by α
the element of K such that Fmda= α dt, n=−ord(tα), ν(b) = ord(tb′/b) and ν(c) = ord(tc′/c).
We say that (a, b, c) is a Legendre triple if the following conditions are satisfied

a ∈ filnWm+1(K), (2.13.1)
2ord(α+ cb′) >−n+ ν(c), (2.13.2)
2ν(b) + pν(c)< (p− 2)n. (2.13.3)

Under these conditions, n is finite (as a 6= 0), and it is the smallest integer such that a ∈
filnWm+1(K). Moreover, we have n> 1 and ord(tb′c) =−n. We say that (n, ν(b), ν(c)) is the
conductor of the triple (a, b, c).

Remark 2.14. Under the assumptions of § 2.13, if moreover n− ν(c) = 2r is even, then the
conditions of § 2.13 are equivalent to the conditions of 2.12.

2.15 Let S = Spec(R), η = Spec(K) be the generic point of S, let b, c ∈K and let G be a Q`-
sheaf of rank one over η trivialized by a cyclic extension of order pm+1 of η (m> 0). We denote
by χ ∈H1(K, Z/pm+1Z) the class such that ψ−1

m ◦ χ is the character associated to G (see § 1.11).
We say that (G , b, c) is a Legendre triple if there exists a ∈Wm+1(K) such that δm+1(a) = χ (see
(2.5.2)), a, b and c are non-zero, and (a, b, c) is a Legendre triple.

Definition 2.16. Let X be a smooth connected curve over k (respectively, the spectrum of a
henselian discrete valuation ring of equal characteristic p and residue field k), let s be a closed
point of X, let U be the open subscheme X − {s} of X, x, y ∈ Γ(U, OX), and let G be a smooth
Q`-sheaf of rank one over U . Let S be the spectrum of the completion of the local ring of X at s,
let η be the generic point of S, and let ~ : S→X be the canonical map. We say that (G , x, y)
is a Legendre triple at s if there exist Gt and Gw two smooth Q`-sheaves of rank one over U
satisfying the following conditions:

(i) G ' Gt ⊗ Gw;

(ii) Gt is tamely ramified at s;

(iii) Gw is trivialized by a cyclic extension of order pm+1 of U (m> 0);

(iv) (~∗U (Gw), ~∗U (x), ~∗U (y)) is a Legendre triple in the sense of § 2.15.

3. Local Fourier transform

3.1 Lang’s isogeny L of Ga,k = Spec(k[u]), defined by L∗(u) = up − u, induces the Artin–Schreier
exact sequence

0→ Fp→Ga,k
L→Ga,k→ 0. (3.1.1)
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The push-forward of this extension by the character ψ−1
0 (see § 1.11) defines a Q`-sheaf of

rank one, Lψ0 , on Ga,k. Following Deligne, if f : X →Ga,k is a morphism of schemes, we put
Lψ0(f) = f∗Lψ0 .

3.2 Let A = Spec(k[x]) and Ǎ = Spec(k[x̌]) be two affine lines over k (equipped with coordinates
x and x̌) which are in duality via the pairing A×k Ǎ→Ga,k defined by (x, x̌) 7→ u= xx̌. We
denote by P and P̌ the projective lines over k, completions of A and Ǎ, respectively, by∞∈ P(k)
and ∞̌ ∈ P̌(k) the points at infinity, by j : A→ P and ̌ : Ǎ→ P̌ the canonical injections and by
pr and p̌r the canonical projections of A×k Ǎ. We have the Q`-sheaf Lψ0(xx̌) on A×k Ǎ; we put
L ψ0(xx̌) = (j × ̌)!Lψ0(xx̌) on P×k P̌. For a complex K of Db

c(A,Q`), the Fourier transform
of K is the complex Fψ0(K) of Db

c(Ǎ,Q`) defined by

Fψ0(K) = Rp̌r!(pr∗K ⊗Lψ0(xx̌)). (3.2.1)

In the following, we omit the subscript ψ0 from the notation Fψ0 and Lψ0 when there is no
risk of confusion.

3.3 The Kummer covering of order two is the exact sequence

1→ µ2(k)→Gm,k
[2]→Gm,k→ 1, (3.3.1)

where [2] is the square power map. We denote by K the Q`-sheaf of rank one on Gm,k obtained by
push-forward of this extension by the unique non-trivial character µ2(k)→Q×` . For a morphism
f : X →Gm,k, we put K (f) = f∗K .

Consider the open subschemes U = A− {0} of A and Ǔ = Ǎ− {0̌} of Ǎ, equipped with the
isomorphisms x : U →Gm,k and x̌ : Ǔ →Gm,k. Let Q be the Q`-sheaf on Spec(k) defined by

Q = H1
c(Uk,K (x)⊗Lψ0(x)). (3.3.2)

Then Q has rank one and the Hi
c(Uk,K (x)⊗Lψ0(x)), for i 6= 1, vanish. Moreover, we have

canonical isomorphisms

F(j∗K (x))[1]' ̌∗K (x̌)⊗Q, (3.3.3)
̌∗Rp̌r!(Lψ0(x2x̌))[1]'K (x̌)⊗Q. (3.3.4)

Indeed, the first assertion and the isomorphism (3.3.3) are proved in [Lau87, 1.4.3.1]. Consider
the morphism π : A→A defined by π(x) = x2. By the projection formula, we have a canonical
isomorphism

Rp̌r!(Lψ0(x2x̌))' Rp̌r!((π × 1)∗Lψ0(xx̌))' Rp̌r!((π × 1)∗(Q`)⊗Lψ0(xx̌)).

Since we have π∗(Q`)' j∗K ⊕Q`, the isomorphism (3.3.4) follows from (3.3.3) and [Lau87,
1.2.2.2].

3.4 Let z be a closed point of P, let ž be a closed point of P̌, let T and Ť be the henselizations
of P and P̌ at z and ž, respectively, let τ and τ̌ be the generic points of T and Ť , respectively,
let h : T → P and ȟ : Ť → P̌ be the canonical morphisms, and let pr and p̌r be the canonical
projections of T ×k Ť . We denote also by x and x̌ the pull-backs of the coordinates x and x̌ of A
and Ǎ over τ and τ̌ , respectively, and (abusively) by L ψ0(xx̌) the sheaf (h× ȟ)∗L ψ0(xx̌) over
T ×k Ť . Let F be a Q`-sheaf over τ , F! be its extension by zero to T . By [Lau87, 2.3.2.1 and
2.3.3.1], the complex of vanishing cycles Φ(pr∗(F!)⊗L ψ0(xx̌)) in Db

c(T ×k τ̌ ,Q`), relatively to
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the projection p̌r : T ×k Ť → Ť , is supported on z ×k τ̌ and has cohomology only in degree one.
Following Laumon, we define the local Fourier transform of F at (z, ž), denoted by F(z,ž)(F ),
to be the Q`-sheaf over z ×k τ̌ given as

F(z,ž)(F ) = (iz × 1)∗(Φ1(pr∗(F!)⊗L ψ0(xx̌))). (3.4.1)

In fact, F(z,ž)(F ) vanishes if (z, ž) ∈A× Ǎ (see [Lau87, 2.3.2.1 and 2.3.3.1]). Observe that if z
or ž is k-rational (which is the case if (z, ž) /∈A× Ǎ), then z ×k Ť is connected; more precisely,
if z is k-rational, then z ×k Ť = Ť , and if ž is k-rational, then z ×k Ť is a finite étale covering
of Ť .

3.5 We keep the notation of § 3.4, moreover, let k′ be a finite extension of k, u : k(z)→ k′ and
ǔ : k(ž)→ k′ be two k-homomorphisms, where k(z) and k(ž) are the residue fields of z and ž,
respectively. The pairs (z, u) and (ž, ǔ) define rational points z′ ∈ Pk′(k′) and ž′ ∈ P̌k′(k′). Let T ′

and Ť ′ be the henselizations of Pk′ and P̌k′ at z′ and ž′, respectively, let τ ′ and τ̌ ′ be the generic
points of T ′ and Ť ′, respectively, and let f : T ′→ T and f̌ : Ť ′→ Ť be the canonical morphisms.
The canonical morphism Ť ′→ k′ ⊗k Ť induces a morphism f̃ : Ť ′→ z ×k Ť . For any Q`-sheaf
F ′ over τ ′, we can consider the local Fourier transform F(z′,ž′)(F ′), of F ′ at (z′, ž′), which is a
Q`-sheaf over τ̌ ′ = z′ ×k′ τ̌ ′.

Proposition 3.6. We keep the notation of § 3.5.

(i) For any Q`-sheaf F over τ , we have a canonical functorial isomorphism over τ̌ ′:

f̃∗(F(z,ž)(F ))' F(z′,ž′)(f∗F ). (3.6.1)

(ii) Assume that ž is k-rational. Then for any Q`-sheaf F ′ over τ ′, we have a canonical functorial
isomorphism over z ×k τ̌ :

f̃∗(F(z′,ž′)(F ′))' F(z,ž)(f∗F ′). (3.6.2)

Consider the following commutative diagram with Cartesian squares.

T ′ ×k′ Ť ′
γ //

��;;
;;

;;
;;

;;
;;

;;
;;

;;
T ′ ×k Ť ′ //

��

T ′ ×k Ť
pr1 //

��

T ′

f

��
T ×k Ť

pr //

p̌r

��

T

Ť ′
f̌ // Ť

Observe that γ is an open and a closed immersion, and hence is étale. Let G be a Q`-sheaf
over T ′ ×k Ť , G ′ be its pull-back over T ′ ×k′ Ť ′. We consider the complexes of vanishing cycles
Φ(G ) in Db

c(T
′ ×k τ̌ ,Q`) and Φ(G ′) in Db

c(T
′ ×k′ τ̌ ′,Q`), relatively to the second projections

T ′ ×k Ť → Ť and T ′ ×k′ Ť ′→ Ť ′, respectively. We denote by

p : T ′ ×k′ τ̌ ′→ T ′ ×k τ̌ (3.6.3)

the canonical morphism. By [Del77, [Th. finitude] 3.7] and [DK73, XIII, 2.1.7.2], and since γ is
étale, we have a canonical isomorphism

p∗(Φ(G )) ∼→ Φ(G ′). (3.6.4)
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(i) We consider the sheaf H = pr∗(F!)⊗L ψ0(xx̌) over T ×k Ť , and its complex of vanishing
cycles Φ(H ) in Db

c(T ×k τ̌ ,Q`), relatively to the projection p̌r. We take for G the inverse image
of H over T ′ ×k Ť . By [DK73, XIII, 2.1.7.2], since f is étale, we have a canonical isomorphism

(f × 1)∗(Φ(H )) ∼→ Φ(G ). (3.6.5)

Then the proposition follows from (3.6.4) and (3.6.5).
(ii) We consider the sheaf H = pr∗(f∗F ′! )⊗L ψ0(xx̌) over T ×k Ť , and its complex of

vanishing cycles Φ(H ) in Db
c(T ×k τ̌ ,Q`), relatively to the projection p̌r. We take G = pr∗1(F ′! )⊗

L ψ0(xx̌) over T ′ ×k Ť , where we have denoted (abusively) by L ψ0(xx̌) the pull-back of the sheaf
L ψ0(xx̌) over T ′ ×k Ť . By [DK73, XIII, 2.1.7.1] and the projection formula, since f is finite,
we have a canonical isomorphism

(f × 1)∗(Φ(G )) ∼→ Φ(H ). (3.6.6)

On the other hand, the canonical morphism Ť ′→ k′ ⊗k Ť is an isomorphism by assumption.
Therefore, p is an isomorphism, and we deduce from (3.6.4) a functorial isomorphism

Φ(G ) ∼→ p∗(Φ(G ′)). (3.6.7)

The proposition follows from (3.6.6) and (3.6.7).

Theorem 3.7. Let S be the spectrum of a henselian discrete valuation ring of equal
characteristic p, with perfect residue field, let s (respectively, η) be the closed (respectively
generic) point of S, let G be a Q`-sheaf of rank one over η, and let v : S→A and v̌ : S→ P̌ be
two non-constant morphisms (with the notation of § 3.2). We put z = v(s), ž = v̌(s), b and c the
functions on η deduced by pull-back from the coordinates x and x̌ of A and Ǎ respectively. We
take again the notation of § 3.4 relatively to z and ž, and denote by f : S→ T and f̌ : S→ Ť
the morphisms induced by v and v̌, respectively, by q : T → z the canonical morphism, and
by f̃ : S→ z ×k Ť the morphism (q ◦ f, f̌). We assume that (G , b, c) is a Legendre triple at s
(cf. 2.16), and f and f̌ are finite and étale at η. Then ž = ∞̌ and we have a canonical isomorphism

F(z,ž)(f∗G ) ∼→ f̃∗

(
G ⊗Lψ0(bc)⊗K

(
−1

2
dc

db

)
⊗Q

)
. (3.7.1)

The following diagram summarizes the geometric picture of Theorem 3.7.

S ×k S //

��

S

f

�� v

��

T ×k Ť //

�� %%JJJJJJJJJ T
h

""EE
EE

EE
EE

EE

S

v̌ //

f̌ // Ť

ȟ
%%KKKKKKKKKKKK P×k P̌ //

��

P

P̌

(3.7.2)

The proof of Theorem 3.7 is given in § 5. For (z, ž) = (∞, 0̌) or (∞, ∞̌), the result is also
valid under an extra condition (Theorem 3.9).

Remark 3.8. We keep the notation of 3.7. It is clear that Ω1
T/k is a free OT -module of rank

one. So the OS-module Ω1
S/k is of finite type, and hence free of rank one because its completion
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along the closed point of S is free of rank one. In particular, dc/db is a well-defined function
over η.

