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Abstract

Understanding the subsurface is crucial in building a sustainable future, particularly for urban centers. Importantly,
the thermal effects that anthropogenic infrastructure, such as buildings, tunnels, and ground heat exchangers, can have
on this shared resource need to be well understood to avoid issues, such as overheating the ground, and to identify
opportunities, such as extracting and utilizing excess heat. However, obtaining data for the subsurface can be costly,
typically requiring the drilling of boreholes. Bayesian statistical methodologies can be used towards overcoming this,
by inferring information about the ground by combining field data and numerical modeling, while quantifying
associated uncertainties. This work utilizes data obtained in the city of Cardiff, UK, to evaluate the applicability of a
Bayesian calibration (using GP surrogates) approach to measured data and associated challenges (previously not
tested) and to obtain insights on the subsurface of the area. The importance of the data set size is analyzed, showing
that more data are required in realistic (field data), compared to controlled conditions (numerically-generated data),
highlighting the importance of identifying data points that contain the most information. Heterogeneity of the ground
(i.e., input parameters), which can be particularly prominent in large-scale subsurface domains, is also investigated,
showing that the calibration methodology can still yield reasonably accurate results under heterogeneous conditions.
Finally, the impact of considering uncertainty in subsurface properties is demonstrated in an existing shallow
geothermal system in the area, showing a higher than utilized ground capacity, and the potential for a larger scale
system given sufficient demand.

Impact statement

This paper demonstrates the use of Bayesian techniques in engineering applications for which data is scarce,
specifically applications within the subsurface. The combined use of field data, numerical modeling, and
Bayesian calibration to infer accurately important (and often difficult to quantify) parameters at the district
scale are showcased. The applicability of this methodology under heterogeneous conditions is demonstrated, as
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is that different measurement locations can contribute different amounts of information to the inference of
parameter values, understanding of which can reduce costs incurred in site investigations. The significance of
calibration and accounting for uncertainty is highlighted in the design of an existing shallow geothermal system,
indicating higher ground capacity than utilized and thus potential for a larger scale system.

1. Introduction

As cities grow in size and density, shortage of space above ground drives the increasing development of
underground infrastructures. Residential and commercial spaces, transport systems, industrial pro-
cesses, and energy applications all compete for the use of the shallow subsurface. Structures built into
the ground and the associated heat flux from these are known to impact ground temperatures, with
anomalous temperatures propagating particularly far through groundwater flow (Ferguson and Wood-
bury, 2004; Bidarmaghz et al., 2020). Such temperature anomalies can have knock-on effects,
impacting cooling and heating requirements to maintain underground spaces at comfortable levels
(particularly due to groundwater not transporting away as much heat (Blum et al., 2021)), groundwater
quality, and the functioning of underground biospheres (Benz et al., 2015; Attard et al., 2016; Bayer
et al., 2019; Krcmar et al., 2020).

Effective and equitable utilization of the shallow sub-surface as a space and energy resource requires
numerical thermo-hydraulic modeling of the ground at city-scale, taking into account anthropogenic
influences and how they interact with one another (Meng et al., 2019; Epting et al., 2020; Bidarmaghz
et al., 2021). Large-scale numerical models have proven sufficiently reliable in capturing anthropogenic
influences on the shallow subsurface. However, such models are computationally expensive and depend
onmeasured data for calibration and parameter inference to yield reliable results. Inevitably, uncertainties
arise within the modeling process, stemming from various sources such as noise in field measurements,
simplifications adopted to make computational models tractable, and parametric uncertainty. Accounting
for such uncertainties is important for the reliability, reproducibility, and interpretability of model outputs
(Volodina and Challenor, 2021). Bayesian frameworks allow for the quantification of uncertainty and its
incorporation into the calibration process, as well as accounting for prior beliefs about the system that is
modeled (Kaipio and Somersalo, 2007).

While Bayesian calibration methods are used in several fields, for example, engineering mechanics
(Rappel et al., 2020; Pepi et al., 2020), natural hazards engineering (Zheng et al., 2021), building energy
modeling (Hou et al., 2021), and ecological and environmental modeling (Speich et al., 2021), they are not
widely utilized in the context of large-scale subsurface models for shallow geothermal applications, and
their performance, when applied to field data, has not been tested fully. Case studies utilizing such
methods on groundwater models and deep geothermal reservoirs exist (Cui et al., 2019; Omagbon et al.,
2021; Scott et al., 2022), however, the complexities present in the shallow subsurface, such as thermal
influence from the surface as well as from anthropogenic infrastructure and activity, as well as the contrast
in scale andmagnitudemake the problem context significantly different.Moreover, compared to synthetic
data (i.e., data generated numerically or under controlled conditions) calibration on field data poses a
number of non-trivial challenges: (a) observations are expensive to obtain and hence scarce, (b) while the
spread of observations should capture meaningful variations for robust inference, these are often not
easily tractable (even when data is available), leading to a lower content of information compared to
synthetic data, and (c) observation noise and measurement errors introduce additional elements of
uncertainty to the calibration process.

The scarcity of measurements is of particular relevance to the calibration of the subsurface models due
to the cost and labor intensity of observations within the ground, requiring the drilling of boreholes and the
deployment of measurement equipment (Nicholson et al., 2020). Hence data is often sparse relative to the
complexity of the system. Bayesian techniques are particularly useful as they include probabilistic
distributions for prior knowledge and measurements, thereby accounting explicitly for the lack of
knowledge about the system being modeled (Omlin and Reichert, 1999). For example, Cui et al.
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(2011) estimate the posterior distribution for parameters used in a deep geothermal reservoir model using
a two-stage Markov chain Monte Carlo (MCMC) sampling scheme, where the two stages consist of
running the MCMC samples through a surrogate model, and subsequently running samples producing
acceptable results through the original model. A possible issue with such an approach, however, is that it
often requires a large number of forward runs of the original model which can be computationally
expensive. An alternative methodology is proposed by Menberg et al. (2020), based on the work by
Kennedy and O’Hagan (2001) and Goh et al. (2013). It employs models of two different levels of fidelity
(i.e., mesh resolutions) to generate a large set of numerical data to train Gaussian Processes
(GP) emulators for use in the calibration. The use of multi-fidelity approaches has also been suggested
in a hierarchical framework by Maclaren et al. (2020), that incorporates posterior-informed approxima-
tion errors and has been tested with deep geothermal applications. Adopting GP emulators is also used
successfully by Cui et al., (2018) in regional groundwater modeling as well as by Rajabi and Ketabchi
(2017) in coastal groundwater management applications. A limitation of the training of GP models is the
required run-time complexity ofO N3

� �
, where N is the sum of the number of field observations and the

number of numerical outputs (Chong et al., 2017). That is to say, large data sets can make calibration
infeasible if the process is prohibitively costly. Therefore, it becomes crucial to assess how much
individual data-points contribute to parameter inference. It calls for a process by which points that
provide the most information can be identified and curated as a manageable but high-value data set. For
subsurface models covering large areas, this in turn requires the identification of critical locations where
measurements can be improved and uncertainty in parameter posteriors reduced (Nicholson et al., 2020).

A further compounding factor, limiting the ability of parameter inference for spatially large models, is
the issue of non-identifiability for parameters that vary spatially in large regions where measured
quantities in the ground tend to be highly local due to this heterogeneity. Perego et al. (2016) consider
the impact of heterogeneity in soil profile on GSHP efficiency for a system installed within the town of
Alessandria, Italy. A (deterministic) 3D heat transport modeling suite, GeoSIAM (Integrated System for
GeoModelling Analyses), was used to model the system and validated against reference cases. The
authors find that the assumption of homogeneity and averaged thermal properties can underestimate the
thermal impact on the surrounding soil, leading to greater thermal imbalances. This issue also may be
addressed through Bayesian methods in that the resulting inferred parameter values are distributions,
rather than single-valued estimates (Omlin and Reichert, 1999). However, it is useful to understand the
degree to which the distributions inferred from data represent the spatial variations of parameters across a
given region. Characterization of heterogeneity and its impact on inferred parameters using Bayesian
methods is a growing topic of interest in hydrogeology (Zhou et al., 2014; Linde et al., 2017). For
example, Painter et al. (2007) demonstrate the ability of Bayesian methods to out-perform deterministic
approaches in inferring a hydraulic conductivity field for a numerical model of the highly heterogeneous
Edwards aquifer, Texas, USA. The authors compare the performance of simple interpolation and of
numerical upscaling combined with cokriging against a revision to the hydraulic conductivity field using
Bayesian updating, finding that the latter greatly improved the forward groundwater model, reducing the
mean residual error by a factor of 10.