Theorem 3.9. Let S be the spectrum of a henselian discrete valuation ring of equal
characteristic p, with perfect residue field, let s (respectively, η) be the closed (respectively,
generic) point of S, let G be a Q`-sheaf of rank one over η, and let v : S→ P and v̌ : S→ P̌
be two non-constant morphisms (with the notation of § 3.2). We put z = v(s), ž = v̌(s), b and c
the functions on η deduced by pull-back from the coordinates x and x̌ of A and Ǎ respectively.
We take again the notation of § 3.4 relatively to z and ž, and denote by f : S→ T and f̌ : S→ Ť
the morphisms induced by v and v̌, respectively. We assume that the following conditions are
satisfied:

(i) (G , b, c) is a Legendre triple at s (cf. 2.16);

(ii) f and f̌ are finite and étale at η;

(iii) z =∞.

Moreover, we assume that one of the following conditions is satisfied:

(iv) ž = 0̌ and all of the slopes of f∗(G ) are < 1;

(iv′) ž = ∞̌ and all of the slopes of f∗(G ) are > 1.

Then we have a canonical isomorphism

F(z,ž)(f∗G ) ∼→ f̌∗

(
G ⊗Lψ0(bc)⊗K

(
−1

2
dc

db

)
⊗Q

)
. (3.9.1)

The proof of Theorem 3.9 is given in § 5.

Remark 3.10. We keep the notation of 3.9, and put sw(f∗G ) and rk(f∗G ) the Swan conductor
and the rank of f∗(G ). If conditions (i), (ii) and (iii) are satisfied, if f is tamely ramified and if
sw(f∗G ) 6= rk(f∗G ), then one of the conditions (iv) or (iv′) is satisfied (cf. (5.2.2) and [Katz88,
1.13]).

4. Nearby cycles and blow-up of the diagonal

4.1 We keep the notation of § 3.2. Let X = Spec(B) be a smooth connected affine curve over
k, s ∈X(k), U be the open subscheme X − {s} of X, t ∈B be a local parameter at s which
is invertible on U . Let g : X → P and ǧ : X → P̌ be two non-constant k-morphisms, z = g(s),
ž = ǧ(s). We assume that g and ǧ are generically étale and that g(U)⊂A and ǧ(U)⊂ Ǎ. The
coordinates x and x̌ of A and Ǎ define two sections in Γ(U, OX) =Bt, that we denote also by x
and x̌.

We take again the notation of § 3.4 relatively to the points z and ž. Let S = Spec(Bh) be the
henselization of X at s, ~ : S→X be the canonical morphism, f : S→ T and f̌ : S→ Ť be
the morphisms induced by g and ǧ, respectively. We denote (abusively) by t the uniformizer of
Bh image of t ∈B and by s the closed point of S. Let η be the generic point of S, η (respectively, s)
be a geometric point of S above η (respectively, s). We denote by b and c the images of x and x̌,
respectively, by the canonical homomorphism Bt→Bh

t . Recall from Remark 3.8 that dc/db is a
well-defined function over η.
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We denote by pr1 and pr2 the canonical projections of X ×k S or X ×k Ť .

X ×k S //

pr2

��

pr1 ##GGGGGGGGG X ×k Ť

pr1{{ww
ww

ww
ww

w

pr2

��

X

S
f̌ // Ť

We consider the sheaf L ψ0(xx̌) over P×k P̌, and denote also by L ψ0(xx̌) its pull-back by g × ȟ
over X ×k Ť , and by L ψ0(xc) its pull-back by g × (ȟ ◦ f̌) over X ×k S. These notation are
coherent with our conventions, and do not lead to any ambiguity.

4.2 Let G be a smooth Q`-sheaf of rank one over U , G! be the extension by 0 of G to X,
Gη = ~∗U (G ). The purpose of this section is to study the complex of vanishing cycles

Φ(pr∗1(G!)⊗L ψ0(xx̌))

in Db
c(X ×k τ̌ ,Q`), relatively to the projection pr2 : X ×k Ť → Ť . By [Del77, [Th. finitude] 3.7],

(1× f̌)∗(Φ(pr∗1(G!)⊗L ψ0(xx̌))) is canonically isomorphic to the complex of vanishing cycles

Φ(pr∗1(G!)⊗L ψ0(xc))

in Db
c(X ×k η,Q`), relatively to the projection pr2 : X ×k S→ S.

Proposition 4.3. Assume that (G , x, x̌) is a Legendre triple at s (cf. 2.16).

(i) The complex Φ(pr∗1(G!)⊗L ψ0(xc)) is supported at s×k η and has cohomology only
in degree one, and the complex Φ(pr∗1(G!)⊗L ψ0(xx̌)) is supported at s×k τ̌ and has
cohomology only in degree one.

(ii) The sheaf (is × 1)∗(Φ1(pr∗1(G!)⊗L ψ0(xc))) over η has a direct factor canonically
isomorphic to

D = Gη ⊗Lψ0(bc)⊗K

(
−1

2
dc

db

)
⊗Q, (4.3.1)

where the sheaves K and Q are defined in § 3.3.

(iii) The morphism

f̌∗(D)→ (is × 1)∗(Φ1(pr∗1(G!)⊗L ψ0(xx̌))) (4.3.2)

induced by the trace morphism f̌∗f̌
∗→ id, is injective.

Proposition 4.3(i) is due to Laumon [Lau87, 2.3.2.1 and 2.3.3.1]. We prove the first statement
(which implies the second). By the t-exactness of the functor Φ (see [BBD82, 4.4.2] and [Ill94,
4.2]), it is enough to prove that the complex Φ(pr∗1(G!)⊗L ψ0(xc)) is supported on s×k η. Let
ord be the valuation of Bh

t normalized by ord(t) = 1. If ord(c) > 0, the sheaf pr∗1(G!)⊗L ψ0(xc)
is smooth over U ×k S, and the assertion follows from [DK73, XIII, 2.1.5] . If ord(c)< 0, the
assertion is a consequence of [Lau87, 1.3.1.2].

Proposition 4.3(ii)–(iii) will be proved in §§ 4.15 and 4.18.

4.4 Let X ×log
k S be the logarithmic product of X and S over k, that is, the open subscheme of

the blow-up of X ×k S along the closed point s× s, obtained by removing the strict transforms
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of the axes X ×k s and s×k S (see [AS09, 4.3]). The parameter t identifies X ×log
k S with the

affine scheme defined by the k-algebra

B ⊗k Bh[w, w−1]/(t⊗ 1− 1⊗ t · w). (4.4.1)

We also denote by pr1 and pr2 the canonical projections from X ×log
k S to X and S, respectively.

Then pr2 is smooth, and we have a canonical isomorphism pr−1
2 (η)' U ×k η. The strict transform

of the graph S→X ×k S of ~ defines a closed embedding

δ : S→X ×log
k S, (4.4.2)

whose ideal in the ring (4.4.1) is generated by w − 1. We put Y = pr−1
2 (s) and e= δ(s) ∈ Y (k).

Then Y is canonically isomorphic to the multiplicative group Gm,k = Spec(k[w, w−1]) and e is
the neutral element 1.

4.5 We denote by H the sheaf over U ×k η defined by

H = H om(pr∗2(Gη), pr∗1(G )), (4.5.1)

and consider the complex of nearby cycles

Ψη(H ⊗Lψ0(c(x− b)))

in Db
c(Y ×k η,Q`), relatively to the projection pr2 : X ×log

k S→ S. The following proposition is
a refinement of 4.3(i)–(ii). It will not be used in this article, and will be proved in § 4.19.

Proposition 4.6. Assume that (G , x, x̌) is a Legendre triple at s (cf. 2.16) and ž ∈ {0̌, ∞̌}.

(i) The complex Ψη(H ⊗Lψ0(c(x− b))) is supported on Σ×k η, where Σ is a finite subgroup-
scheme of Y = Gm,k, and has cohomology only in degree one.

(ii) The sheaf (ie × 1)∗(Ψ1
η(H ⊗Lψ0(c(x− b)))) over η has a direct factor canonically

isomorphic to K ((−1/2)(dc/db))⊗Q, where the sheaves K and Q are defined in § 3.3.

Remark 4.7. Condition (2.13.3) contained in the definition of a Legendre triple is not necessary
for Proposition 4.6(i).

4.8 We assume in the remainder of this section that (G , x, x̌) is a Legendre triple at s. Let R be
the completion of Bh, K be the fraction field of R. We identify R with the ring of power series
k[[t]]. We denote also by b and c the images of b and c in K. By Definition 2.16, there exist Gt

and Gw two smooth Q`-sheaves of rank one over U and a ∈Wm+1(K) (m> 0), satisfying the
following conditions:

(i) G ' Gt ⊗ Gw;

(ii) Gt is tamely ramified at s;

(iii) Gw is trivialized by a cyclic extension of order pm+1 of U ;

(iv) if we put χ= δm+1(a) ∈H1(K, Z/pm+1Z), then ψ−1
m ◦ χ is the character of the pull-back of

Gw to Spec(K) (see § 1.11);

(v) (a, b, c) is a Legendre triple. Let (n, ν(b), ν(c)) be its conductor (see § 2.13).
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We consider the sheaves Ht and Hw over U ×k η defined by

Ht = H om(pr∗2(~∗U (Gt)), pr∗1(Gt)), (4.8.1)
Hw = H om(pr∗2(~∗U (Gw)), pr∗1(Gw)), (4.8.2)

so we have H 'Ht ⊗Hw (4.5.1). We take again the notation of § 2, and define α ∈K by the
equation Fm d(a) = α dt. So we have a ∈ filnWm+1(K), ord(tα) =−n, 2ord(α+ cb′) >−n+ ν(c)
and 2ν(b) + pν(c)< (p− 2)n. In particular, we have n− ν(c) > 1. We denote by γ the non-zero
element of k defined by

γ =
1
2

(
tn+1α

t1−ν(c)c′

c

)
mod tR. (4.8.3)

Proposition 4.9. The sheaf Ht over U ×k η extends to a smooth sheaf over X ×log
k S whose

pull-back by δ over S is constant.

We denote by κ0 the generic point of Y (see § 4.4), by RL0 the completion of the local
ring of X ×log

k S at κ0 (which is a discrete valuation ring), by L0 the fraction field of RL0 ,
by It

K (respectively, It
L0

) the tame inertia group of K (respectively, L0). The restriction of Ht

to Spec(L0) is tamely ramified. Since the projections pr1 and pr2 of X ×log
k S are smooth, they

induce the same isomorphism It
L0

∼→ It
K . We deduce that the representation of It

L0
defined by

the sheaf Ht is trivial, and hence the restriction of Ht to Spec(L0) is unramified. The first
assertion follows by the Zariski–Nagata purity theorem [SGA2, X 3.4]. The second assertion is
a consequence of the first and the fact that the restriction of Ht to δ(η) is trivial.

4.10 Let r be an integer greater than or equal to one, let Sr be the closed subscheme of S
defined by tr, let (X ×log

k S)[r] be the blow-up of X ×log
k S along δ(Sr), and let (X ×log

k S)(r) be
the dilatation of X ×log

k S along δ of thickening r, that is, the open subscheme of (X ×log
k S)[r]

obtained by removing the strict transform of Y or, equivalently, the maximal open subscheme
of (X ×log

k S)[r] where the exceptional divisor is defined by pr∗2(tr) (see [AS09, 3.1]). We denote
by Θr the exceptional divisor on (X ×log

k S)(r), by

δ(r) : S→ (X ×log
k S)(r) (4.10.1)

the unique lifting of δ (that is, the strict transform of δ), and abusively by pr1 and pr2 the
projections from (X ×log

k S)(r) to X and S, respectively. Then pr2 is smooth; the commutative
diagram

Θr
//

��

(X ×log
k S)(r)

pr2

��

U ×k ηoo

��
Sr // S ηoo

(4.10.2)

has Cartesian squares; and Θr is canonically isomorphic to the vector bundle V(Ω1
X/k(log s)⊗X

OSr(Sr)) over Sr (see [AS09, 4.6]).
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r

X

s

�

r ?s
S

�
�
�
�
�
�
��

S

X ×k S

�

�
�
�
�
�
��

$r
Y

Sr

δ(S)
X ×log

k S

�

�
�
�
�
�
�   

   

$
δ(r)(S)

Θr

(X ×log
k S)[r]

It follows from (4.4.1) that (X ×log
k S)(r) is the affine scheme of ring

B ⊗k Bh[θ, (1 + 1⊗ tr · θ)−1]/(t⊗ 1− 1⊗ t(1 + 1⊗ tr · θ)), (4.10.3)

Θr ⊗R k is the affine line A = Spec(k[θ]) over k (with coordinate θ), and δ(r) is defined by the
equation θ. Let κ be the generic point of Θr, let RL be the completion of the local ring of
(X ×log

k S)(r) at κ (which is a discrete valuation ring), let L be the fraction field of RL, and let

u : K→ L (4.10.4)
v : K→ L (4.10.5)

be the homomorphisms induced respectively by pr1 and pr2. We consider L as an extension of K
by v. By (4.10.3), we can identify RL with the ring k(θ)[[t]]. Then the k-homomorphisms u and
v are defined by u(t) = t(1 + trθ) and v(t) = t.

Proposition 4.11. Assume that n− ν(c) = 2r is even. Let Γη be the closed subscheme of the
U ×k η inverse image by the morphism ǧ ×k η of the section η→ Ǎ×k η defined by c (which is
also the closed subscheme of U ×k η defined by the equation x̌− c), let Γ(r) be the schematic

closure of Γη in (X ×log
k S)(r). Then:

(i) the scheme Γ(r) is quasi-finite over S, and δ(r)(S) is the finite part of Γ(r);

(ii) the sheaf H ⊗Lψ0(c(x− b)) over U ×k η extends to a smooth sheaf over (X ×log
k S)(r)

whose restriction to Θr ⊗R k = A is canonically isomorphic to the sheaf Lψ0(γθ2).

(i) Recall first that any quasi-finite separated scheme Z over S can de decomposed canonically
into a sum Zf q Zg, where Zf is finite over S (called the finite part of Z) and the special fiber
of Zg is empty. It follows from (2.9.1) and the inequality ν(c)< r(p− 1) that we have

u(c)− c
tr+ν(c)c

≡ t1−ν(c)c′

c
θ mod tRL. (4.11.1)

We deduce that the function t−r−ν(c)(x̌/c− 1) on U ×k η extends to a regular function on
a neighborhood of κ in (X ×log

k S)(r). Since (X ×log
k S)(r) is a smooth curve over S with an

integral special fiber, t−r−ν(c)(x̌/c− 1) extends to a regular function on (X ×log
k S)(r). The latter

belongs to the ideal of Γ(r); so it defines a closed subscheme Γ′(r) of (X ×log
k S)(r) containing

Γ(r). Moreover, it follows from (4.11.1) that the special fiber of Γ′(r) is the origin of Θr ⊗R k =

Spec(k[θ]). Therefore, the three closed subschemes δ(r)(S)⊂ Γ(r) ⊂ Γ′(r) of (X ×log
k S)(r) have the

same special fiber, which implies the proposition.
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(ii) It follows from 4.9 that Ht extends to a smooth sheaf on (X ×log
k S)(r) whose restriction

to Θr ⊗R k is constant. The pull-back of Hw ⊗Lψ0(c(x− b)) to Spec(L) corresponds to the Witt
vector

u(a)− a+ Vm(c(u(b)− b)) ∈Wm+1(L).

By 2.12, the latter belongs to Wm+1(RL), and its residue class modulo t is equal to Vm(γθ2) ∈
Wm+1(k(θ)). Therefore, the pull-back of Hw ⊗Lψ0(c(x− b)) to Spec(L) is canonically
isomorphic to Lψ0(γθ2). We deduce by the Zariski–Nagata purity theorem [SGA2, X 3.4] that
Hw ⊗Lψ0(c(x− b)) extends to a smooth sheaf on (X ×log

k S)(r) whose restriction to Θr ⊗R k = A
is canonically isomorphic to Lψ0(γθ2).

Remark 4.12. We keep the notation and assumptions of 4.11. Recall that we have the following
commutative diagram.

S
~ //

f̌
��

X

ǧ
��

Ť
ȟ // P̌

We consider η as a scheme over Ǎ by the composed morphism ǧ ◦ ~ = ȟ ◦ f̌ . Then the closed
subscheme Γη of U ×k η is canonically isomorphic to U ×Ǎ η. The morphism δ (see (4.4.2))
induces a closed embedding η→ U ×k η, which determines a connected component of U ×Ǎ η.
Proposition 4.11(i) says that only this connected component extends to a closed subscheme of
(X ×log

k S)(r) which is finite and flat over S, namely δ(r)(S); the other connected components
of U ×Ǎ η are closed in (X ×log

k S)(r).

Lemma 4.13. Let K and Q be the sheaves defined in § 3.3, let γ be the element of k defined
in (4.8.3), let Qγ be the Q`-sheaf over Spec(k) defined by

Qγ = H1
c(Ak,Lψ0(γθ2)). (4.13.1)

(i) The sheaf Qγ has rank one, the Hi
c(Ak,Lψ0(γθ2)), for i 6= 1, vanish, and the canonical

morphism

H1
c(Ak,Lψ0(γθ2))→H1(Ak,Lψ0(γθ2))

is an isomorphism.

(ii) If n− ν(c) = 2r is even, the sheaf K (−(1/2)(dc/db))⊗Q over η is unramified and
isomorphic to the geometrically constant sheaf Qγ .

(iii) If n− ν(c) = 2r + 1 is odd, the sheaf K (−(1/2)(dc/db))⊗Q over η is tamely ramified, and
its restriction to the quadratic extension η = η[t]/(t2 − t) is unramified and isomorphic to
the geometrically constant sheaf Qγ .

Observe first that it is enough to prove the lemma after replacing η by Spec(K).
(i) Since the sheaf Lψ0(γθ2) is smooth on A and its Swan conductor at ∞ is 2, the assertion

follows from the Grothendieck–Ogg–Shafarevich formula and [Del77, [Sommes trig.] 1.19 and
1.19.1].

(ii) Condition 2ord(α+ cb′) >−n+ ν(c) implies that

1
2

(
tn+1α

t1−ν(c)c′

c

)
≡−1

2
(t2+2rb′c′) mod t1+r+ν(c)R;
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so −(c′/(2b′))γ−1 is a square in K. Therefore, the sheaf K (−c′/(2b′)) over Spec(K) is unramified
and isomorphic to the geometrically constant sheaf K (γ). The last assertion follows from (3.3.4).

(iii) Condition 2ord(α+ cb′) >−n+ ν(c) implies that

1
2

(
tn+1α

t1−ν(c)c′

c

)
≡−1

2
(t3+2rb′c′) mod t2+r+ν(c)R;

so −(tc′/(2b′))γ−1 is a square in K. The proposition follows as in part (ii).

4.14 Let σ be a k-automorphism of S. We put δ(σ) : S→X ×log
k S the strict transform of the

graph of ~ ◦ σ. The automorphism 1× σ of X ×k S lifts uniquely to X ×log
k S and the following

diagram is commutative.

S
δ(σ)

//

σ

��

X ×log
k S

1×σ
��

S
δ // X ×log

k S

Hence, 1× σ induces an isomorphism between the dilatations of X ×log
k S along δ and δ(σ) with

the same thickening.
Let σ be a k-automorphism of X such that σ(x) = x. We denote also by σ the k-automorphism

of S induced by σ. The automorphism σ × 1 of X ×k S lifts uniquely to X ×log
k S and the

following diagram is commutative.

S
δ //

δ(σ)
""EE

EE
EE

EE
EE X ×log

k S

σ×1
��

X ×log
k S

Hence, σ × 1 induces an isomorphism between the dilatations of X ×log
k S along δ and δ(σ) with

the same thickening.

4.15 We can now prove Proposition 4.3(ii). Observe first that we have

(is × 1)∗(Ψ(pr∗1(G!)⊗L ψ0(xc))) = (is × 1)∗(Φ(pr∗1(G!)⊗L ψ0(xc))).

Let H be the extension by 0 of H (4.5.1) to X ×k η,

M = H ⊗L ψ0(c(x− b)).

We identify M with pr∗2(G ∨η ⊗Lψ0(−bc))⊗ pr∗1(G!)⊗L ψ0(xc), where G ∨η is the dual Q`-sheaf
of Gη over η. By [Ill94, 4.7] (applied with Y = S), we have a canonical isomorphism

Ψη(M ) ∼→ pr∗2(G ∨η ⊗Lψ0(−bc))⊗Ψη(pr∗1(G!)⊗L ψ0(xc)) (4.15.1)

in Db
c(X ×k η,Q`). So we are reduced to proving that the sheaf (is × 1)∗(Ψ1

η(M )) over η has a
direct factor isomorphic to K (−(1/2)(db/dc))⊗Q.

Assume first that n− ν(c) = 2r is even. It follows from 4.11(ii) and [DK73, 2.1.7.1] that we
have canonical morphisms of representations of π1(η, η)

H1
c(A

1
k
,Lψ0(γθ2)) u→Ψ1

η(M )(s,η)
v→H1(A1

k
,Lψ0(γθ2)), (4.15.2)
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where the source of u and the target of v are considered as unramified representations of π1(η, η).
Moreover, v ◦ u is the canonical morphism; so it is an isomorphism by 4.13(i). Hence, the required
assertion follows by 4.13(ii).

Assume next that n− ν(c) is odd. We put B =B[t]/t2 − t, X = Spec(B), s ∈X(k) the unique
point of X above s, and denote by an underline the objects deduced from objects over X by the
base change X →X. So S is the spectrum of the henselization of the local ring of X at s and η is
the generic point of S. Let ρ : η→ η be the canonical morphism, G be the Galois group of η over
η, that we identify with the group of X-automorphisms of X. We consider the pull-back M of
M over X ×k η, and the complex of nearby cycles Ψη(M ) in Db

c(X ×k η,Q`), relatively to the
second projection X ×k S→ S. It follows from [DK73, XIII, 2.1.7.1], [Del77, [Th. finitude] 3.7]
and the Hochschild–Serre spectral sequence applied to the following diagram

X ×k S //

%%LLLLLLLLLLL X ×k S //

��

X ×k S

��
S // S

that we have an isomorphism

(is × 1)∗(Ψη(M ))' (ρ∗((is × 1)∗(Ψη(M ))))G×G, (4.15.3)

where the group G×G acts on Ψη(M ) via its action on X ×k S.

We put K =K[t]/(t2 − t). The image of (a, b, c) in Wm+1(K)×K ×K is a Legendre triple
of conductor (2n, 2ν(b), 2ν(c)) (see § 2.13). Hence, we can apply 4.11 over (X ×log

k S)(r) with
r = n− ν(c). We deduce, as in the even case, that we have canonical morphisms of sheaves
over η

K

(
−1

2
db

dc

)
⊗Q

u→ (is × 1)∗(Ψ1
η(M )) v→K

(
−1

2
db

dc

)
⊗Q (4.15.4)

such that v ◦ u is the identity. We let G×G act on the sheaf K (−(1/2)(db/dc))⊗Q over η
through the action of the second factor G on η. It follows from § 4.14, (4.10.3) and 4.11(ii) that
u and v are (G×G)-equivariant. The required assertion follows by using (4.15.3).

4.16 Let S be the integral closure of S in η, s be its closed point. We denote by X ×log
k S the

base change of X ×log
k S by the morphism S→ S, which is also the logarithmic product of X

and S over k (see [AS09, 4.3]), by ~ : S→X the morphism induced by ~ : S→X and by

δ : S→X ×log
k S (4.16.1)

the base change of δ (see (4.4.2)), which is also the strict transform of the graph of ~. For any
k-automorphism σ of S, we denote by δ

(σ) : S→X ×log
k S the strict transform of the graph of

~ ◦ σ. Let r be an integer >1, Sr be the closed subscheme of S defined by tr. We denote by Jσ

the ideal of δ(σ)(Sr) in X ×log
k S, by (X ×log

k S)(σ)
[r] the blow-up of X ×log

k S along Jσ, and by

(X ×log
k S)(σ)

(r) the dilatation of X ×log
k S along δ(σ) of thickening r, that is, the open subscheme

of (X ×log
k S)(σ)

[r] where the exceptional divisor is generated by pr∗2(tr).

We consider η as an étale covering of τ̌ by f̌ . Observe that for any σ ∈ π1(τ̌ , η), the morphism
δ

(σ) depends only on the class of σ in π1(η, η)\π1(τ̌ , η) (the quotient of π1(τ̌ , η) by the subgroup
π1(η, η) acting by translation on the left). Moreover, the natural action of π1(τ̌ , η) on X ×k S
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lifts to X ×log
k S, and for any σ, σ′ ∈ π1(τ̌ , η), we have a commutative diagram.

S
δ
(σ′σ)

//

σ

��

X ×log
k S

1×σ
��

S
δ
(σ′)

// X ×log
k S

(4.16.2)

In particular, 1× σ induces an isomorphism from (X ×log
k S)(σ′σ)

[r] to (X ×log
k S)(σ′)

[r] , that

transforms (X ×log
k S)(σ′σ)

(r) into (X ×log
k S)(σ′)

(r) .

Lemma 4.17. Let r be an integer greater than or equal to one and let X be the blow-up of
X ×log

k S along the ideal J =
∏
σ∈π1(η,η)\π1(τ̌ ,η) Jσ (the quotient of π1(τ̌ , η) by the subgroup

π1(η, η) acting by translation on the left).

(i) The action of π1(τ̌ , η) on X ×log
k S lifts uniquely to X. For every σ ∈ π1(τ̌ , η), there exists

a unique morphism ϕσ : X→ (X ×log
k S)(σ)

[r] over X ×log
k S.

(ii) For every σ ∈ π1(τ̌ , η), ϕσ induces an isomorphism above (X ×log
k S)(σ)

(r) . We put X(σ) =

ϕ−1
σ ((X ×log

k S)(σ)
(r) ).

(iii) For every σ, σ′ ∈ π1(τ̌ , η), we have σ(X(σ′σ)) = X(σ′).

(iv) The scheme Xs is connected.

(v) Assume that n− ν(c) = 2r. Then for every σ, σ′ ∈ π1(τ̌ , η) such that σ′ 6∈ π1(η, η)σ, we have
X(σ) ∩ X(σ′) ∩ Xs = ∅.

(i) Since the action of π1(τ̌ , η) on X ×log
k S preserves the ideal J , it lifts to an action on X.

Since the ideal J OX is invertible, each ideal JσOX is invertible [Bou85, ch. II, § 5.6, théo. 4].
Hence, for every σ ∈ π1(τ̌ , η), the canonical morphism X→X ×log

k S lifts uniquely to a morphism
ϕσ : X→ (X ×log

k S)(σ)
[r] .

(ii) By the universal property of blow-ups, it is enough to prove that for any σ, σ′ ∈ π1(τ̌ , η),
the inverse image of the ideal Jσ′ over (X ×log

k S)(σ)
(r) is invertible. We denote by C the ring of

the affine scheme X ×log
k S and (abusively) by t the function pr∗2(t) ∈ C. The embedding δ (4.4.2)

is defined by the equation w − 1 of the ring (4.4.1). Let W be the image of w − 1 in C. For every
σ ∈ π1(τ̌ , η), we put W (σ) = (1× σ)∗(W ) ∈ C. It follows from (4.16.2) that the closed embedding
δ

(σ) is defined by the equation W (σ). Hence, we have Jσ = (W (σ), tr). For every σ, σ′ ∈ π1(τ̌ , η),
we have by (4.4.1)

W (σ′) =
σ∗(t)
σ′∗(t)

(W (σ) + 1)− 1.

By construction of (X ×log
k S)(σ)

(r) , t is not a zero divisor and W (σ) is a multiple of tr there.

Therefore, the inverse image of (W (σ′), tr) over (X ×log
k S)(σ)

(r) is an invertible ideal, equal to the
inverse image of the invertible ideal (tr, (σ∗(t))/(σ′∗(t))− 1) of OS .