To address the challenges highlighted above, we apply a multi-fidelity Bayesian calibration approach
using field data measured across locations in the city center of Cardiff, UK. The calibration methodology
is also applied with synthetic, numerically generated data. The synthetic data enables us to have
confidence in the setup of the calibration process and allows control of the conditions under which data
for calibration is produced. Additionally, comparison between posteriors inferred from field data and
those from synthetic data permits exploration of the additional complexities contained within field data
and provides a measure for the increased uncertainty arising from field data. Our first objective is to
investigate and identify a subset of high-value data points, thus addressing the issues of data scarcity and
information gain. We do so by performing the calibration process with subsets of the available data and
analyzing how the posteriors of the different parameters are affected by the size of the data subsets and by
the physical phenomena experienced by the measurement points included in the subset. Our second
objective is to test the ability of the calibration methodology to infer reasonable distributions for spatially
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heterogeneous parameters. We do so by numerically creating synthetic scenarios where the aquifer
hydraulic conductivity is varied and examining the parameters inferred using these synthetic data sets.
Finally, we demonstrate the importance of model calibration and uncertainty quantification by propagat-
ing the uncertainties in the inferred parameters to the design of an existing open-loop Ground Source Heat
Pump systemwithin themodeled area. In sum, the novelty of the paper lies in demonstrating data-efficient
calibration of large-scale ground thermal models with field data and the application of the information
gained on geothermal applications, thus contributing to the on-going efforts towards utilizing our
environment’s resources in efficient manners.

2. Methodology

2.1. Bayesian multi-fidelity framework formulation

Weemploy amulti-fidelity approach developed byMenberg et al. (2020), which extends theKennedy and
O’Hagen “single-fidelity” Bayesian framework (Kennedy and O’Hagan, 2001) (hereafter KOH) by
including outputs from numerical models at both high and low levels of fidelity for the calibration.
The advantage of this method is that the low-fidelity model may be run at a lower computational cost than
the high-fidelity one, albeit with lower accuracy, and therebymore frequently, providing a greater number
of numerical data points for calibration. The multi-fidelity framework relates field observations yf to
simulation outputs yc (ultimately re-expressed in terms of the low-fidelity model output term ηl and a term
representing the mismatch between output from the high- and the low-fidelity models, μ) and a
discrepancy function δ, for a given set of state variables x, as

yf xð Þ¼ ζ xð Þþ ε

¼ yc x, θð Þþδ xð Þþ ε

¼ ηl x, θh, θlð Þþμ x, θh, θlð Þþδ xð Þþ ε,

(1)

where θh and θl are the sets of unknownmodel parameters of the high-fidelity and the low-fidelity models,
respectively. ζ xð Þ represents the true, non-observable, physical process and ε the random measurement
error. GP models are used for the approximation of the terms in equation (1), namely ηl, μ, δð Þ, with
covariance matrices adapted from the KOH approach accordingly, shown in Supplementary Appendix A.

The multi-fidelity framework is implemented using the STAN programming language, employing a
Hamiltonian Monte Carlo (HMC) algorithm to sample the posterior distributions. Four independent
sampling chains are run during a calibration process, with 2000 samples each, the first 1000 being
discarded as part of the burn-in phase. The outcome of a calibration consists of posterior distributions of
themodel parameters θ, as well as the hyper-parameters, which define the range of prior uncertainty of the
parameters. While some methods for Bayesian inference, such as the Bayesian approximation error
(BAE) approach (e.g., Maclaren et al. (2020)), use empirical estimates for approximation of the posterior
distributions, our approach follows the concept of the KOH framework. Here, the posteriors distributions
of all unknown (hyper-) parameters are inferred simultaneously byHMC sampling. However, it should be
noted that due to limitations in the number of samples our posterior are approximations of the true
distributions, and indeed several studies advise caution when interpreting the posteriors of error terms
from the KOH framework quantitatively (Li et al., 2016; Menberg et al., 2019). In fact, even with an
infinite number of samples, the use of GP emulators would result in an approximation of the true posterior.
The role of the hyper-parameters in the GP models and the calibration process is further explained in
Supplementary Appendix 6. Further information on Bayesian inference can be found in works such as
Gelman et al. (2013), Chong and Menberg (2018), Choi et al. (2018), and Menberg et al. (2019).

2.2. Description of the domain and field data

The city center of Cardiff, UK, has been monitored extensively by the British Geological Survey (BGS)
and the Cardiff Harbour Authority over 5–20 years, for geological and hydrological data (Williams, 2008;
Heathcote et al., 1997). The data include soil profiles and geological characteristics of the area (Kendall
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et al., 2020; Patton et al., 2020), hydrological information such as groundwater level and hydraulic head
measurements, as well as temperature time series measurements from a number of monitoring boreholes
within the area (Farr et al., 2019,0).

The domain considered in this study consists of a rectangle of approximately 3.5 km2 in area, in the
southern part of the city, illustrated in Figure 1a where footprints of buildings likely to be with basements
are shown. The geological layers down to a depth of 45m below ground level are shown in Figure 1b, and
relevant properties of the materials are listed in Table 1. Below a depth of approximately z¼�25m, the
subsurface consists almost exclusively of Mercia Mudstone bedrock (ROCK), which is considered to be
the base of the glaciofluvial sand and gravel deposits (GFSD) that constitute the aquifer, while the
shallower layers consist of made ground (MGR), tidal flat deposits (TFD), and alluvium (ALV). An
annual mean hydraulic head distribution of the area, shown in Figure 1c, is generated from a detailed
hydrogeological model developed by the BGS and includes pumped groundwater control areas, mitigat-
ing rise in groundwater levels (Williams, 2008). The average groundwater level in this domain is found to
be 4 m below the ground surface.

The temperature monitoring boreholes at 24 locations scattered throughout the domain, at depths
ranging from 1.5 to 12.5 m below the ground surface are shown in Figure 2a (see Table 2 in Patton et al.
(2020) for co-ordinates of sensors). A linearly increasing sinusoidal function is fitted to each of the
measured temperature time series. The sinusoidal variation observed in the temperatures is a consequence
of the seasonal temperature fluctuation at the ground surface, and so the oscillation period is set to
365 days. Key features, such as the mean temperature Tmean, amplitude Tamp, annual temperature shift
T inc, and phase ϕ of the temperature oscillations, are extracted. This provides a suitable framework for data
management, allowing the use of a large data set in a lower dimensional space by removing the temporal
dimension, and enabling efficient utilization of multiple points in the calibration process. Figure 2b,c
illustrates the fitting applied to data measured at two of the boreholes.

2.3. Numerical modeling

The domain within Cardiff is modeled using finite element methods and is implemented within the
software suite COMSOL Multiphysics (COMSOL ® v. 5.6, 2020). A semi-3D numerical modeling
approach (Bidarmaghz et al., 2019, 2020; Makasis et al., 2021) is utilized to model the subsurface
response to thermal and hydraulic phenomena. This approach entails modeling a collection of horizontal
planes using the governing equations for conductive and convective heat transfer and for fluid flow
through porous media in 2D, and thermally coupling neighboring planes via conduction. A key aspect of

(a) (b) (c)

Figure 1. Outlines of buildings with basements (a), geological distribution (b), and hydraulic head
distribution (c) within the study domain. Groundwater levels are pumped within dashed regions

(copyright BGS, UKRI). © Crown copyright and database rights 2021 Ordnance Survey
[100021290 EUL]. Use of this data is subject to terms and conditions.
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Table 1. Thermal and hydraulic properties of geological materials present in the modeled domain and concrete material used for heat sources
(SimonHydrotechnica, 1993; Howard et al., 2008; Dalla Santa et al., 2020; Hobbs et al., 2002; Parkes et al., 2020; Boon et al., 2021). Thermal

diffusivity was calculated according to α¼ λ= ρCpð Þ. Where appropriate, top values in a row represent partially saturated conditions and bottom values
fully saturated conditions.

Geology/material

Average
depth range

(m)

Thermal
conductivity, λ
(W/(m K))

Density,
ρ (Mg/m3)

Specific heat
capacity, Cp

(kJ/(kg K))

Effective
porosity,
ε (�)

Hydraulic conductivity,
kh (m/s)

Thermal diffusivity,
α (m2/s)

Made ground, MGR 0–2.3 1.00a 1.80 1.27 0.35 2.31 � 10�5 4.37 � 10�7

2.00a 8.75 � 10�7

Alluvium, ALV 0.8–2.7 1.40 1.67 1.18 0.35 1.00 � 10�5 7.10 � 10�7

2.40 1.21 � 10�6

Tidal flat deposits, TFD 2.0–6.7 1.20 1.67 1.18 0.2 1.00 � 10�8 6.09 � 10�7

1.50 7.61 � 10�7

Glacio-fluvial sediment
deposits, GFSD

5.0–10.9 0.50a 2.00 1.75 0.2 2.5 � 10�3 1.43 � 10�7

1.80a a 5.14 � 10�7

Bedrock (Mercia
Mudstone), ROCK

10.9–45.0 1.10a 2.01 0.80 0.25 1.00 � 10�7 6.84 � 10�7

1.80a,b 2.10 1.07 � 10�6

aValues further explored in sensitivity analysis and uncertainty quantification, Sections 2.4 and 3.
bThis value is a conservative as recent studies by Boon et al. (2021) suggest that the thermal conductivity for fully-saturated dolomitic mudstone could be as high as 2.7 W/(m K).
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the modeling is the inclusion of heated basements to assess their anthropogenic influence on the thermal
state of the ground, as well as the incorporation of the river Taff in Cardiff, modeled using turbulent flow
governing equations. Detailed information on the numerical modelingmethodology, including governing
equations, initial and boundary conditions, and a labeled schematic of the model set-up can be found in
Supplementary Appendix B. The methodology has been validated against more complex detailed 3D

(a) (b) = 1.5 m below ground level

(c) = 6.5 m below ground level

Figure 2.Measurement locations in domain with color denoting depth of sensor (left panel) and examples
of data fitting (right two panels). © Crown copyright and database rights 2021 Ordnance Survey

[100021290 EUL]. Use of this data is subject to terms and conditions.

Table 2. Ranking of uncertain parameters considered in the model according to mean temperature
sensitivity.

Rank Parameter Symbol Unit Standard value Minimum Maximum

1 Far-field ground temperature T ground °C 12.9 11.7 14.7
2 Basement temperature T room °C 18.0 13.0 22.0
3 Basement percentage Bperc % 60 0 100
4 Aquifer (GFSD) hydraulic

conductivity
kh,GFSD m/s 2.5 � 10�3 1.0 � 10�4 1.0 � 10�2

Unsat. Sat. Unsat. Sat. Unsat. Sat.
5 Thermal conductivity of made

ground
λMGR W/(m K) 1.0 2.0 0.3 0.9 1.2 4.0

6 Thermal conductivity of the
bedrock

λROCK W/(m K) 1.1 1.8 0.8 1.6 2.0 3.6

7 Thermal conductivity of
aquifer

λGFSD W/(m K) 0.5 1.8 0.4 1.6 0.5 2.5

8 Vegetation coefficient kv n/a 1.2 0.9 1.4
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numerical simulations which have, in turn, been validated against both experimental and numerical data
(Bidarmaghz and Narsilio, 2018; Bidarmaghz et al., 2020; Makasis et al., 2020).

For the purposes of the Bayesian calibration utilizing the multi-fidelity approach defined in
Section 2.1, two numerical models with different levels of fidelity are required. In addition to these, a
model with very high fidelity is created to generate output data of controllable scenarios (i.e., both input
and output values are known), hereafter called the data-generating model and its output synthetic data. No
noisewas added to the synthetically-generated training data. These allow the systematic exploration of the
heterogeneity across the domain on parameter inference, to understand at what degree this methodology is
applicable under conditions with heterogeneity (which is expected in large-scale modeling of the ground).
The schematics for these three models are shown in Figure 3. The number of planes implemented in the
models defines the fidelity of the models and determines computational costs: the data-generating model
with the highest resolution (41 layers) requires about 15 hr to run; the high-fidelity model (23 layers)
requires approximately 5 hr to run; and the low-fidelity model (8 layers) requires less than 30 min for one
computational run. All threemodels implement a higher layer density near the surface, with planes spaced
more closely together (i.e., smaller dz). This is to better resolve the topmost layers of the domain, where
more pronounced geological variation and the presence of heat sources produce a more complex
convective flow pattern, compared to deeper underground where the soil conditions are more homoge-
neous, there is a lack of heat sources, and the presence of the mostly impermeable bedrock diminishes
convection. Each plane is meshed with 38,415 triangular elements, irrespective of the model fidelity.
Simulations were run on high-performance computers with two 2.1 GHz processors (24 cores) and
192 GB of RAM operating at 2400 MHz.

2.4. Parameter screening and calibration set-up

The computational cost of the calibration process (both in terms of the cost taken to perform necessary
model runs as well as the time taken for the calibration process itself) necessitates parameter screening to
identify parameters with the greatest impact on subsurface temperatures. Limiting the calibration to only
the most influential parameters also addresses the possibility of over-fitting (Chong andMenberg, 2018).
To this end, theMorrisMethod (Morris, 1991;Menberg et al., 2016; Chong andMenberg, 2018) is used to
identify the model parameters with the greatest influence on the model output of interest, that is, the mean
temperature Tmean at a given location. The Morris Method is a global sensitivity analysis whereby the
input parameter space is non-dimensionalized onto a unit hyper-cube Hk (for a set of k parameters), and
each dimension i is divided into a regular grid of spacing Δi with a total of p levels along each dimension.
A series of t trajectories is defined withinHk, each beginning at a randomly chosen point in the parameter

(a) Data-generation model

45 m

40 m

35 m
30 m

Surface

5 m

10 m

15 m

25 m

20 m

(b) High-fidelity model

45 m

40 m

35 m
30 m

Surface

5 m

10 m

15 m

25 m

(c) Low-fidelity model

45 m

35 m

Surface

5 m

10 m

Figure 3. Schematic of the three models with different levels of fidelity (number of modeling planes). The
2D planes are connected to their nearest neighbor by convective heat flux transfer and temperature

boundary conditions are applied at the top- and bottom-most planes.

e32-8 Kreitmair et al.

https://doi.org/10.1017/dce.2022.32 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.32


space with the following points differing from the previous one by changing a single parameter by one
increment at a time for a total sequence of kþ1. For a set of t¼ 10 trajectories with k¼ 8 parameters (see
below), then, this yields a total of 90 model runs. The results from these runs are used to determine the
effective mean for each parameter, a measure of the magnitude of influence of a parameter X on model
output Y , which is given by

μi
∗ ¼ 1

2

Xr

t¼1

Y Xþ eiΔið Þ�Y Xð ÞÞ
Δi

���� ����: (2)

This can then be used to rank parameters according to the sensitivity of model output on parameter
variation.

The parameters considered for screening are listed in Table 2 along with their plausible ranges, and the
ranking of the parameters according to their effective mean values. The ranking is determined by taking
the average of the effective mean calculated across the 24 measurement locations considered in the
domain. Results from this analysis are illustrated in Figure 4, showing the effective mean of each
parameter as well as the variation in this metric across the 24 locations. The most influential parameter
is seen to be the far-field ground temperature Tground, which is unsurprising as it affects most directly the
mean temperature at a location, itself being the mean temperature of the ground in absence of any external
temperature fluctuations. The sensitivity of the model output to Tground is fairly consistent across the
24 measurement locations in the domain, with the percentiles of the box-plot nestled closely around the
average value.

The next two most influential parameters are the temperature to which the basements are heated T room

and the percentage of basements in the domain that are heated Bperc. This percentage is varied in the
sensitivity analysis by “activating” (i.e., applying the temperature boundary condition of T ¼ T room) to
varying fractions of the basements shown in Figure 1. The parameters exhibit a signification variation in
sensitivity across the measurement points, confirming that heat fluxes from any individual basement have
a highly localized effect on ground temperatures. Despite being explored independently in the sensitivity
study, the two parameters are closely linked in terms of how they impact the mean temperature of the
surrounding ground. Because the basement percentage is a parameter with a more localized impact on
mean temperature than the basement temperature, T room is chosen as the parameter for calibration, while

Figure 4. Results of the Morris method sensitivity analysis of parameter impact on mean temperature,
shown as box plots of the effective mean across the 24 measurement locations and indicating the average
value as a black cross. The higher the effective mean, the more sensitive the model output is to changes in

this parameter, giving it a higher ranking.
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keeping the percentage of basements active constant at 60%, following initial investigations where both
Bperc and T room were varied.

The third-highest ranking parameter is the hydraulic conductivity of the glacio-fluvial sediment
deposits, that is, the aquifer. The hydraulic conductivity affects the groundwater flow velocity and
thereby how far groundwater heated from nearby basements flows before returning to the ambient ground
(i.e., far-field) temperature, hence indirectly impacting the mean temperature measured in the vicinity of
basements. Slower groundwater flow disperses less of the heat generated by basements, leading to the
accumulation of heat beneath heated infrastructures in the ground.