(iii) This follows from (4.16.2).

(iv) Let π : X→X ×log
k S be the canonical morphism. Since π is proper and surjective, and

since the special fiber of X ×log
k S is isomorphic to Gm,s (see § 4.4), it is enough to prove that all
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fibers of π are connected, or equivalently that the canonical morphism O
X×log

k S
→ π∗(OX ) is an

isomorphism. We know that π∗(OX ) is a coherent (O
X×log

k S
)-algebra. Since X ×log

k S = Spec(A )
is affine, we are reduced to showing that B = Γ(X, OX ) is isomorphic to A . On the one hand,
A is a normal domain because X ×log

k S is smooth over S. On the other hand, B is a domain
with the same fraction field as A because π is a blow-up. Since B is finite over A , we conclude
that B 'A .

(v) We provide two proofs. The first uses rigid geometry. We keep the notation of part (iv).

Recall that X̂
rig

is an annulus. Each open X(σ) of X defines a closed subdisk Dσ of X̂
rig

. The action

of π1(τ̌ , η) on X induces an action on X̂
rig

. For every σ, σ′ ∈ π1(τ̌ , η), we have σ(Dσ′σ) =Dσ′ .
By 4.11(i), if σ 6∈ π1(η, η), then Dσ is not contained in Did (cf. Remark 4.12). Hence, for
σ, σ′ ∈ π1(τ̌ , η) such that σ′ 6∈ π1(η, η)σ, the disks Dσ and Dσ′ are disjoint, which implies the
proposition.

The second proof is as follows. For every σ ∈ π1(τ̌ , η), we know, by parts (ii), (iii) and § 4.10,
that X(σ) ∩ Xs is an affine line over s. Let σ, σ′ ∈ π1(τ̌ , η) be such that σ′ 6∈ π1(η, η)σ. If
X(σ) ∩ X(σ′) ∩ Xs is not empty, it is dense open in both X(σ) ∩ Xs and X(σ′) ∩ Xs. So the projective
completions of these two affine lines are equal; we denote it by P. We claim that the strict
transform of δ(σ′)(S) in X is not contained in X(σ), while it is clearly contained in X(σ′).
Indeed, we are reduced by part (iii) and (4.16.2) to the case where σ = id and σ′ 6∈ π1(η, η);
then the claim follows from part (ii) and 4.11(i) (cf. Remark 4.12). We conclude that X(σ) ∩ Xs

and X(σ′) ∩ Xs are different. Then P = (X(σ) ∩ Xs) ∪ (X(σ′) ∩ Xs); in particular, P is open in Xs.
Since P is projective over s, it is also closed in Xs. Therefore P is a connected component of
Xs. Hence, Xs is not connected as it contains also the strict transform of the special fiber Y ×k s
of X ×log

k S (see § 4.4). We get a contradiction with part (iv).

4.18 We can now prove Proposition 4.3(iii). Assume first that n− ν(c) = 2r is even. We
constructed in § 4.15 canonical morphisms of representations of π1(η, η)

D η
u→ (Φ1(pr∗1(G!)⊗L ψ0(xx̌)))(s,η)

v→D η,

such that v ◦ u is the identity. As a Q`-vector space, Dη corresponds to the contribution of the
nearby cycle complex of pr∗1(G!)⊗L ψ0(xc) over the dilatation (X ×log

k S)(r). We consider the
sheaf pr∗1(G!)⊗L ψ0(xc) over X ×k η, equipped with the action of π1(τ̌ , η) by transport of
structure, and the blow-up X of X ×log

k S defined in 4.17. Then Dη corresponds also to the
contribution of the nearby cycle complex of pr∗1(G!)⊗L ψ0(xc) over the open subscheme X(id)

of X (cf. 4.17(ii)). By 4.17(iii), for every σ ∈ π1(τ̌ , η), σ ◦ u is the contribution of the nearby
cycle complex of pr∗1(G!)⊗L ψ0(xc) over X(σ). If σ 6∈ π1(η, η), then we have X(σ) ∩ X(id) ∩ Xs = ∅
by 4.17(v), and hence v ◦ σ ◦ u= 0, which implies the required assertion.

Assume next that n− ν(c) is odd, and consider as in § 4.15 the base change X →X obtained
by taking a square root of t. We keep the same notation; moreover, we denote by G the pull-back
of G to U and by G ! the extension by zero of G to X. We consider the complex of vanishing
cycles Φ(pr∗1(G !)⊗L ψ0(xx̌)) in Db

c(X ×k τ̌ ,Q`), relatively to the projection pr2 : X ×k Ť → Ť .
It follows from the even case that the morphism of sheaves over τ̌

f̌∗(ρ∗(ρ∗D))→ (is ×k 1)∗Φ1(pr∗1(G !)⊗L ψ0(xx̌))

induced by the trace morphism f̌∗ρ∗ρ
∗f̌∗→ id, is injective. Moreover, by the definition of D in
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this case (see § 4.15), we have a commutative diagram

ρ∗(ρ∗D) // f̌∗((is ×k 1)∗Φ1(pr∗1(G !)⊗L ψ0(xx̌)))

D //

OO

f̌∗((is ×k 1)∗Φ1(pr∗1(G!)⊗L ψ0(xx̌)))

OO

where the vertical arrows are induced by the adjunction map id→ ρ∗ρ
∗ and [DK73, XIII, 2.1.7.1].

The required assertion follows since D → ρ∗(ρ∗D) is injective.

4.19 We can now prove proposition 4.6, which will not be used in the remainder of this article.
(i) By the t-exactness of the functor Ψ (see [BBD82, 4.4.2] and [Ill94, 4.2]), it is enough to

prove the first statement, which amounts to proving that Ψη(pr∗1(G )⊗Lψ0(cx)) is supported
on a finite subgroup of Y ⊗k k = Gm,k. We may assume k algebraically closed. By 4.9, we may
reduce to the case where G = Gw. Since G is trivialized by a cyclic extension of degree pm+1

of U , we may further reduce to the case where G is a locally constant sheaf of Λ-modules of
rank one over U , and Λ is a finite field of characteristic `. We fix injective homomorphisms
ψi : Z/pi+1Z→ Λ× (i> 0) such that for any z ∈ Fp, we have ψi(piz) = ψ0(z). For every point
y ∈ Y (k), we denote by H the henselization of X ×log

k S at y, that we consider as an S-scheme
by the morphism induced by pr2. We put

ρ(y) = ϕs(H, Hη, pr∗1(G )⊗Lψ0
(xc) |Hη) (4.19.1)

the invariant defined in (A.12.2). Since the pull-back of pr∗1(G )⊗Lψ0
(xc) to Hη is not constant,

we have

Ψ0
η(pr∗1(G )⊗Lψ0

(xc))y = 0. (4.19.2)

Then by A.13, it is enough to prove that the support of the function ρ(y) is a finite subgroup of
Y = Gm,k.

Let κ0 be the generic point of Y (see § 4.4), RL0 be the completion of the local ring of X ×log
k S

at κ0 (which is a discrete valuation ring), L0 be the fraction field of RL0 ,

u : K→ L0,

v : K→ L0

be the homomorphisms induced respectively by pr1 and pr2. We consider L0 as an extension
of K by v. By (4.4.1), we can identify RL0 with the ring k(w)[[t]]. Then the k-homomorphisms
u and v are defined by u(t) = tw and v(t) = t. We have u(c)/c≡ word(c) mod tRL0 and
u(b′)/b′ ≡ word(b′) mod tRL0 . Since ord(tn+1cb′) = 0 (see § 2.13) and ord(c) 6= 0 by assumption,
then tn+1(c− u(c))u(b′) is a unit of RL0 . We denote by P the reduction of tn+1(c− u(c))u(b′)
in k(w), and by λ the reduction of tn+1cb′ in k. Then we have P = λ(1− word(c))word(b′). It is
enough to prove that for any y ∈ Y (k), we have

ρ(y) =−ordy(P ). (4.19.3)

The pull-back of pr∗1(G )⊗Lψ0
(cx) to Spec(L0) corresponds to the Witt vector u(a) +

Vm(cu(b)) ∈Wm+1(L0). Since ord(bc) =−n− ν(b) and ord(α+ cb′) >−n, we have u(a) +
Vm(cu(b)) ∈ filn+ν(b)Wm+1(L0) and

Fmd(u(a) + Vm(cu(b)))≡ (c− u(c))d(u(b)) + u(b)dc mod t−n+1Ω1
RL0

(log). (4.19.4)
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Let (S′, η′, s′) be a finite covering of (S, η, s) such that (H, Hη, pr∗1(G )⊗Lψ0
(cx)|Hη)S′ is

stable (Proposition A.9), R′ be the completion of the local ring of S′, K ′ be the fraction field
of R′, R′L′0 =RL0 ⊗R R′, L′0 be the fraction field of R′L′0 . After replacing (S′, η′, s′) by a finite
covering (Proposition A.9(i)), we may assume that η′ is inseparable over η and the image of
dt by the canonical morphism Ω1

η/k→ Ω1
η′/k vanishes. Since we have d(u(b)) = u(b′)(w dt+ t dw)

and dc= c′ dt in Ω1
L0

, then the following relation holds in Ω1
L′0

(c− u(c)) d(u(b)) + u(b) dc= t(c− u(c))u(b′) dw. (4.19.5)

It follows that the Swan conductor of the pull-back of pr∗1(G )⊗Lψ0
(cx) to Spec(L′0) is [K ′ :K]n,

and its refined Swan is the residue class of t(c− u(c))u(b′) dw in t−nΩ1
R′
L′0

(log)⊗R′ k, which is

equal to t−nP dw. Equation (4.19.3) is thus proved.
(ii) The proof is similar to that of Proposition 4.3(ii), given in § 4.15.

5. Proofs of Theorems 3.7 and 3.9

5.1 We observe first that, by 3.6(ii), we may reduce Theorems 3.7 and 3.9 to the case where the
residue field of S at s is k (in particular, we have f̃ = f̌ in Theorem 3.7). Hence, in this section,
we denote by S the spectrum of a henselian discrete valuation ring of equal characteristic p,
with residue field k, by s (respectively, η) the closed (respectively, generic) point of S, by G a
Q`-sheaf of rank one over η, and by v : S→ P and v̌ : S→ P̌ two non-constant morphisms (with
the notation of § 3.2). We put z = v(s), ž = v̌(s), b and c the functions on η deduced by pull-
back from the coordinates x and x̌ of A and Ǎ respectively. We take again the notation of § 3.4
relatively to z and ž, and denote by f : S→ T and f̌ : S→ Ť the morphisms induced by v and
v̌, respectively. We assume that (G , b, c) is a Legendre triple at s (Definition 2.16), and f and f̌
are finite and étale at η.

We denote by R the completion of the ring of S, by K the fraction field of R, and also by b
and c the images of b and c in K. By Definition 2.16, there exist Gt and Gw two Q`-sheaves of
rank one over η, satisfying the following conditions:

(i) G ' Gt ⊗ Gw;

(ii) Gt is tamely ramified;

(iii) Gw is trivialized by a cyclic extension of order pm+1 of η (m> 0);

(iv) the pull-back of (Gw, b, c) over Spec(K) is a Legendre triple in the sense of § 2.15.

Proposition 5.2. We keep the assumptions of § 5.1, and assume moreover that one of the
following conditions is satisfied:

(i) z ∈A;

(ii) (z, ž) = (∞, 0̌) and all of the slopes of f∗(G ) are < 1;

(iii) (z, ž) = (∞, ∞̌) and all of the slopes of f∗(G ) are > 1.

Then the rank of F(z,ž)(f∗G ) is equal to the degree of f̌ , and in case (i), we have ž = ∞̌.

Let t be a uniformizer, ord be the valuation of K normalized by ord(t) = 1. We put b′ = db/dt.
Since (G , b, c) is a Legendre triple, we have by §§ 2.5 and 2.13,

−ord(c) = sw(G ) + ord(tb′/b) + ord(b). (5.2.1)
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If z ∈A(k), then we have ž = ∞̌ since sw(G ) > 1. In this case, we may replace b by b− x(z) in
the equation above. In general, we deduce by [Ser68, VI, § 2] that we have

−ord(c) =
{

sw(f∗G ) + rk(f∗G ) if z ∈A(k),
sw(f∗G )− rk(f∗G ) if z =∞. (5.2.2)

Hence, we have

deg(f̌) =


sw(f∗G ) + rk(f∗G ) if (z, ž) ∈A× ∞̌,
sw(f∗G )− rk(f∗G ) if (z, ž) = (∞, ∞̌),
rk(f∗G )− sw(f∗G ) if (z, ž) = (∞, 0̌).

(5.2.3)

The proposition follows from (5.2.3) and [Lau87, 2.4.3], for which we give a new proof in
Proposition B.6.

5.3 We identify S with the henselization of the affine line A1
k = Spec(k[u]) at the origin 0,

and put Gm,k = Spec(k[u, u−1]) and } : S→ A1
k the canonical morphism. By Kummer theory,

Gt is the pull-back of a smooth Q`-sheaf of rank one, M over Gm,k, tamely ramified at 0
and ∞ (see [Lau87, 2.2.2.1]). On the other hand, there exists a connected affine elementary
étale neighborhood (X, s)→ (A1

k, 0) satisfying the following properties. Let B = Γ(X, OX), U be
the open X − {s} of X, ~ : S→X be the unique morphism lifting }. Then:

(a) Gw is the pull-back of a smooth Q`-sheaf of rank one, G̃w over U , trivialized by a cyclic
extension of order pm+1 of U (by using Artin–Schreier–Witt theory);

(b) there exist b̃, c̃ ∈ Γ(U, OX) such that ~∗U (̃b) = b and ~∗U (c̃) = c;
(c) there exists t ∈B, which is a parameter at s and invertible on U .

We denote by G̃t the pull-back of M to U , by G̃ = G̃t ⊗ G̃w, by g : X → P and ǧ : X → P̌ the
k-morphisms such that g∗A(x) = b̃ and ǧ∗

Ǎ
(x̌) = c̃.