The three parameters to be estimated are therefore the far-field ground temperature, the basement
percentage, and the aquifer hydraulic conductivity. Being a Bayesian approach, the calibration requires
prior estimates of the model parameters (and hyper-parameters). For the three model parameters θ, the
priors span the entire plausible range of the parameter, defined through literature review and local
expertise, and follow a normal distribution of N μ¼ 0:5, σ¼ 0:2ð Þ. (The priors of the hyper-parameters
followMenberg et al. (2020) and are given in Supplementary Table 4.) Latin Hypercube Sampling (LHS)
is used to determine the combinations of parameter inputs for the runs of the numerical model, and the
model outputs are used to train the statistical emulator. The high-fidelity model is sampled 20 times and
the low-fidelity model, with its lower computational cost, is sampled 50 times. It should be noted that, for
the data-generating model, defined values are used for the three uncertain parameters. Namely a far-field
ground temperature of Tground ¼ 13:3 °C, hydraulic conductivity of the aquifer of kh,GFSD ¼ 2�10�3 m/s,
and a temperature of the anthropogenic heat sources of T room ¼ 15 °C.

Mean temperature values are shown in Figure 5 for the synthetic data (black crosses) alongside the field
data (black asterisks). Also shown is the output from the 20 high-fidelity (colored pluses) and 50 low-
fidelity model runs (colored circles), based on LHS covering the expected parameter range. Both the
synthetic and the field data fall well within the range of outputs from the high- and low-fidelity models,
providing confidence in the chosen range of prior parameter estimates.

3. Calibration Results

The posterior parameter distributions inferred from calibration on both the synthetic and the field data are
shown in Figure 6. The bR criterion (Gelman and Rubin, 1992), which compares the inner and inter-chain
variance of the posterior samples is applied for convergence diagnostics and approaches unity (i.e.,< 1:01
(Vehtari et al., 2021)) within the 1000 samples (after burn-in) of the HMC algorithm for all parameters

Figure 5. Mean temperature data determined from fitting the temperature output from the data-
generating model (black crosses) and the field data temperature time-series (black asterisks) across the
24 measurement locations. Also shown is the output from the 20 LHS samples run using the high-fidelity
model (colored pluses) and the 50 LHS samples using the low-fidelity model. The numerical model runs

capture the extent of the measured and synthetic data well.
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shown. The Effective Sample Size (ESS) is a further metric related to convergence and is computed to
determine sample independence, included in Supplementary Appendix C. For the synthetic data (top row)
values used as parameter input in the model, that is, the values that are to be inferred, are indicated by a
dashed vertical line. The calibration performs very well for the far-field ground temperature (left-most
panel), with both the mean and mode values agreeing with the input of Tground=13.3°C to within two
decimal places, and with a very narrow distribution around this value reflecting the high degree of
confidence, mirroring the observations from the sensitivity analysis of the impact of far-field ground
temperature on local soil temperature. The hydraulic conductivity and basement temperature (central and
right-most panels) are also inferred well, with the posteriors exhibiting narrower uncertainty compared to
the prior distributions, albeit with less precision and accuracy than for the far-field ground temperature.
The aquifer hydraulic conductivity posterior overestimates the input value by about 0:4�10�3 m/s, while
the posterior for the basement temperature by 0.6 °C. These results provide further confidence in the
methodology as well as indicating the amount of information the 24monitoring boreholes can provide for
the three calibration parameters.

For calibration using field data, shown in the bottom row of Figure 6, the resulting mean and modal
values for Tground agree well with deep borehole measurements taken in the region (12.9 °C for the far-
field ground temperature (Farr et al., 2017)), providing further confidence in the results. The posterior for
the basement temperature shows lower values than expected, indicating that basement structures in the
city center of Cardiff are only about two degrees higher than the temperature of the ground. The hydraulic
conductivity posteriors indicate a value of about 2:9�10�3 m/s, which is higher than found in the
literature or measured from previous work in the area, but still within the plausible range for the type of
material in the area. The observed differences in uncertainty between the two rows of inferred parameter
posteriors (i.e., standard deviation values) are to be expected as calibration on data from field observations
is subject to noise, model error, and further complexities not present in the numerically-generated data

Figure 6. Parameter posterior and prior distributions for parameter values from calibration using
numerically-generated (top row) and field (bottom row) temperature data sets. The posteriors for the
synthetic data set show good narrowing around the input value (indicated by the vertical dashed line) and

the posteriors inferred from the field measurements exhibit a reduction in uncertainty.
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calibration. The resulting precision hyper-parameter distributions for the field data calibration are
included in Appendix C.

3.1 Impact of subset size

The influence of data set volume on parameter inference is examined by incrementally reducing the size of
data subset from the 24 locations. In addition to the size of the data set used for calibration, the amount of
information contained in the data from the points included in the data set determines the ability of the
process to infer the parameter values. To determine which points in the data set provide the most
information, calibration would need to be performed on all possible combinations of subsets of a given
size. This is constrained, however, by the prohibitively high computational costs of the calibrations,
particularly for large subset sizes as the matrix for inversion grows with the number of data points, and is
outwith the scope of this work. Subsets are therefore selected systematically, whereby measurement
points are selected so as to maximize the variety of points in the subset, in terms of the spatial coordinates
x, y, zð Þ and to cover the largest amount of volume possible, thereby maximizing mutual information
spatially. This is based on the assumption that points that are in close proximity to one another are more
likely to experience similar conditions and not provide complementary information. For this, the
measurement locations are clustered spatially to find points that are closest together, as illustrated in
the dendrogram in Figure 7a. Pair-wise comparison is performed on points nearest to one another,
retaining only themost dissimilar points in the subset, decrementing from themaximum of 24 points. This
includes approximately maintaining the ratio between the number of data points within and outwith the
aquifer, noted with blue and orange colored labels respectively, at each step of the reduction. For example,
the subset containing 16 points is shown in Figure 7b, resulting from having removed eight points,
eliminating points with indices 10,14,15,18,24,9,22,7ð Þ, of which five are located in the aquifer, and three
outside. It is worth noting that this approach of determining successive measurement locations is a naive
approach to maximize mutual information. The purpose of this exercise is to demonstrate the impact of
using different data locations on the inferred posterior distributions rather than optimizing the locations of

(a) (b) = 16

(d) = 10

(c) = 12

(e) = 4

Figure 7.Dendrogram indicating spatial proximity of measurement points. Borehole indices colored blue
indicate points located within the aquifer, and orange colored indicate points outwith the aquifer. The
indices of the points removed upon each reduction in subset side, in order are 10, 14, 15, 18, 24, 9, 22,

7, 16, 11, 19, 2, 8, 23, 6, 5, 4, 17, 13, 3.
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measurements for this example of a (non-linear) Bayesian inverse problem for which work exists (e.g.,
Huan and Marzouk, 2013; Alexanderian et al., 2016; Alexanderian, 2021).

Results of calibrations performed on the selected subsets are shown in Figure 8. The plots show the
change of the posterior distributions for each of the θ parameters with a change in subset size. This
illustration choice enables understanding at what size the data set becomes sufficient for the posterior
distribution found from calibration on the subset to become equivalent to that of the calibration performed
on the entire set. The top row (panels a, b, c) shows results from application to synthetic data, with the
“true” value used as input in the data-generating model shown as black dashed lines. While the posterior
distribution for Tground remains mostly unchanged, there exist notable changes in the other two parameter
posteriors as the subset size increases. For example, at a size of 12 points the distributions for the
parameters narrow, indicating a significant contribution of information form the 12th data point. This
point, labeled “8” in Figure 2a, is both within the aquifer and close to basements, likely making it a good
source of information for the calibration algorithm. For calibration on synthetic data, as few as 10 data
points (shown in Figure 7d) can be used to predict the combined three parameters reasonably confidently.
However, the uncertainty is reduced even further with more than 12 data points, especially for T room. On
the other hand, it is also interesting to note that the value for kh is better predicted with a subset size of
10 rather than any other size (despite the high number of outliers). This suggests that using more data
points could, in some cases, reduce the predictive accuracy for certain parameters and thus data points
should be carefully selected.

The bottom row of Figure 8 (panels d, e, f) shows results for calibration on field data. Compared with
results from synthetically created scenarios, these results are less well-behaved, with more uncertainty
persisting throughout the different set sizes. The inferred ground temperature Tground exhibits a greater
variance in the posteriors and the mean value of individual calibrations varies more compared to the

(a) ground, synthetic (b) , synthetich (c) room, synthetic

h(d) ground, field data (e) , field data (f) room, field data

Figure 8. Box plots showing the progression of parameter calibration with increasing subset size for the
three calibration parameters (left to right) for the single-valued synthetic data (top row) and the field data
collected from boreholes (bottom row). The mean distribution values are marked with “x” for each case.
The posteriors exhibit a narrowing around the input value with increasing data set size for the synthetic

data and more clearly defined distribution behavior for the field-data.
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posterior calibrated on the synthetic data, reinforcing that real data stem from systems with greater
complexity, heterogeneity, and/or may be affected by measurement noise and external factors and heat
sources not accounted for within the numerical modeling. The posteriors for kh and T room exhibit
inconclusive outcomes for the smaller subsets, with unchanged distributions (same as the prior) or
bi-modality where the algorithm identifies multiple possible solutions. At a data set size of 16 (points
shown in Figure 7b) the posterior distributions appear to start converging onto a more defined value,
narrowing and moving away from the extremal ends of the calibration range. Therefore, even though
there is a reduction in uncertainty with increasing subset size, the 16 data points are likely sufficient to
predict reasonable values for the parameters. The irregular pattern withwhich the posterior distributions
change with increasing subset size also suggests that different measurement locations/data points
contain different levels of information and therefore differently influence the parameter posterior
distributions.

The difference in behavior of the posteriors with increasing subset size is a result of the level of
uncertainty and variation within the data used for calibration. The synthetic data is generated using a
model with a single input parameter and without measurement noise such that there is less uncertainty
than for parameter values inferred from the field data. As a result, additional data points from the synthetic
data predominantly act to narrow the posterior distribution to a single value. In contrast, further
information from additional data points from the field data can in fact contradict information from other
data points, causing a significant change in the posterior upon updating using the new evidence.

To illustrate this further a small-scale study is conducted, for which calibrations are performed on
20 unique data subsets, consisting of 12 measurement locations. The borehole indices of the points
contained in each subset are given in Supplementary Table 5 (in Supplementary Appendix D), and results,
in terms of the posteriors inferred from calibrating the model on the data from the given subset of the
measured field data, are shown in Figure 9. The significant variation in the parameter value distributions
inferred from the different data sets indicates that the measurement locations provide different levels of
information or even different information altogether. This is illustrated by the fact that the variation in the
inferred far-field ground temperature, Figure 9a, is significantly less than for the other two parameters
which are likely to be subject to much more local variations. The influence of measurement locations and
volume of data sets on parameter inference is explored more in the subsequent section.

In terms of obtaining data for a site investigation, the findings of this section showcase the
importance of identifying the additional information contained in different data points, as this could
significantly reduce costs for obtaining data, for example, due to drilling unnecessary boreholes. It
should be noted that this exercise is performed after the measurements were taken. The value of this ex
post exploration of measurement locations is to illustrate the impact that data set size and measurement
point distribution can have on parameter inference and the importance of identifying appropriate
measurement locations which are often subject to constraints, particularly in densely built-up areas

(a) ground (b) h (c) room

Figure 9. Posteriors inferred from 20 unique field-data subsets consisting of 12 measurement locations.
The variation in posterior distribution indicates that the different data points provide different infor-

mation to the calibration.
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where drilling locations are limited due to existing infrastructure and due to legal issues such as land-
ownership, to minimize both cost as well as uncertainty.

3.2. Heterogeneity

The previous validation uses single values as parameter inputs in the data-generatingmodel, assuming the
homogeneous distribution of parameter values throughout the domain. However, that is rarely the case for
many parameters in reality, where natural variability creates spatial heterogeneity in domain properties. In
particular, hydro-geological properties of the subsurface, such as the hydraulic conductivity, are known to
vary greatly (Rehfeldt et al., 1992). To explore the ability of the calibration methodology to infer model
parameters in scenarios where heterogeneity is present, two test scenarios with spatially varying aquifer
hydraulic conductivity values are considered, designated as “noisy” and “regional”. The data used in these
calibrations is generated using the very high-fidelity data-generating model, with spatially varying
hydraulic conductivity values.

In the “noisy” scenario, hydraulic conductivity values change randomly within the aquifer following a
normal distribution with mean μkh ¼ 7�10�3 m/s and standard deviation σkh ¼ 5�10�4 m/s, while the
far-field and basement temperatureswere kept the same as for the single value case considered above. This
represents a scenario where the aquifer permeability is subject to random heterogeneity as a result of
variation in the compaction of the gravel and sand deposits making up the aquifer. This implementation of
the hydraulic conductivity neglects spatial correlation, as is often incorporated in hydro-geological
applications by means of a random field formulation. However, the purpose of our approach here is
not to infer the spatial distribution of posterior hydraulic conductivity values, in favor of a simultaneous
calibration of all parameters of interest, hence spatial correlation is not considered. It would be expected
that the noise in the hydraulic conductivity would make it more difficult for the calibration to infer
“correct” parameter values, giving rise to broader distributions and greater uncertainty in values. Results
from the calibration using output data from this scenario are shown in Figure 10, with the calibration
algorithm having achieved convergence for all three parameters, as indicated by the bR values. As for the
single-valued case considered above, the far-field ground temperature and basement temperature are well
predicted, with accurate and precise posterior distributions and mean and modal values very close to the
ones used as data-generating model input. The basement temperature posterior is significantly more
accurate compared to that of the single value calibration, suggesting that higher values for the ground
hydraulic conductivity may reduce the uncertainty in T room as this allows anthropogenically heated
groundwater to propagate further, providing more information about heat sources to a greater number of
measurement points. The hydraulic conductivity (central panel) is seen to be inferred reasonably well,
despite the input values in the domain following a distribution. The posterior reduces in uncertainty
compared to the prior, although not to a degree as to fully match the normal input distribution,

Figure 10. Prior and posterior distributions for calibration performed on the “noisy” hydraulic
conductivity output data set. The single-valued input parameters are well inferred and the posterior for

the hydraulic conductivity approaches the input distribution.
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underestimating the “true”mean value by about 0:8�10�3 m/s. Overall “noisy” heterogeneity, where the
value of the parameter varies based on a (sufficiently narrow) distribution, may be considered to be
captured relatively well by the calibration methodology.

In the “regional” scenario, the model domain is divided into four regions (shown in Figure 2a), each
with a different hydraulic conductivity assigned to it. These regions are defined using natural and
anthropogenic features of the domain: the western residential side of the river, densely populated with
basements (10 data points), the northern commercial part (4 points), the eastern side with lower basement
density (4 points), and the southern part which is close to the river outflow (6 points). The parameter
posteriors inferred from calibration applied to data from this scenario are shown in Figure 11, with the
“true” parameter value shown as either a line (if the plotted parameter is applied homogeneously at the
domain-level) or as black markers (if the parameter is applied regionally). Results are shown for
calibration performed on the entire data set, labeled “Whole domain”, and for regional subsets, with
data points within each of the four regions of different hydraulic conductivity labeled by the cardinal
direction of the region. The calibration methodology continues to perform well for the far-field ground
temperature (left-most panel) as this is a parameter with a common value across all locations and with a
strong direct impact on the mean temperature. The basement temperature (right-most panel) is inferred
well for the whole domain and the west and north regions, with data points close to basements, but less
well for the regions with measurement locations further away from basements, illustrating the localized
nature of the parameter. Moreover, the fact that the north and east regions contain as few as 4 data points
could affect the information the calibration algorithm has to meaningfully infer parameter values. The
hydraulic conductivity values are inferred well regionally, as may be seen in the central panel, where the
calibrations performed using data points from the individual regions cluster the interquartile range around
the input value that is to be inferred, with only the south region underestimating the true value. All of the
calibrations converge, with bR values of 1.0, including the one for the whole domain (that is using the data
points from all four regions within one calibration to obtain a single “representative” distribution for kh),
suggesting that, at the domain level the, posterior distribution could be used as a representative, capturing
regional heterogeneity. To test this, the mean parameter values inferred from calibration on data points
from thewhole domain are used as input to a simulation of the numericalmodel, and themean temperature
values found at the measurement locations are compared with the data from the regional data-generating
model. Results from this exercise are shown in Figure 12, showing the good agreement between the
synthetic data used for the calibration (Tmean, regional, x-axis) and the output from the model using the mean
parameter values inferred from the calibration (Tmean, calibrated, y-axis), with changes in mean temperature
of ∣ΔT ∣¼ ∣Tmean, calibrated�Tmean, regional∣ ≤ 0:2°C. This suggests that, in cases where parameters vary

Figure 11. Posteriors for regionally varying hydraulic conductivity synthetic data set, shown for
calibration using regional data subsets. The dashed lines in the left and right-most panels indicate the
“true” parameter value, used as an input in the data-generating model, and the black crosses in the

central panel indicate the hydraulic conductivity values used in each of the four regions of the domain.
The posteriors for the hydraulic conductivity approximate well the regional input values.
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regionally within a domain, calibration with sufficient data points could be able to infer a representative
domain value for those parameters, which could be used in urban planning and design.