Ť

ȟ
��

S

~
��

f̌oo f // T

h

��
P̌ X

ǧoo g // P

(5.3.1)

By construction, (G̃ , b̃, c̃) is a Legendre triple at s, and we can apply 4.3.

5.4 With the notation of 4.1 and 4.2, we have a canonical isomorphism over τ̌

(is × 1)∗(Φ1(pr∗1(G̃!)⊗L ψ0(xx̌)))' F(z,ž)(f∗G ). (5.4.1)

It is a consequence of the functorial properties of the complex of nearby cycles and the fact that
~ : S→X is universally locally acyclic and f : S→ T is finite. Then Propositions 4.3 and 5.2
imply Theorems 3.7 and 3.9.

6. Review of Stiefel–Whitney classes

6.1 In this section, K denotes a field of characteristic 6=2, K a separable closure and GK the
Galois group of K over K. We denote by 1K the trivial representation of GK . By Kummer
theory, H1(K, Z/2Z) is identified with the group K×/K×2. For a ∈K×/K×2 (or in K×), we
denote by {a} the associated element of H1(K, Z/2Z), and by κa : GK →{±1} its image by
the isomorphism H1(K, Z/2Z) = Hom(GK , {±1}) (which is also the character induced by the
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quadratic extension K(
√
a) of K). For a, b ∈K×/K×2, we denote by {a, b} the cup-product

{a} ∪ {b} in H2(K, Z/2Z).

6.2 For a non-degenerate quadratic form Q = Q(X1, . . . , Xn) of rank n over K, we denote by
wm(Q) ∈Hm(K, Z/2Z) (m> 0) its mth Stiefel–Whitney class and by

w(Q) = 1 + w1(Q) + · · · ∈H∗(K, Z/2Z) =
∏
m

Hm(K, Z/2Z)

its total Stiefel–Whitney class [Ser84, 1.2]. Recall that, if Q ∼ a1X
2
1 + · · ·+ anX

2
n, where

ai ∈K×, then we have w(Q) =
∏
i(1 + {ai}). If d ∈K×/K×2 is the discriminant of Q, we have

w1(Q) = {d}.

6.3 Let V be a finite-dimensional complex vector space, equipped with a non-degenerate
quadratic form Q, ρ : GK →O(V,Q) be a continuous orthogonal representation of GK (i.e.
the kernel of ρ is open). Deligne [Del76, 1.3 and 5.1] associated to (V, ρ) Stiefel–Whitney
classes wm(V ) ∈Hm(K, Z/2Z) (m> 0). The class w1(V ) is identified via the isomorphism
H1(K, Z/2Z) = Hom(GK , {±1}) with the character det(V ) : GK →{±1}. The total Stiefel–
Whitney class

w(V ) = 1 + w1(V ) + · · · ∈H∗(K, Z/2Z)

satisfies the following properties.

(i) If V is an orthogonal direct sum of two subrepresentations V ′ and V ′′, then w(V ) =
w(V ′)w(V ′′).

(ii) If W is a totally isotropic invariant subspace of V , the quadratic form Q on V induces a
quadratic form on W⊥/W , and a duality between W and V/W⊥, and hence a quadratic
form on W ⊕ V/W⊥; then we have

w(V ) = w(W ⊕ V/W⊥)w(W⊥/W ) = (1 + {−1})dimWw(W⊥/W ). (6.3.1)

6.4 Let L be a finite separable extension of K contained in K and let GL be the Galois group of
K over L. The discriminant of L over K, dL/K ∈K×/K×2, is by definition the discriminant of the
quadratic form TrL/K(x2), for x ∈ L. For α ∈ L×, the quadratic form TrL/K(αx2), for x ∈ L, has
discriminant dL/KNL/K(α), where NL/K(α) is the norm of α. We denote by w(L, TrL/K(αx2))
its total Stiefel–Whitney class.

For a complex character χ of Gab
L (or of GL), we denote by NL/K(χ) the composition of χ

with the transfer Gab
K →Gab

L . For any finite-dimensional complex representation V of GL, we
have

det(IndGKGL V ) = κ
dim(V )
dL/K

·NL/K(det V ). (6.4.1)

This follows from [Del73, 1.2] and the fact that det(IndGKGL 1L) = κdL/K (see [Ser84, 1.4]).

Proposition 6.5. Let L=K(t) be a finite separable extension of K contained in K, of degree n,
generated by an element t ∈ L, let GL be the Galois group of K over L, and let f(X) ∈K[X] be
the minimal polynomial of t. We put D = f ′(t) ∈ L× and κD the associated quadratic character
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(see § 6.1). Then we have

dL/K = (−1)(
n
2)NL/K(D) ∈K×/K×2, (6.5.1)

w2(IndGKGL κD) =
(
n

4

)
{−1,−1}+ {dL/K , 2}. (6.5.2)

Recall [Ser68, III, Lemma 2] that we have

TrL/K(D−1ti) =
{

0 if 0 6 i6 n− 2,
1 if i= n− 1.

(6.5.3)

Therefore, the discriminant of the quadratic form TrL/K(D−1x2) over K is (−1)(
n
2) ∈K×/K×2,

which implies (6.5.1). By [Ser84, § 4, Theorem 1’ and § 1, 1.5], we have

w2(IndGKGL κD) = w2(L, TrL/K(D−1x2)) + {dL/K , 2}. (6.5.4)

Let m be the largest integer such that 2m6 n. We denote by W the sub-K-vector space of
L generated by 1, t, . . . , tm−1, and by W⊥ the orthogonal subspace relatively to the quadratic
form TrL/K(D−1x2). By (6.5.3), W is totally isotropic; we have W⊥/W =Ktm if n= 2m+ 1,
and W =W⊥ otherwise. We deduce by (6.3.1) and (6.5.3) that we have

w(L, TrL/K(D−1x2)) = (1 + {−1})m. (6.5.5)

Equation (6.5.2) follows from (6.5.4), (6.5.5) and the fact that
(
m
2

)
≡
(
n
4

)
mod 2.

7. Refined logarithmic different

This short section is independent of the rest of the article, and does not use conventions 1.11.

7.1 Let K be a complete discrete valuation field, with residue field k, L be a finite separable
extension of K. We denote by OK (respectively, OL) the valuation ring of K (respectively, L),
by mK (respectively, mL) the maximal ideal of OK (respectively, OL), and by kL the residue
field of OL. Recall that the different DL/K of L over K is the ideal of OL such that the inverse
D−1
L/K is the maximal fractional ideal a of L satisfying the condition TrL/K(a)⊂ OK . Following

Kato [Kato87b, 2.1], we define the logarithmic different of L over K, denoted by D log
L/K , to be

the fractional ideal of L given as

D log
L/K = m−1

K mLDL/K . (7.1.1)

In fact, the ideal (D log
L/K)−1 is the maximal fraction ideal a of L such that TrL/K(mLa)⊂mK ,

and also the minimal fraction ideal a of L such that TrL/K(a)⊃ OK . We say that a generator δ
of the OL-module D log

L/K is a refined logarithmic different of L over K if, for any a ∈ OL, we have

TrL/K(δ−1a) = TrkL/k(a) mod mK . (7.1.2)

Observe that δ is unique in L×/1 + mL.

7.2 Let M be a finite separable extension of L, δL/K (respectively, δM/L) be a refined logarith-
mic different of L over K (respectively, of M over L). Then δM/K = δM/LδL/K is a refined
logarithmic different of M over K.
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7.3 Assume that L is totally ramified over K of degree n. Let t be a uniformizer of L,
f(X) ∈ OK [X] be the minimal polynomial of t. Then it follows from (6.5.3) and [Ser68, III,
§ 6] that δ = t1−nf ′(t) is a refined logarithmic different of L over K.

7.4 Assume that k is perfect, K has characteristic p and L is totally ramified over K. Let x
(respectively, t) be a uniformizer of K (respectively, L). Then δ = d log(x)/d log(t) is a refined
logarithmic different of L over K. Observe first that the class of d log(x)/d log(t) in L×/1 + mL

does not depend on the choice of x. Let f(X) ∈ OK [X] be the minimal polynomial of t and let n be
the degree of L over K. Since L is totally ramified over K, f is an Eisenstein polynomial, and we
may assume that x=−f(0). Therefore, we have dx/dt ∈ f ′(t)(1 + mL) and tx−1 ∈ t1−n(1 + mL),
and the assertion follows from § 7.3.

8. Local epsilon factors

8.1 In this section, K denotes a complete discrete valuation field (of equal or unequal
characteristics), with finite residue field k of order q = pf , K a separable closure of K, WK the
Weil group of K over K and I the inertia subgroup of WK . We denote by OK the valuation ring
of K, by mK the maximal ideal of OK , by ord the valuation of K normalized by ord(K×) = Z,
by OK the integral closure of OK in K and by k the residue field of OK . In the following, a
representation of WK stands for a pair (V, ρ), where V is a finite-dimensional Q`-vector space
and ρ is a continuous homomorphism WK →GL(V ) (i.e. an open subgroup of I acts trivially).

The quotient group WK/I is canonically isomorphic to Z, generated by Frob, the geometric
Frobenius of k (i.e. the inverse of the automorphism x 7→ xq of k). Class field theory provides an
isomorphism

RecK : K× ∼→W ab
K , (8.1.1)

that we normalize by mapping uniformizers of K to liftings of Frob (see [Del73, 2.3]). We use
RecK to identify the isomorphism classes of representations of dimension one of WK with quasi-
characters (that is, continuous homomorphisms) K×→Q×` . If the characteristic of K is 6=2, we
denote the Hilbert symbol over K by

( , )K : K×/K×2 ×K×/K×2→{±1}. (8.1.2)

8.2 We fix a non-trivial additive character ψ : K→Q×` , and the Haar measure dx on the additive
group of K such that

∫
OK
dx= 1. We define the conductor of ψ, denoted by ord(ψ), to be the

biggest integer n such that ψ|m−nK = 1. Let χ be a quasi-character of K×. The conductor of χ,
denoted by a(χ), is 0 if χ is unramified, and the smallest integer m such that χ(1 + mm

K) = 1 if
χ is ramified. The Swan conductor of χ, denoted by sw(χ), is 0 if χ is unramified, and a(χ)− 1
if χ is ramified.

8.3 Deligne and Langlands attached to every representation V of WK a local ε-factor ε(V, ψ) ∈
Q×` , characterized by the following conditions.

(i) For any exact sequence of representations 0→ V ′→ V → V ′′→ 0, we have

ε(V, ψ) = ε(V ′, ψ)ε(V ′′, ψ). (8.3.1)

In particular, ε(V, ψ) depends only on the class of V in the Grothendieck group of represent-
ations of WK , and we can define ε(V, ψ) when V is a virtual representation of WK .
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(ii) For every finite extension L of K contained in K, there exists a constant

λ(L/K, ψ) ∈Q×` (8.3.2)

such that, for any representation VL of WL and VK the induced representation of WK , we
have

ε(VK , ψ) = λ(L/K, ψ)dim(VL)ε(VL, ψ ◦ TrL/K). (8.3.3)

(iii) If V has dimension one, corresponding to a quasi-character χ : K×→Q×` , then ε(V, ψ) is
the constant ε(χ, ψ) of the local functional equation of Tate [Del73, § 3]. Recall that if χ
is unramified and ord(ψ) = 0, then ε(χ, ψ) = 1; and if χ is ramified, then

ε(χ, ψ) =
∫
K×

χ−1(x)ψ(x) dx. (8.3.4)

We omitted the Haar measure dx from the notation ε(V, ψ, dx), as it has been fixed in § 8.2.
Following Deligne [Del73, § 5], we put, for a representation V of WK ,

ε0(V, ψ) = det(−Frob, V I)ε(V, ψ). (8.3.5)

The function ε0 clearly satisfies properties (i) and (ii) with the same constant (8.3.2).

Remarks 8.4.

(i) For any a ∈K×, we have

ε(V, ψ(ax)) = det(V )(a) · qord(a) dim(V ) · ε(V, ψ); (8.4.1)

and similarly for ε0.

(ii) If L is a finite, separable and unramified extension of K contained in K and ord(ψ) = 0,
then λ(L/K, ψ) = 1. This follows from [Del73, 5.5.3] and the fact that ord(ψ ◦ TrL/K) = 0.

8.5 We fix a non-trivial additive character ψk : k→Q×` . For a character χ : k×→Q×` , we denote
by τ(χ, ψk) the Gauss sum

τ(χ, ψk) =−
∑
x∈k×

χ−1(x)ψk(x). (8.5.1)

We have τ(1, ψk) = 1. If the characteristic p of k is odd, we denote by κ0 : k×→{±1} the unique
character of order two, and by Gψk the quadratic Gauss sum associated to ψk, defined by

Gψk =
∑
x∈k

ψk(x2). (8.5.2)

Then we have τ(κ0, ψk) =−Gψk and, by [Del77, [Sommes trig.], 4.4],

q = κ0(−1)G2
ψk
. (8.5.3)

8.6 We call a ψk-gauge of ψ an element β ∈K× such that, for any a ∈ OK , with residue class a
in k, we have

ψ(β−1a) = ψk(a). (8.6.1)

Such an element β exists, is unique in K×/1 + mK , and we have ord(β) = ord(ψ) + 1.

Proposition 8.7. Let χ be a quasi-character of K×, β ∈K× be a ψk-gauge of ψ, π be a
uniformizer of K.
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(i) Assume that χ is at most tamely ramified (that is, a(χ) 6 1), and let χk : k×→Q×` be the
character defined by χ. Then we have

ε0(χ, ψ) =−χ(β) qord(ψ)τ(χk, ψk). (8.7.1)

(ii) Assume p 6= 2 and that χ is wildly ramified (that is, a(χ) > 2). We put n= sw(χ) and let r
be the smallest integer such that 2r > n; so we have n= 2r or n= 2r − 1. Let c be an
element of K× such that, for any x ∈mr

K , we have

χ

(
1 + x+

x2

2

)
= ψ(cx). (8.7.2)

Then ord(βc) =−n and c is unique in K×/1 + mn−r+1
K . We have

ε0(χ, ψ) = χ−1(c)ψ(c)q−ord(c)κ0(−1)(
−n
2 )G−n−1

ψk
×
{

1 if n is odd,
(−2βc, π)K if n is even.

(8.7.3)

(i) Assume that χ is unramified. By (8.4.1), we may assume that β is a uniformizer of K and
ord(ψ) = 0. Then we have ε(χ, ψ) = 1, and both sides of (8.7.1) are equal to −χ(β).

Assume that χ is tamely ramified. By (8.4.1), we may assume that β = 1 and ord(ψ) =−1.
Then it follows from (8.3.4) that we have ε(χ, ψ) = ε0(χ, ψ) =−q−1τ(χk, ψk).

(ii) Since 3r > a(χ), for any x, y ∈mr
K , we have

χ

(
1 + x+

x2

2

)
χ

(
1 + y +

y2

2

)
= χ

(
1 + x+ y +

(x+ y)2

2

)
,

which implies easily the existence and the uniqueness of c; the valuation of c is clear.
Letm be the smallest integer such that 2m> n= sw(χ); som= r if n= 2r − 1, andm= r + 1

if n= 2r. In both cases, we have n+ 1 =m+ r. For any x ∈mm
K , we have χ(1 + x) = ψ(cx). We

compute the integral

ε0(χ, ψ) = ε(χ, ψ) =
∫
K×

χ−1(x)ψ(x) dx

by splitting it according to the classes K×/1 + mm
K . Only the classes contained in c(1 + mr

K)
remain:

ε0(χ, ψ) =
∫
c(1+m r

K)
χ−1(x)ψ(x) dx= q−ord(c)χ−1(c)ψ(c)

∫
m r
K

χ−1(1 + x)ψ(cx) dx.

For any x ∈mr
K , we have

χ−1(1 + x)ψ(cx) = χ−1(1 + x)χ
(

1 + x+
x2

2

)
= χ

(
1 +

x2

2

)
= ψ

(
cx2

2

)
.

We deduce that

ε0(χ, ψ) = χ−1(c)ψ(c)q−ord(c)

∫
m r
K

ψ

(
cx2

2

)
dx. (8.7.4)

If n= 2r − 1 is odd, then ord(c) + 2r =−ord(ψ) and
∫
m r
K
ψ((cx2)/2) dx= q−r; so (8.7.3)

follows by (8.5.3).
Assume that n= 2r is even, so ord(c) + 2r =−ord(β). By (8.6.1), we have∫

m r
K

ψ

(
cx2

2

)
dx= q−r−1

∑
x∈m r

K/m
r+1
K

ψk

(
βcx2

2

)
= q−r−1Gψk(2βc, π)K .

So (8.7.3) follows by (8.5.3) and the relation (−1, π)K = κ0(−1).
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Proposition 8.8. Assume p 6= 2 and ord(ψ) = 0. Let β ∈K× be a ψk-gauge of ψ (see § 8.6),
let L be a finite, separable, totally ramified extension of K of degree n, let πL be a uniformizer of
L, let DL/K be the different of L over K, let δ be a refined logarithmic different of L over K (see
§ 7.1), and let m= ordL(DL/K), where ordL is the valuation of L normalized by ordL(πL) = 1.
Then we have

λ(L/K, ψ) = κ0(−1)(
m+1

2 )G−mψk ×
{

1 if m is even,
(−2βδ, πL)L if m is odd.

(8.8.1)

Let f(X) ∈ OK [X] be the minimal polynomial of πL, D = f ′(πL) (which is a generator of
DL/K), κD : WL→{±1} be the character defined by the class of D in L×/L×2 (see § 6.1),
VK = IndWK

WL
κD, ψL = ψ ◦ TrL/K . We have

λ(L/K, ψ) =
ε(VK , ψ)
ε(κD, ψL)

. (8.8.2)

It is clear that VK is an orthogonal representation of WK . By (6.4.1) and (6.5.1), the

determinant of VK is the unramified character κ(n2)
−1 . Therefore, by [Ser71, Theorem 1], the Artin

conductor a(VK) of VK is even. Let r be the smallest integer such that 2r >m= ordL(D). Since
a(VK) =m+ a(κD), we have a(VK) = 2r; moreover, κD is unramified if and only if m= 2r is
even.

We identify H2(K, Z/2Z) with {±1} by the isomorphism invK , and the Hilbert symbol ( , )K
with the pairing { , } induced by the cup-product (see § 6.1). By [Del76, 1.5], since det(VK) is
unramified and ord(ψ) = 0, we have

ε(VK , ψ) = w2(VK)qr, (8.8.3)

where w2(VK) ∈ {±1} is the second Stiefel–Whitney class of VK (see § 6.3). Since (−1,−1)K =
(−1, 2)K = 1, we deduce from 6.5 that we have

w2(VK) = (dL/K , 2)K = (D, 2)L =
{

1 if m is even,
(2, πL)L if m is odd.

(8.8.4)

To prove (8.8.4), we expressed the Hilbert symbol in terms of the tame symbol. By (8.5.3), we
have

qr = κ0(−1)rG2r
ψk

= κ0(−1)(
m+1

2 ) ×

{
Gmψk if m= 2r,
Gm+1
ψk

if m= 2r − 1.
(8.8.5)

We put ψ′L(x) = ψL(D−1x). Then we have ordL(ψ′L) = 0 and βπ1−n
L is a ψk-gauge of ψ′L.

Indeed, since Dπ1−n
L is a refined logarithmic different of L over K (see § 7.3), for any a ∈ OL,

with residue class a in OL/πLOL, we have by (7.1.2)

ψ′L(β−1πn−1
L a) = ψ(β−1TrL/K(D−1πn−1

L a)) = ψk(a).

Since κD(D) = (D, D)L = (D,−1)L = κ0(−1)m, we have by (8.4.1)

ε(κD, ψL) = κD(D)qmε(κD, ψ′L) =G2m
ψk
ε(κD, ψ′L). (8.8.6)

If m= 2r is even, then κD is unramified and we have ε(κD, ψ′L) = 1, which implies (8.8.1) in
this case. Assume that m= 2r − 1 is odd, so κD is tamely ramified; in particular, the character
k×→{±1} defined by κD is non-trivial, and hence is equal to κ0. By 8.7(i), we have

ε(κD, ψ′L) = ε0(κD, ψ′L) =−κD(βπ1−n
L )τ(κ0, ψk) = κD(βπ1−n

L )Gψk . (8.8.7)
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Since βπ1−n
L is a uniformizer of L, we have ordL(Dβπ1−n

L ) = 2r and

κD(βπ1−n
L ) = (D, βπ1−n

L )L = (−Dβπ1−n
L , βπ1−n

L )L = (−βDπ1−n
L , $L)L,

where $L is any uniformizer of L. Moreover, a refined logarithmic different of L over K being
unique in L×/1 + πLOL, we have (Dπ1−n

L , $L)L = (δ, $L)L, which proves (8.8.1) in this case.

8.9 Assume that K is of equal characteristic p. Recall that we fixed a non-trivial additive
character ψk : k→Q×` . We denote by res : Ω1

K → k the residue homomorphism and by ord: Ω1
K −

{0}→ Z the valuation defined by ord(x dy) = ord(x), if x, y ∈K× and ord(y) = 1. For a non-zero
element ω of Ω1

K , we denote by ψω : K→Q×` the non-trivial additive character defined, for any
a ∈K, by

ψω(a) = ψk(res(aω)). (8.9.1)
Let x be a uniformizer of K, β be the element of K× such that ω = βx−1 dx. Then β is a ψk-gauge
of ψω and we have ord(ψω) = ord(ω) = ord(β)− 1.

Corollary 8.10. Assume that K is of equal characteristic p 6= 2. Let L be a finite, separable,
totally ramified extension of K of degree n, let x be a uniformizer of K, let t be a uniformizer
of L, and let dL/K ∈K×/K×2 be the discriminant of L over K (see § 6.4). We put x′ = dx/dt
and m= ordL(x′), where ordL is the valuation of L normalized by ordL(t) = 1. Then we have

dL/K = (−1)(
n
2)NL/K(tnx′/x), (8.10.1)

λ(L/K, ψdx) = κ0(−1)(
m+1

2 )G−mψk ×
{

1 if m is even,
(2x′, t)L if m is odd.

(8.10.2)

Let f(X) ∈ OK [X] be the minimal polynomial of t. Since t1−nf ′(t) and tx′/x are refined
logarithmic differents of L over K (see § 7.1), the quotient f ′(t)(tnx′/x)−1 belongs to 1 + tOL.
Hence, (8.10.1) follows from (6.5.1). On the other hand, x is a ψk-gauge of ψdx and we have
ord(ψdx) = 0. Then (8.10.2) follows from 8.8.

Proposition 8.11. Assume that K is of equal characteristic p. Let χ : K×→Q×` be a wildly
ramified quasi-character of Swan conductor n= sw(χ) > 1, c ∈K×, ω be a non-zero element of

Ω1
K , ψm : Z/pm+1Z→Q×` (m> 0) be injective homomorphisms. We assume that the following

conditions are satisfied.

(i) There exist a character χw : K×→ Z/pm+1Z (m> 0) and a tamely ramified quasi-character

χt : K×→Q×` such that χ= χt · (ψ−1
m ◦ χw). We denote by γ ∈H1(K, Z/pm+1Z) the

cohomology class corresponding to χw by the reciprocity isomorphism (8.1.1).

(ii) There exists a ∈ filnWm+1(K) such that δm+1(a) = γ (see (2.5.2)) and

2ord(Fm da+ cω) >−n, (8.11.1)

where Fmd is the homomorphism defined in (2.4.1).

(iii) We have ψk = ψ0 ◦ Trk/Fp and ψm(pma) = ψ0(a) for any a ∈ Fp, where pma denotes the
embedding Fp→ Z/pm+1Z induced by the multiplication by pm on Z.

Let ψω : K→Q×` be the additive character defined in (8.9.1) and let r be the smallest integer
such that 2r > n. Then, for any x ∈mr

K , we have

χ

(
1 + x+

x2

2

)
= ψω(cx). (8.11.2)
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We deduce the proposition from Witt’s explicit reciprocity law according to Fontaine [Fon90,
2.4.3]. Let W = W(k), Wm+1 = Wm+1(k), let OE be the p-adic completion of the ring W ((t))
of Laurent power series over W in the variable t (which is an absolutely unramified, complete,
discrete valuation ring), and let E be the fraction field of OE . We identify the residue field of
OE with K by mapping the residue class of t to a uniformizer of K. We denote by Ω̂1

OE /W
the

module of continuous differential forms of OE over W and by rest : Ω̂1
OE /W

→W the residue
homomorphism (cf. [Fon90, 2.2]). For z ∈Wm+1(K) and u ∈K×, we denote by [z, u)m the
element of Z/pm+1Z⊂Wm+1(K) defined by

[z, u)m = gu(ξ)− ξ,

where ξ is an element of Wm+1(K) such that F(ξ)− ξ = z, F is the Frobenius homomorphism, and
gu ∈Gab

K is the image of u by the reciprocity isomorphism (8.1.1). If we put OE ,m = OE /p
m+1OE ,

we have a homomorphism

wm : Wm+1(K)→ OE ,m

defined for an element z = (z0, z1, . . . , zm) of Wm+1(K), by wm(z) =
∑

06j6m pj(z̃j)p
m−j

, where
z̃j is any lifting of zj in OE ,m. Then, if z ∈Wm+1(K) and if ũ is a unit of OE ,m lifting an element u
of K×, we have

[z, u)m =−Trm(resm(wm(z)d log ũ)), (8.11.3)

where Trm (respectively, resm) is the reduction modulo pm+1 of the trace homomorphism of
W over Zp (respectively, rest). Note that the minus sign in (8.11.3) does not appear in [Fon90,
2.4.3] because the reciprocity map used there is the inverse of (8.1.1) (the reciprocity map used
by Fontaine sends uniformizers to arithmetic Frobenius).

Multiplication by pm on Ω̂1
OE /W

induces a homomorphism

Ω1
K = Ω̂1

OE /W
⊗OE

K→ Ω̂1
OE /W

⊗OE
OE ,m,

that we abusively denote by a multiplication by pm. For any z ∈Wm+1(K), we have

dwm(z) = pmFm d(z). (8.11.4)

We can now prove the proposition. Since r > 1, we may assume χt = 1. We put a=
(a0, . . . , am) ∈Wm+1(K) and νi = ord(ai). Let ãi be a lifting of ai in tνiWm+1[[t]] (0 6 i6m),
x ∈mr

K , and let x̃ be a lifting of x in trWm+1[[t]]. It follows from the choice of the ãi and the
fact that 3r > n+ 1, that we have wm(a) ∈ t−nWm+1[[t]], and resm(wm(a)x̃i dx̃) = 0 for i> 2.
Therefore, we have[

a, 1 + x+
x2

2

)
m

= −Trm

(
resm

(
wm(a)

1 + x̃

1 + x̃+ (x̃2/2)
dx̃

))
= −Trm(resm(wm(a) dx̃))
= Trm(resm(x̃ d(wm(a))))
= pmTrk/Fp(resK(xFm d(a))),
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where, on the right-hand side, pm denotes the embedding Z/pZ→ Z/pm+1Z induced by the
multiplication by pm on Z. We conclude by (8.11.1) that for any x ∈mr

K , we have

χ

(
1 + x+

x2

2

)
= ψ−1

m

([
a, 1 + x+

x2

2

)
m

)
= ψ0(−Trk/Fp(resK(xFmd(a)))
= ψ0(Trk/Fp(resK(xcw)))
= ψω(cx).