4. Impact of Uncertainty on Geothermal Planning

The inherent variation within the subsurface and the difficulty and costs associated with obtaining high-
resolution data typically result in uncertainty in its properties. This can impact numerous applications
relating to the underground and can lead to over-designing as ameasure of accounting for this uncertainty.
One such application is the utilization of shallow geothermal energy, which uses ground-source heat
pump systems (GSHPs) to efficiently provide renewable thermal energy for heating and cooling purposes
by rejecting heat to or absorbing heat from the ground using ground heat exchangers (GHEs) (Mustafa
Omer, 2008; Bayer et al., 2019). To assess the potential impact of parameter uncertainty on GSHP design,
an existing open-loop GSHP system within the studied area of the city center of Cardiff is examined as an
example case. This system has been installed at the Grangetown Nursery School, in the southwestern
region of the modeled domain, and is monitored by the BGS (Boon et al., 2019). It includes two ground-
source heat pumps that can provide up to 11 kWeach, noting that, at the time of designing, few data from
the site and aquifer were available and thus assumptions were made in the design. The hydraulic gradient
of the local area is estimated to be 0.002 and the two wells (one abstraction and one injection) have a
diameter of 0.2m, a screen length of about 9m, screened across the full thickness of the gravel aquifer, and
are constructed at a distance of 20 m apart. Boon et al. (2019) note the close (non-ideal) well spacing
resulted from a lack of space for drilling on site during the installation work, a situation not uncommon in
highly built-up urban environments. Typical open-loop GHE design processes for feasibility studies are
followed to determine the potential geothermal power that this system can provide for different values of
the hydraulic conductivity of the aquifer, using the calibration results from Section 3. More details on the
project specifications may be found in Boon et al. (2019) and detailed information on GSHP systems and
open-loop design processes followed within this work can be found in Supplementary Appendix E.

This analysis focuses on the uncertainty in the hydraulic conductivity value of the aquifer, and uses
various values for this parameter as found in the literature (listed in Table 3), as well as values obtained
from the calibration presented above to explore the impact of uncertainty on the design of a typical open-
loop shallow geothermal system. Results of the analysis are presented in Figure 13, showing the

Figure 12. Comparison between mean temperatures outputted at the borehole locations for the regional
(x-axis) and the calibrated (y-axis) data. The results obtained from the calibrated model are in good

agreement (i.e., within 0.2 °C) of the numerically generated “field” measurements.
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significant impact that the value of aquifer hydraulic conductivity can have on systemdesign and expected
geothermal potential. The figure shows the peak load distribution, calculated using the calibrated
hydraulic conductivity distribution from Section 3 and the process outlined in Supplementary
Appendix E, as box plots for both the current geometry and the theoretical maximum load that can be
provided (which does not constrain the spacing of the wells). The peak loads obtained using hydraulic
conductivity values found in the literature are also shown. For the current system geometry and a well
spacing of 20 m, the estimated achievable peak power spans a wide range, from 5 to 183 kW, with the box
plot interquartile range (25th, and 75th percentiles) narrowing this to between 38 kWand 62 kW. Three of
the four literature hydraulic conductivity values result in peak loads on the lower range of the distribution.
The fourth value, labeled “Lit 2”, results in an extreme peak load outside the calibrated range. This value is
likely less suitable for this scenario, given current knowledge of the domain, but is included for
completeness. Results for the theoretical maximum peak load for the area, where well spacing constraints
are ignored, exhibit a range of peak loads between 0.15MWand 3.17MWand box plot interquartile range
between 1.05 MWand 1.70 MW, relatively wider than the results obtained from considering the current

Figure 13. Comparison of geothermal energy potential for different values of kh. Results are shown in
terms of the peak load for the current well spacing (left axis) and hypothetical maximum when the well

spacing is such that no thermal interference happens between the wells (right axis).

Table 3. Hydraulic conductivity (kh) values used in the analysis.

Label kh (m/s) Description Reference

Lit 1 6.3 � 10�4 Average of range reported for sand
and gravel mix

Kruseman and De Ridder (2000)

Lit 2 1.0 � 10�2 Typical value for clean sands and
gravel deposits

Hobbs et al. (2002)

Pump test 5.8 � 10�4 Obtained via pumping tests in the
Cardiff area

Heathcote et al. (2003)

Preliminary 2.9 � 10�4 Used in preliminary modeling of this
site

Boon et al. (2019)
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geometry. Similarly, theoretical peak load values determined using literature values for the hydraulic
conductivity are on the lower end of the calibrated range, save the one labeled “Lit 2”. Given the
heterogeneity in the soil structure that can exist between aquifers of similar geological designation (aswell
as within a single aquifer) and the resulting uncertainties in the hydraulic properties, the results suggest
that lack of detailed information from the site can result in a range of different GSHP designs of varying
suitability for a given scenario. This can lead to under-utilizing the available resources or, perhaps more
concerningly, attempting to use more resources than available, thereby risking damage to the GSHP
system or the natural environment. In this case, results suggest that the open-loop system installed in the
city of Cardiff is under-utilized, since the peak load of 22 kW currently installed (from the heat pumps) is
at the lower end of the calculated range and it is highly likely that a higher load could be provided. Given
the uncertainty, a conservative approach could, for example, be to use the lower percentile calibration
value of 38 kWas peak load, which is still close to double the current design peak load. It is worth noting
that the current system was designed to fulfill the heating and cooling demands of the school, which are
less than the ground capacity. However, a clearer understanding of the subsurface capacity could have
potentially enabled a larger scale system, where the geothermal energy is shared with nearby buildings,
assuming sufficient demand. Quantifying the uncertainty in important design parameters can, therefore,
contribute towards better utilizing natural resources, even within conservative approaches, resulting in
relatively lower risk designs with higher thermal yields.

The discrepancy in geothermal potential between the two sets of results presented in Figure 13
highlights one of the potential drawbacks of open-loop systems, namely the physical constraints
associated with the distance between wells. To fully avoid thermal interference, this distance typically
needs to be large, often unreasonably so for urban locations such as London (Banks, 2009; Fry, 2009;
Abesser, 2010). Figure 14 shows the optimal well spacing calculated for a given value of ground hydraulic
conductivity, as explained in Supplementary Appendix E, noting that the advised minimum spacing
according to the open-loop code of practice for the UK by CIBSE is 100 m (while numerical modeling is
recommended) (Wincott et al., 2019). The well spacing values obtained using calibrated parameters peak
at around 250mwith 25th and 75th percentiles at around 230 and 290m.Using the hydraulic conductivity
values from literature results in optimal spacing values outside that range, a very low value of around
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Figure 14.Distance between abstraction and injection wells in order to avoid thermal interference in the
open-loop system, for the different values of kh used in this analysis (Banks, 2009).
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130m for “Lit 2”, and values higher than 550m for “Lit 1”, “Pump test”, and “Preliminary”. In the case of
attempting to design a GSHP system without thermal interference, the first value would likely result in
under-designing the system, leading to lower whole-system efficiency and, in the worst-case scenario,
system failure, while the other three would likely result in very costly over-designed systems, or, more
realistically, would not be constructed due to the estimated costs and/or low thermal potential. It is
apparent that uncertainty in important design parameters, such as hydraulic conductivity, can result in
significantly different GSHP system designs, and costs, and could heavily influence whether a design is
deemed a financially feasible solution. Moreover, the magnitudes of the distances calculated suggest that it
would be difficult to utilize themaximumopen-loop geothermal potential inmost urban situations for private
land owners and indicate the need for planning and investigations to be undertaken at a larger (city-)scale,
with the potential of sharing geothermal resources across multiple buildings and land owners.

5. Conclusion

In this work, uncertainty in underground thermal modeling parameters is investigated, identifying the
impacts this uncertainty can have on our understanding of how anthropogenic heat fluxes affect the
shallow subsurface and how to utilize the ground as a resource. To this end, the city center of Cardiff is
modeled using a semi-3D finite element approach to solve the governing equations of heat transfer and
fluid flow. A Bayesian statistical framework is adopted, combining field observations and data from
simulations at two levels of fidelity, to calibrate the numerical model and infer values for the most
influential parameters within the model. Namely, these are the far-field ground temperature, Tground, the
hydraulic conductivity of the aquifer, kh, and the temperature of the anthropogenic heat sources
considered in the domain (i.e., heated basements), T room. The calibration methodology is applied to
numerically generated (synthetic) and to field data at a set of measurement locations, both to further
validate the methodology as well as to highlight the additional unknowns and challenges faced when
working with real data. Results for both sets of calibrations show convergence, with the synthetic data
case resulting in inferred posterior distributions with mean andmodal values that match closely the model
inputs, and the field data case producing distributions with reduced uncertainty compared to the prior used
and reasonable values for the explored parameters. Specifically, the field data calibration posteriors show
a far-field ground temperature Tground of 12.9 °C, agreeing with deep borehole measurements from the
area, a kh of about 3:1�10�3 m/s, somewhat higher than previous investigations for the area and local soil
type, and a T room of 14.7 °C, indicating basements in the area are not significantly heated.