9. Laumon’s formula for local epsilon factors

9.1 Let T be the spectrum of a henselian discrete valuation field of equal characteristic p, with
finite residue field k of order q = pf , τ (respectively, τ) be the generic point (respectively, a
geometric generic point) of T , G= π1(τ, τ). We denote by K the completion of the function field
k(τ) of T and by

RecT : K×→Gab (9.1.1)

the reciprocity homomorphism, normalized as in (8.1.1).

Recall that we fixed a non-trivial additive character ψ0 : Fp→Q×` (see § 1.11). Let ψk : k→Q×`
be the additive character ψ0 ◦ Trk/Fp . For a complex C of Db

c(T,Q`) and a non-zero meromorphic
differential form ω on T (that is, ω ∈ Ω1

k(τ) − {0}), Laumon attached a local ε-factor ε(T, C, ω) ∈
Q×` (see [Lau87, 3.1.5.4]). For any Q`-sheaf F over τ , we have (with the notation of § 8.3)

ε(T, j∗F , ω) = ε(Fτ , ψω), (9.1.2)
ε(T, j!F , ω) = ε0(Fτ , ψω), (9.1.3)

where j : τ → T is the canonical injection, ψω is the additive character defined in (8.9.1).

In the situation of § 3.4, we use the notation above for T and Ť . We equip with a ∨ the
objects relative to Ť .

Theorem 9.2 [Lau87, 3.6.2]. The assumptions are those of 3.7; moreover, we assume that k is
finite, z = 0 and ž = ∞̌. We denote by G! the extension by 0 of G to S, and by d the dimension
of F(0,∞̌)(f∗(G )) over Q`. Then we have

(−1)d det(RecŤ (x̌−1), F(0,∞̌)(f∗(G ))) = ε(T, f∗(G!), dx). (9.2.1)

Let k′ be the residue field of S at s. First, we reduce the theorem to the case where k′ = k.
We denote by 0′ ∈ Pk′(k′) and ∞̌′ ∈ P̌k′(k′) the points induced by 0 ∈ P(k) and ∞̌ ∈ P̌(k), by
v′ : S→ Pk′ and v̌′ : S→ P̌k′ the morphisms induced by v and v̌, by T ′ and Ť ′ the henselizations
of Pk′ and P̌k′ at 0′ and ∞′ respectively, by f ′ : S→ T ′ and f̌ ′ : S→ Ť ′ the morphisms induced
by v′ and v̌′ (or by f and f̌) and by w : Ť ′→ Ť the canonical morphism. We have T ′ = T ⊗k k′
and Ť ′ = Ť ⊗k k′. By 3.6(ii), we have

w∗(F(0′,∞̌′)(f ′∗(G )))' F(0,∞)(f∗(G )). (9.2.2)

Let d′ be the dimension of F(0′,∞̌′)(f ′∗(G )) over Q`. Since Ť ′ is a finite étale covering of Ť of
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degree d/d′, we deduce by [Del73, 1.2] that we have

det(RecŤ (x̌−1), F(0,∞)(f∗(G )))

= det(RecŤ (x̌−1), w∗(1))d
′ · det(RecŤ ′(x̌

−1), F(0′,∞′)(f ′∗(G )))

= (−1)d−d
′
det(RecŤ ′(x̌

−1), F(0′,∞′)(f ′∗(G ))). (9.2.3)

Since T ′ is a finite étale covering of T , we have, by 8.4(ii) and 8.9,

ε(T ′, f ′∗(G!), dx) = ε(T, f∗(G!), dx). (9.2.4)

Equations (9.2.3) and (9.2.4) show that we may assume k′ = k. We denote by L the completion
of the function field k(η) of S, by OL its valuation ring, by t a uniformizer of k(η), and by ordL
the valuation of L normalized by ordL(t) = 1. For any y ∈ L, we put y′ = dy/dt; if y ∈ k(η), then
y′ is well defined in k(η) (see 3.8). We consider L as a finite, separable, totally ramified extension
of both K and Ǩ, the completions of the function fields of T and Ť , respectively. Since x is a
uniformizer of K and x̌−1 is a uniformizer of Ǩ, we have [L :K] = ordL(b), [L : Ǩ] =−ordL(c),
and tb′/b (respectively, −tc′/c) is a refined logarithmic different of L over K (respectively, of
L over Ǩ) (see § 7.4). We put m= ordL(b′), i=−ord(c), and denote by dL/Ǩ the discriminant
of L over Ǩ (see § 6.4).

We denote by χ : L×→Q×` the quasi-character defined by the sheaf G over η, by ( , )L the
Hilbert symbol over L, by κ0 : k×→{±1} the unique character of order two, by ψk : k→Q×`
the additive character ψ0 ◦ Trk/Fp , and by Gψk the quadratic Gauss sum associated to ψk (see
(8.5.2)). Observe that we have the following equality of additive characters of L

ψdb = ψdx ◦ TrL/K . (9.2.5)

On the one hand, by 3.7, we have a canonical isomorphism of sheaves over τ̌

F(0,∞̌)(f∗(G ))' f̌∗(G ⊗Lψ0(bc)⊗K (−1
2b
′c′)⊗Q).

We deduce by (6.4.1) that we have

det(−RecŤ (x̌), F(0,∞̌)(f∗(G )))
= (−1)i(x̌, dL/Ǩ)Ǩ det(RecS(c), G ⊗Lψ0(bc)⊗K (−1

2b
′c′)⊗Q). (9.2.6)

Moreover, we have

(x̌, dL/Ǩ)Ǩ = (x̌, (−1)(
i
2)NL/Ǩ(−tic′/c))Ǩ

= κ0(−1)(
i
2)(c, tic′)L, (9.2.7)

det(RecS(c), G ) = χ(c), (9.2.8)

det(RecS(c),Lψ0(bc)) = ψ−1
0

(
−Trk/Fp

(
resL

(
bc
dc

c

)))
= (ψk(resL(cdb)))−1 = (ψdb(c))−1, (9.2.9)

det(RecS(c),K (−1
2b
′c′)) = (c,−2b′c′)L, (9.2.10)

det(RecS(c),Q) = (−1)iG−iψk . (9.2.11)

Equation (9.2.10) is obvious from the definitions, equation (9.2.7) follows from (8.10.1), equation
(9.2.11) follows from [Lau87, 1.4.3.2(ii)], and equation (9.2.9) is a consequence of [Ser68, XIV,
§ 5, Proposition 15]: the power −1 above ψ0 is due to the convention in § 3.1, and the minus sign
before Trk/Fp is due to the convention in the definition of the reciprocity law (8.1.1). We deduce
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that we have

det(−RecŤ (x̌), F(0,∞̌)(f∗(G ))) = κ0(−1)(
i
2)χ(c)(ψdb(c))−1G−iψk(c,−2tib′)L. (9.2.12)

On the other hand, we have

ε(T, f∗(G!), dx) = λ(L/K, ψdx)ε(S, G!, db) = λ(L/K, ψdx)ε0(χ, ψdb). (9.2.13)

By assumption, (G , b, c) is a Legendre triple (cf. 2.16). So χ is wildly ramified. We put n= sw(χ)
and r the smallest integer such that 2r > n. By 8.11, for any y ∈ trOL, we have

χ

(
1 + y +

y2

2

)
= ψdb(cy).

For any y ∈ OL, with residue class y in k, we have by (7.1.2)

ψdb((tb′)−1y) = ψdx(x−1TrL/K((tb′/b)−1y)) = ψk(y).

We deduce from 8.7(ii) that we have 1 +m− i= ord(tb′c) =−n and

ε0(χ, ψdb) = χ−1(c)ψdb(c)qiκ0(−1)(
−n
2 )G−n−1

ψk
×
{

1 if n is odd
(2b′c, t)L if n is even

(9.2.14)

By (8.10.2), we have

λ(L/K, ψdx) = κ0(−1)(
m+1

2 )G−mψk ×
{

1 if m is even,
(2b′, t)L if m is odd.

(9.2.15)

To conclude the proof, it remains to check that the product of the right-hand sides
of equations (9.2.12), (9.2.14) and (9.2.15) is equal to 1. Since we have q = κ(−1)G2

ψk
(see (8.5.3)),

1 +m= i− n and hence
(
m+1

2

)
=
(
i
2

)
+
(−n

2

)
− in, we are reduced to checking that

1 = κ0(−1)i(n+1)(c,−2tib′)L ×


1 if m is even and n is odd,
(c, t)L if m is odd and n is even,
(2b′c, t)L if m and n are even,
(2b′, t)L if m and n are odd.

(9.2.16)

Since we have κ0(−1) = (−1, t) = (t, t), we are further reduced to checking that

1 =


(c,−2b′)L if m is even and n is odd,
(c,−2b′t)L if m is odd and n is even,
(−2b′, tc)L if m and n are even,
(−2tb′, tc)L if m and n are odd.

(9.2.17)

In each case, the valuations of both terms of the Hilbert symbol are even, which proves the
required result.

Appendix A. Semi-continuity of the Swan conductor

A.1 In this appendix, (S, η, s) denotes an excellent henselian trait, of equal characteristic p > 0,
with algebraically closed residue field k, that is, S = Spec(V ) is the spectrum of an excellent
henselian discrete valuation ring, of equal characteristic p > 0, η and s are the generic and the
closed points of S. We denote by K the fraction field of V . We fix a geometric generic point η
of S, and a finite field Λ of characteristic 6= p. A finite covering of (S, η, s) stands for a trait
(S′, η′, s′) equipped with a finite covering S′→ S.
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A.2 Let R be a complete discrete valuation ring, let L be the fraction field of R, let m be the
maximal ideal of R, let L′ be a finite separable extension of L, and let R′ be the integral closure
of R in L′. We say that L′ is a stable extension of L if mR′ is the maximal ideal of R′.

A.3 Let R be a complete discrete valuation ring which is a k-algebra, let F be the residue field
of R, let L be the fraction field of R, and let m be the maximal ideal of R. We assume that F
is an extension of finite type of k. Then the R-module of absolute 1-differential forms Ω1

R is
complete, separated, and hence free of finite rank over R. We denote by Ω1

R(log) the sub-R-
module of Ω1

L generated by Ω1
R and d log(x) where x is a uniformizer of R (cf. [AS09, 5.4]). We

put Ω1
F (log) = Ω1

R(log)⊗R F . We have a canonical exact sequence

0 // Ω1
F

// Ω1
F (log) res // F // 0 . (A.3.1)

Let F be a Λ-sheaf of rank one over Spec(L). Kato [Kato89] associates to F a Swan conductor
and a refined Swan conductor, that can also be defined using our ramification theory [AS09]. The
Swan conductor n= sw(F ) is an integer >0, that vanishes if and only if F is tamely ramified.
The refined Swan conductor rsw(F ) is an element of the F -vector space

Ω1
F (log)⊗F (m−n/m−n+1). (A.3.2)

If F is trivialized by a stable extension of L, then we have [Kato89, remark after 6.8]

(res⊗ 1)(rsw(F )) = 0 ∈m−n/m−n+1. (A.3.3)

A.4 We denote by CS the following category. Objects of CS are normal affine S-schemes H for
which there exist an S-curve X (that is, a flat S-scheme of finite type and relative dimension
one) and a closed point x of Xs, such that X is smooth over S outside x, and H is S-isomorphic
to the henselization of X at x. Let H, H ′ be two objects of CS . A morphism f : H ′→H of CS
is a finite morphism of S-schemes which is étale at the generic point of H ′.

A.5 Let H be an object of CS , (S′, η′, s′) be a finite covering of (S, η, s). Then H ×S S′ is an
object of CS′ (see [Kato87a, 5.4]).

A.6 Let H be an object of CS . We denote by H◦ the set of height 1 points of H, H◦η =Hη ∩H◦
and H◦s =Hs ∩H◦. Then:

(i) Hη is geometrically regular over η, of dimension one, and for any p ∈H◦η , the residue field
κ(p) of H at p is a finite extension of K;

(ii) Hs is a reduced henselian local scheme, of dimension one.

Indeed, let X be an S-curve and let x be a closed point of Xs such that X is smooth over S
outside x, and H is S-isomorphic to the henselization of X at x. The set of geometric points of
H is canonically isomorphic to the set of geometric points of X which are generizations of x;
moreover, the strict henselizations of X and H at associated geometric points are isomorphic
[SGA4, VIII 7.3]. We deduce that Hη is regular of dimension one and, hence, geometrically
regular over η by A.5. The second assertion of part (i) is a consequence of [EGA4, 8.2.9 and its
corollaries]. The scheme Hs is the henselization of Xs at x, which implies part (ii).
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We denote by H̃s the normalization of Hs, which is a finite disjoint union of strictly local
traits (indexed by H◦s ). We put

δ(H) = dimk(OH̃s
/OHs). (A.6.1)

A.7 We denote by FS the following category. Objects of FS are triples (H, U,F ), where H is an
object of CS , U is a non-empty open subscheme of Hη, and F is a locally constant constructible
étale sheaf of Λ-modules over U . Let (H, U,F ), (H ′, U ′,F ′) be two objects of FS . A morphism
(H ′, U ′,F ′)→ (H, U,F ) of FS is a pair (f, g) made of a morphism f : H ′→H of CS such that
f(U ′)⊂ U , and a morphism g : F ′→ f∗UF , where fU : U ′→ U is the restriction of f .

Let (S′, η′, s′) be a finite covering of (S, η, s). By A.5, the base change S′→ S induces a
natural functor FS → FS′ , that we denote by

(H, U,F ) 7→ (H, U,F )S′ . (A.7.1)

A.8 An object (H, U,F ) of FS is said to be stable if there exists a finite étale connected covering
U ′ of U satisfying the following conditions.

(i) The pull-back of F to U ′ is constant.

(ii) The normalization H ′ of H in U ′ belongs to CS , and the residue fields of H ′ at all points
of H ′η − U ′η are finite separable extensions of K.

Proposition A.9 [Kato87a, 6.3]. Let (H, U,F ) be an object of FS .

(i) Let (S′, η′, s′) be a finite covering of (S, η, s). If (H, U,F ) is a stable object of FS , then
(H, U,F )S′ is a stable object of FS′ .

(ii) There exists (S′, η′, s′) a finite covering of (S, η, s), such that (H, U,F )S′ is a stable object
of FS′ .

Proposition (i) follows from A.5 and proposition (ii) follows from [Epp73].

A.10 Let (H, U,F ) be a stable object of FS such that F has rank one over U . For p ∈H◦, we
denote by Rp the completion of the local ring of H at p (which is a discrete valuation ring), and
by κ(p) its residue field. Following [DK73, XVI], [Lau81] and [Kato87a, 6.4], we define the total
dimension of F at a point p, denoted by dimtotp (F ), to be the integer given as follows. For
p ∈H◦η , we put

dimtotp (F ) = [κ(p) :K](swp (F ) + 1), (A.10.1)

where swp (F ) is the Swan conductor of the pull-back to F over Spec(Rp )×H U .

For p ∈H◦s , we denote by H̃s,p the integral closure of Hs in κ(p) (which is a strictly local trait)
and by ords,p the associated valuation of κ(p), normalized by ords,p (κ(p)×) = Z. We denote also
by ords,p : Ω1

κ(p ) − {0}→ Z the valuation defined by ords,p (αdβ) = ords,p (α), if α, β ∈ κ(p)× and
ords,p (β) = 1. We distinguish two cases.

(i) Assume that F extends to a locally constant constructible sheaf of Λ-modules F̃ over an
open subscheme Ũ of H that contains p. We denote by sws,p (F ) the Swan conductor of
the pull-back of F̃ to H̃s,p ×H Ũ . We put

dimtotp (F ) = sws,p (F ) + 1. (A.10.2)
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(ii) Assume that F is ramified at p. We denote by n= swp (F ) and rswp (F ) the Swan and
the refined Swan conductors of the pull-back of F to Spec(Rp )×H U (see A.3). Let π be a
uniformizer of V . Since (H, U,F ) is stable, we have res(rswp (F )⊗ [πn]) = 0 (see (A.3.3)).
Hence, we can identify rswp (F )⊗ [πn] with the image of an element ω ∈ Ω1

κ(p ), which does
not depend on the choice of π up to a multiplication by an element of k×. We put

dimtotp (F ) =−ords,p (ω). (A.10.3)

We put

ϕη(H, U,F ) =
∑

p∈Hη−U
dimtotp (F ), (A.10.4)

ϕs(H, U,F ) =
∑

p∈H◦s

dimtotp (F ). (A.10.5)

Lemma A.11 [Kato87a, 6.5]. Let (H, U,F ) be a stable object of FS such that F has rank one
over U and let (S′, η′, s′) be a finite covering of (S, η, s). We put (H ′, U ′,F ′) = (H, U,F )S′ .

(i) For any p′ ∈H ′◦s with image p in H◦s , we have dimtotp (F ) = dimtotp ′(F ′).

(ii) For any p ∈Hη − U , we have

dimtotp (F ) =
∑
p ′

dimtotp ′(F ), (A.11.1)

where p′ runs over the points of H ′ above p.

A.12 Let (H, U,F ) be an object of FS such that F has rank one over U . By A.9(ii), there
exists a finite covering (S′, η′, s′) of (S, η, s) such that (H, U,F )S′ is a stable object of FS′ . We
put

ϕη(H, U,F ) = ϕη′((H, U,F )S′), (A.12.1)
ϕs(H, U,F ) = ϕs′((H, U,F )S′). (A.12.2)

By A.11, these numbers do not depend on the choice of (S′, η′, s′).

Theorem A.13 (Deligne, Kato). Let (H, U,F ) be an object of FS such that F has rank one
over U , let x be the closed point of H, and let u : U →Hη be the canonical injection. Then we
have

dim(Ψ0
x(u!F ))− dim(Ψ1

x(u!F )) = ϕs(H, U,F )− ϕη(H, U,F )− 2δ(H). (A.13.1)

If F is unramified at every point of H◦s , Deligne [Lau81, 5.1.1] proved the theorem for
sheaves of any rank. In the general case, Kato [Kato87a, 6.7] proved the theorem for sheaves
of any rank, with another definition of the invariant ϕs(H, U,F ). One of the present authors,
Saito [Sai87], gave another proof for sheaves of any rank, with yet another definition of the
invariant ϕs(H, U,F ). The latter corresponds to a second formula announced by Kato [Kato87b,
4.5]. If F has rank one, the invariant ϕs(H, U,F ) in Kato’s latter formula coincides with our
definition [Kato89, remark after 6.8].

Note that formula (A.13.1) also holds in the case where S has unequal characteristic.
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Appendix B. Dimension of the local Fourier transform

B.1 We fix an algebraically closed field k of characteristic p > 0, a finite field Λ of characteristic
6= p and a non-trivial additive character ψ0 : Fp→ Λ×. We denote by Lψ0 the Artin–Schreier
locally constant sheaf of Λ-modules of rank one over Ga,k associated to ψ0. Apart from this
change of convention, we keep the same notation as in § 3. In particular, we consider the sheaves
Lψ0(xx̌) and L ψ0(xx̌) over A×k Ǎ and P×k P̌, respectively. For a scheme W over A×k Ǎ
(respectively, P×k P̌), we denote also by Lψ0(xx̌) (respectively, L ψ0(xx̌)) the pull-back of
Lψ0(xx̌) (respectively, L ψ0(xx̌)) to W .

B.2 Let X be a smooth connected curve over k, f : X → P be a k-morphism, étale over a dense
open subscheme of X, Y = f−1(A), s ∈X(k), z = f(s), and ž ∈ P̌(k). We denote by Ť and H
the henselizations of P̌ and X ×k P̌ at ž and (s, ž), respectively, by τ̌ the generic point of Ť and
(abusively) by ž the closed point of Ť . We consider H as a Ť -scheme by the morphism H → Ť
induced by the canonical projection X ×k P̌→ P̌. We denote by U the inverse image of Y ×k Ǎ
in Hτ̌ =H ×Ť τ̌ , and let

ρ(s, ž) = ϕž(H, U,Lψ0(xx̌)), (B.2.1)

where ϕž is the invariant defined in (A.12.2).

Lemma B.3. Under the assumptions of B.2, we have

ρ(s, ž) =
{
−ords(f∗ dx) if (z, ž) ∈ P× ∞̌,
1 if (z, ž) = (∞, 0̌),

(B.3.1)

where ords(f∗ dx) is the order of the non-zero meromorphic differential form f∗ dx over X.

The case where (z, ž) = (∞, 0̌) follows directly from the definition. Assume that ž = ∞̌. We
put y = x̌−1 and consider the base change Ť1→ Ť given by Ť [y1]/(yp1 − y). We denote by p the
generic point of the special fiber of the canonical projection X ×k Ť1→ Ť1, by R the completion
of the local ring of X ×k Ť1 at p, by K the fraction field of R, and by b the image of x in R
(which is a unit). Since f∗dx 6= 0, b is not a pth power in R. By [AS09, § 10], the Swan conductor
of Lψ0(xx̌) at p is p, and its refined Swan conductor is the class of the differential form

db⊗ [y−p1 ] ∈ Ω1
R(log)⊗R (y1R)−p/(y1R)−p+1.

Moreover, Lψ0(xx̌) is trivialized by a stable extension of K, namely the extension L of K defined
by the equation tp − t= b/yp1 . Indeed, the integral closure of R in L is generated over R by t1 = y1t

which satisfies the equation tp1 − y
p−1
1 t1 = b. The lemma follows.

B.4 We keep the assumptions of B.2. Moreover, let Y0 be a dense open subscheme of X contained
in Y , let j : Y0→X be the canonical injection, and let G be a locally constant sheaf of Λ-
modules of rank one over Y0. We denote by pr1 : X ×k Ť →X the first projection, and consider
the complex of nearby cycles

Ψ(pr∗1(j!G )⊗L ψ0(xx̌))

in Db
c(X, Λ), relatively to the second projection pr2 : X ×k Ť → Ť . We fix an algebraic closure of

k(τ̌) and denote by θ the associated geometric point of Ť . We consider the sheaf Gθ ⊗Lψ0(x̌fθ)
over Xθ =X ×k θ (cf. § 3.1 for the notation).

Proposition B.5. We keep the assumptions of B.2 and B.4.
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(i) If s ∈ Y − Y0 and ž = ∞̌, then we have

dim(Ψ1
s(pr∗1(j!G )⊗L ψ0(xx̌))) = sws(G ) + 1 + ords(f∗ dx).

(ii) If (z, ž) = (∞, ∞̌), then we have

dim(Ψ1
s(pr∗1(j!G )⊗L ψ0(xx̌))) = sws×θ(Gθ ⊗Lψ0(x̌fθ)) + 1 + ords(f∗ dx).

(iii) If (z, ž) = (∞, 0̌), then we have

dim(Ψ1
s(pr∗1(j!G )⊗L ψ0(xx̌))) = sws×θ(Gθ ⊗Lψ0(x̌fθ))− sws(G ).

This follows from A.13 and B.3.

Proposition B.6 [Lau87, 2.4.3]. Let z ∈ P(k), ž ∈ P̌(k), let T and Ť be the henselizations of P
and P̌ at z and ž, respectively, and let τ and τ̌ be the generic points of T and Ť , respectively. Let
F be a constructible sheaf of Λ-modules over τ , of rank rk(F ) and Swan conductor sw(F ), and
let Θ(F ) be the set of slopes of F . Then the rank of the local Fourier transform of F at (z, ž)
(see § 3.4) is given by

rk(F(z,ž)(F )) =


sw(F ) + rk(F ) if (z, ž) ∈A× ∞̌,
sw(F )− rk(F ) if (z, ž) = (∞, ∞̌) and Θ(F )⊂ ]1,∞[,
0 if (z, ž) = (∞, ∞̌) and Θ(F )⊂ [0, 1],
rk(F )− sw(F ) if (z, ž) = (∞, 0̌) and Θ(F )⊂ [0, 1[,
0 if (z, ž) = (∞, 0̌) and Θ(F )⊂ [1,∞[.

(B.6.1)

By Brauer induction, we may reduce to the case where F = f∗(G ), f : S→ T is a finite
morphism, étale above τ , S is the spectrum of a henselian discrete valuation ring, with generic
point η, and G is a constructible sheaf of Λ-modules of rank one over η. There exist a connected
smooth curve X over k, a k-morphism f̃ : X → P, a point s ∈X(k), a dense open subscheme Y0

of X, and a locally constant constructible sheaf of Λ-modules of rank one, G̃ , over Y0, such that
S is isomorphic to the henselization of X at s, z = f̃(s), f is induced by f̃ , f̃(Y0)⊂A, and G is
isomorphic to the pull-back of G̃ to η. We take again the notation of B.2 and B.4 (applied to f̃
and G̃ ). It follows from [DK73, XIII, 2.1.7.1 and 2.1.7.2] that we have a canonical isomorphism

F(z,ž)(F )'Ψ1
s(pr∗1(j!G̃ )⊗L (xx̌)). (B.6.2)

Let R be the completion of the local ring of S, let K be its fraction field, let t be a uniformizer
of R, let b be the image of x in K, and let ord be the valuation of K normalized by ord(t) = 1.
For v ∈K, we put v′ = dv/dt ∈K. If (z, ž) ∈A× ∞̌, then by B.5 and [Ser68, VI, § 2], we have

rk(F(z,ž)(F )) = sw(G ) + 1 + ord(b′)

= sw(G ) + ord
(

tb′

b− x(z)

)
+ ord(b− x(z))

= sw(F ) + rk(F ). (B.6.3)

We fix an algebraic closure of k(τ̌) and let θ be the associated geometric point of Ť , and T{θ} be
the henselization of T ×k θ at z ×k θ. We denote by a subscript {θ} the objects deduced from
objects over T by the base change T{θ}→ T . Similarly as for (B.6.3), we have

rk(F(∞,∞̌)(F )) = sw(G{θ} ⊗ f∗{θ}(Lψ0(xx̌))) + 1 + ord(b′)

= sw(G{θ} ⊗ f∗{θ}(Lψ0(xx̌))) + ord(tb(b−1)′) + ord(b)
= sw(F{θ} ⊗Lψ0(xx̌))− rk(F ), (B.6.4)
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rk(F(∞,0̌)(F )) = sw(G{θ} ⊗ f∗{θ}(Lψ0(xx̌)))− sw(G )
= sw(F{θ} ⊗Lψ0(xx̌))− sw(F ). (B.6.5)

Let κ be a geometric generic point of T{θ}, I = π1(τ, κ), I{θ} = π1(τ{θ}, κ), I(a) and I(a)
{θ} (a ∈Q>0)

be the classical logarithmic ramification filtrations of I and I{θ}, respectively ([Ser68, IV];
cf. [AS02, AS03] for the notation). For every a ∈Q>0, the canonical surjective homomorphism
I{θ}→ I identifies Ia with the image of Ia{θ}. We consider the slope decomposition of the
representation Fκ of I

Fκ =
⊕

λ∈Θ(F )

Fκ,λ.

By [Lau87, 2.1.2.7], to conclude the proof of the proposition, it is enough to show that

(Fκ,1 ⊗Lψ0(xx̌)κ)I
(1)
{θ} = 0. (B.6.6)

Recall that I(1)/I(1+) is an Fp-vector space. By [AS09, 14.3 and 14.4], we have an isomorphism

HomZ(I(1)/I(1+), Fp)' k, (B.6.7)

and similarly for I(1)
{θ}/I

(1+)
{θ} (in [AS09], we trivialize the line N−1 by x−1). Since we fixed a

non-trivial character ψ0 : Fp→ Λ×, the action of I(1)/I(1+) on Fκ,1 determines a finite set
of characters I(1)/I(1+)→ Fp, and hence a finite set of points Σ⊂ k. Similarly, the action of
I

(1)
{θ}/I

(1+)
{θ} on Lψ0(xx̌)κ determines the point x̌ ∈ k(θ) (cf. [AS09, 9.13]). Since x̌ 6∈ Σ, equation

(B.6.6) follows.
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