A notable limitation of parameter inference methodologies, such as the one presented in this work, is
the lack of data availability, as not many locations have the quality and quantity of data that is available for
the study area chosen in this work. The size of data set required to yield satisfactory calibration results is
investigated, for both synthetic and field data, by methodically decreasing the number of data points used
for calibration. Results show that with synthetic data calibration can be done to a high degree of accuracy
using as few as 10 data points, while with field data at least 16 points become necessary due to the
complexity, unknowns, and noise associated with realistic conditions. The results highlight the import-
ance of identifying information contained within data measured at different locations for the purposes of
parameter estimation, which in the context of a site investigation could help mitigate costs from drilling
boreholes in locations that provide little additional information.

The impact of heterogeneity is also investigated, as this can be an important aspect of the subsurface.
This work focuses on heterogeneity in kh, particularly (a) heterogeneity throughout the material,
represented as noise in the value of kh, and (b) regional heterogeneity, implemented by subdividing the
area into four regions with different local kh values. Noise in the parameter value is shown to not
negatively impact the calibration process, with very reasonable posterior distributions found for the three
investigated parameters (inferred mean within 0.1 °C of true values for Tground and T room and within 10%
for kh). The introduction of regional heterogeneity also resulted in reasonably accurate posterior
distributions, and importantly, a fully converged calibration using the entire data set (i.e., the combination
of data from all four sub-regions) suggests that “equivalent” parameter values inferred using data from the
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entire domain can be used as a model value for the model of the whole domain, giving rise to a difference
of less than 0.2 °C between mean temperatures determined from the calibrated model and the calibration
data. Considering the heterogeneity of realistic parameters, this result provides confidence in using the
calibration methodology to predict parameter values, including area-representative values that could be
used in urban design and planning.

Finally, the impact of the identified uncertainty on engineering applications is assessed by considering
the effect of different parameter values on an installed open-loop GSHP system present within the
modeled area. The shallow geothermal potential of this system is computed using theoretical methods for
a range of different values for kh, found in the above investigations and in the literature. The results
indicate that uncertainty in kh can affect significantly the design and energy potential of such a system,
with capacity (peak load) values in this case ranging greatly from 5 to 183 kW. The plausible (interquar-
tile) range using the inferred distribution for kh is between 38 kW and 62 kW, much higher than the
system’s current design load, indicating that if this information had been available during the design stage
and there was equivalent demand from nearby buildings, the system could have been utilized even further,
providing more geothermal energy for heating and cooling. Investigating the maximum geothermal
potential of this system without accounting for its specific configuration shows much higher load values,
for which the representative well spacing would vary from 133 to 783 m depending on the value of kh
used, illustrating the importance of reducing uncertainty in sensitive parameters early on in the design
phase of such projects and thus the importance of subsurface monitoring and characterization of aquifer
properties at appropriate scales.
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A. Gaussian process covariance formulation
Gaussian Process models are used for the approximation of the terms in Equation 1, namely ηl, μ, δð Þ, with covariance matrices
adapted from the KOH approach accordingly, that is,

Σηl i, jð Þ ¼ 1
ληl

exp �
Xp
k¼1

βηl ,k xi,k � xj,k
� �2�Xqh

k0¼1

βηl ,pþk0 θhi,k0 �θhj,k0
� �2"

�
Xql
k0 0¼1

βηl ,pþqhþk0 0 θli,k0 0 �θlj,k0 0
� �2

#
,

(3)

Σμ i, jð Þ ¼ 1
λμ

exp �
Xp
k¼1

βμ,k xi,k � xj,k
� �2�Xqh

k0¼1

βμ,pþk0 θhi,k0 �θhj,k0
� �2"

�
Xql
k0 0¼1

βμ,pþqhþk0 0 θli,k0 0 �θlj,k0 0
� �2

#
,

(4)

Σδ i, jð Þ ¼ 1
λδ

exp �
Xp
k¼1

βδ,k xi,k � xj,k
� �2" #

, (5)

where p is the number of state variables and qh and ql are the number of parameters of the high- and the low-fidelity models,
respectively. Equations 3-5 introduce unknown hyper-parameters, namely the precision hyper-parameters (ληl , λμ, λδ) and the
correlation hyper-parameters ( βηl , βμ, βδ) which are sampled alongwith themodel parameters θ. The precision hyper-parameters are
a measure for the magnitude of the covariance functions and thus to what extent the variation in output may be explained by the
associated term. For example, ληl accounts for the covariance in the field andmodel outputs that is captured by the low-fidelitymodel
emulator term in Equation (1). A large value for a given λ (and, correspondingly, a small value for λ�1) indicates that the related term
absorbs only a small portion of the variance in themodel output, i.e. explains a small amount of the variation in yf (Choi et al., 2018).
The correlation hyper-parameters are an indication for the smoothness of the covariance functions. The priors for the hyper-
parameters are given in Table 4, is chosen in accordance with work done in previous studies (Menberg et al., 2020; Chong and
Menberg, 2018; Guillas et al., 2009).

The posterior distribution depends on the unknown calibration parameters, θ, the GP hyper-parameters, β, and the GP precision
hyper-parameters, λ, and is estimated using HMC, which is suitable for high-dimensional distributions. The likelihood function is
given by

L zjθ, βηl , ληl , βμ, λμ, βδ, λδ, λε
� �

∝ ΣZj j�1
2 exp �1

2
z�μð ÞTΣZ

�1 z�μð Þ
� �

, (6)

where z is a single vector containing the combined observations and outputs of low- and high-fidelity simulations and

ΣZ ¼Σηl þ
Σμ 0

0 0

	 

þ

ΣδþΣε 0 0

0 0 0

0 0 0

0B@
1CA: (7)

Table 4. Uncertain hyper-parameters in the multi-fidelity framework and prior probability
distributions.

Parameter Description Prior pdf

ληl Precision parameter, low-fidelity model emulator Gamma 10, 1ð Þ
λμ Precision parameter, model mismatch Gamma 10,0:03ð Þ
λδ Precision parameter, model bias Gamma 10,0:03ð Þ
βηl Correlation strength parameter, low-fidelity model emulator Beta 10,0:5ð Þ
βμ Correlation strength parameter, model mismatch Beta 10,0:7ð Þ
βδ Correlation strength parameter, model bias Beta 10,0:7ð Þ
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B. Numerical modelling details
This work utilises a validated semi-3D numerical modelling approach (Bidarmaghz et al., 2020; Makasis et al., 2021), to model the
subsurface response to thermal and hydraulic phenomena. A collection of x-y planes is modelled using the governing equations for
conductive and convective heat transfer, and fluid flow through porous media, i.e.,

dz ρCp
� �

eff

∂Tg

∂t
þdzρf Cp,f vf∇Tgþ∇ �q¼ q0,upþq0,downþQapplied, (8)

vf ¼�K
μf

∇pf �ρf g∇Z
� �

, (9)

∇ �ρf �K
μf

∇pf �ρf g∇Z
� �" #

¼ 0, (10)

where dz is the relative width of the plane (or the distance between planes) (m), ρeff is the effective density (kg/m3), Cp,eff the
effective specific heat capacity (J/(kg K)), t is time (s), ρf is the fluid (groundwater) density (kg/m

3),Cp,f is the specific heat capacity
of the fluid (J/(kg K)), vf is the Darcy velocity of the fluid (m/s), q is the heat flux (W/m2), the permeability K (m2) of the material is
related to the hydraulic conductivity kh (m/s) byKμf ¼ kh ρf g

� �
, μ is the dynamic viscosity of water (Pa � s), pf is the pressure of water

(Pa), ∇Z is the total head gradient (m) and Qapplied represents an external heat source (W), such as a ground heat exchangers. Each
plane is thermally coupled to its nearest vertical neighbours via conductive heat transfer, which is the dominant mode of heat transfer
in the z-direction. The upwards and downwards out-of-plane conductive heat fluxes (q0,up and q0,down, respectively) from
neighbouring planes are given by

q0,up ¼ λeff Tn�1�Tnð Þ=dz, (11)

q0,down ¼ λeff Tnþ1�Tnð Þ=dz, (12)

where λeff is the effective thermal conductivity (W/(m K)), and Tn represents the temperature at the nth plane. Further details on the
modelling can be found in the cited literature.

The dynamics of the River Taff flowing through the domain are modelled using incompressible turbulent single-phase flow
physics and coupled to the heat transfer physics in terms of temperature, pressure and velocity, as explained in detail in (Makasis et
al., 2021). The Reynolds-averaged Navier-Stokes (RANS) equations are implemented for conservation of momentum, and the
continuity equation for conservation of mass. The governing equations for turbulent flow are solved for the pressure and velocity
vectors of the fluid flowwithin the river which are then coupled to the heat transfer equations to calculate the transfer of heat and thus
distribution of temperature within the domain.

A series of boundary and initial conditions applied to the model are shown in Figure 15. At the uppermost plane, a seasonally
varying temperature is applied, utilising as a semi-empirical function in time and depth (Beardsmore and Cull, 2001; Baggs, 1983)
fitted to local conditions, i.e.

Tg z, tð Þ¼ T0,g�1:07kvTampe�εz cos ω t� t0ð Þþ εz½ �, (13)

where T0,g is the mean annual ground temperature (°C), assumed as 12.9°C (Farr et al., 2017), Tamp the seasonal heating cycle
amplitude (°C), assumed as 6.5°C (NCAS British Atmospheric Data Centre, 2020),ω¼ 2π=P is the angular frequency of the heating
cycle (rad) with period P¼ 365 days, ε¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π= Pαð Þp
, α is the thermal diffusivity of the ground (m2/s), kv is the vegetation coefficient

(defined spatially based on the surface cover conditions, adopting a value of 0.9 for suburban and 1.0 for urban terrain (Popiel and
Wojtkowiak, 2013)), and t0 is the day of coldest temperature after January 1st, found to be 26 days (NCASBritish Atmospheric Data
Centre, 2020). At the bottom-most plane it is assumed that any influence from the surface will have dissipated and a constant
temperature of T ¼ T0,g is applied. For each plane, thermal symmetry is applied at all domain boundaries, and the time independent
hydraulic head distribution in Figure 1 is used to define the groundwater flow conditions. In the shallow layers, where appropriate,
the temperature and velocity of the river flowing into the domain are also defined.

C. Further calibration results
The Effective Sample Size (ESS) is an important metric for MCMC approaches, showing the correlation within parameter samples
and identifying the equivalent number of effectively independent samples drawn from the Markov Chains (Fabreti and Höhna,
2022). For the calibrations on the complete dataset of 24 points, using 1000 samples for each of the four chains (after burn-in), the
ESS for the three calibration parameters were computed to be 3791, 2198, and 2140, respectively, when using synthetic data, and
4102, 1866, and 2024 when using real data. The values computed, which are relatively high, support the calibration configuration
and provide confidence in its findings.

Convergence is further indicated by plotting of the four chains of the HMC sampling algorithm. These are shown in the top row
of Figure 16 for the calibration on synthetically generated data, and in the bottom row for calibration on the field data. A visual
inspection of these suggests adequate convergence of the calibrations, as the trace plots resemble a “fat, hairy caterpillar” that does
not bend (Sorensen and Vasishth, 2015).
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Figure 15. Schematic of the modelling approach, showing the collection of 2D planes interconnected by
heat flux transfer and the temperature boundary conditions at the top and bottom planes.

Figure 16. Trace plots for the calibrations using both the synthetically generated (top row)
and ‘real’ field data (bottom row).
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D. Data subset study
The indices contained in the data subsets used to infer the posteriors shown in Figure 9 are given in Table 5. Subsets are unique and
contain 12 distinct measurement locations.

E. Open-loop shallow geothermal energy systems
GSHP systems can provide renewable geothermal energy for heating and cooling purposes. These systems can be installed in
various ways, most commonly in close-loop configurations which circulate water in a closed pipe loop, implemented in GHEs such
as purpose-built boreholes, trenches or energy geo-structures (Makasis, 2019;Makasis et al., 2020; Loveridge et al., 2020). Another
economically viable approach, used in this work to demonstrate the impact of uncertainty on the use of the subsurface as a resource,
is using open-loopGSHP systems (Banks, 2009;Milnes and Perrochet, 2013). These systemswork by abstracting groundwater from
a subsurface aquifer, passing it through a water-to-water GSHP to either extract or reject heat from/to it, and then re-inject the
resulting cooled or heated water back to the aquifer. The abstraction and injection processes are commonly implemented using two
wells (Banks, 2009), one for each process, however a single well combining both can also be used (Rode et al., 2015) and in rare
cases only an extraction well may be required (Ampofo et al., 2006). In addition to posterior distributions for the calibration
parameters, the calibration yields a posteriors for the hyper-parameters. The precision hyper-parameter prior and posterior
distributions are shown in Figure 17.

In designing an open-loop shallow geothermal system, it is important to quantify the thermal capacity, defined as (Ungemach,
2003; Pujol et al., 2015)

P¼ ηcwρwQΔT , (14)

where P is the thermal load/capacity of the well (W), η the efficiency of the heat pump, assumed as 0.95 (Pujol et al., 2015), cw the
specific heat capacity of groundwater, assumed as 4180 J/(kg K), ρw the density of groundwater, assumed as 998 kg/m3, Q the
pumping flow rate (m3/s), and ΔT the difference in the water temperature between abstraction and injection (K). The thermal
capacity is a product of the hydraulic productivity (the pumping flow rate) and thermal productivity (given by the water temperature
difference between abstraction and injection points) (Goetzl and Steiner, 2017). Due to the re-injection of water to the underground
and its interaction with groundwater resources, these values have strong dependencies on local restrictions and legislation and
different guidelines can be found in different countries (Goetzl and Steiner, 2017; UK Environment Agency, 2014). In addition, the
design parameters depend on properties of the local subsurface and project specifications, such as thermal demand and associated
costs.

The thermal productivity aspect of the design is typically restricted, such that groundwater resources are not significantly
affected. In the UK, it is required for ΔT to be less than 10 °C and the maximum temperature of the water injected into the ground to
not exceed 25 °C (UK Environment Agency, 2014), while in Austria more conservative values of a maximum ΔT of 6 °C, a
minimum water temperature of 5 °C and a maximum of 20 °C are adopted (Rupprecht et al., 2017). In this scenario, a ΔT of 8 °C is
adopted, taking the temperature of the water from around 13 °C to about 5 °C, close to the limit of UK-based guidelines. The
hydraulic productivity, or suitable pumping rate, depends on the hydraulic properties of the aquifer, such as aquifer thickness and
hydraulic conductivity. Different equations exist in the literature to calculate this value, many consisting of adaptations of Thiem’s
theorem (for example (García-Gil et al., 2015)). Bottcher et al. (2019) summarise these and propose an approach that determines the
flow rate to so as to avoid (i) depletion of the aquifer, (ii) thermal interference between injection and abstraction wells, and (iii)
groundwater flooding at the injection well. This methodology is subsequently adopted herein to calculate the hydraulic productivity

Figure 17. Hyper-parameter posteriors determined from calibrating on field-data
using the multi-fidelity framework.
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and thus the peak thermal load the geothermal system can provide, additionally implementing an upper limit of 100 L/s due to
technical limitations as suggested by (García-Gil et al., 2015). The formulation of the hydraulic productivity is summarised below,
while for a detailed explanation readers can refer to the original paper (Böttcher et al., 2019):

Q¼ min Qdrawdown, Qbreakthrough, Qinjection

� �
, (15)

Qdrawdown ¼ 0:195Kb2, (16)

Qbreakthrough ¼
π

1:96
vDbxw, (17)

Qinjection ¼ zmax � zð ÞKb0:798e29:9i, (18)

where K is the hydraulic conductivity of the aquifer (m/s), b the saturated aquifer thickness (m), in this case 9 m, vD the Darcy
velocity (m/s), xw the distance between abstraction and injection wells (m), zmax the maximum allowed groundwater level (m), z the
natural groundwater level (m), and i the hydraulic gradient (-), in this case 0,002.

In an open-loop system, feedback from the injection well might affect the operation of the abstraction well and create thermal
interference. An ideal design places the two wells such that no thermal interference occurs, even though, this can be arguably
difficult. Banks presents an equation calculating the minimum distance for the two wells and argues that, over time, thermal
interference may be inevitable (Banks, 2009):

L>
2Q
Tπi

, (19)

where L is the well spacing (m),Q the abstraction flow rate (m3/s), T the aquifer transmissivity (m2/s) and i the hydraulic gradient (-).
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Table 5. Subset information for small-scale study

Subset Borehole indices in subset

1 1 2 4 5 6 8 12 14 18 19 23 24
2 5 6 7 8 9 11 12 14 15 17 19 20
3 1 2 6 7 8 11 12 16 18 19 20 23
4 1 10 11 12 13 15 16 17 18 21 23 24
5 2 4 5 6 7 9 12 17 19 21 22 24
6 4 6 7 8 10 11 12 13 15 16 17 23
7 2 5 6 8 11 13 15 16 18 20 21 22
8 2 8 9 10 11 12 14 15 17 21 22 24
9 2 5 6 9 11 12 13 14 15 16 17 24
10 1 2 3 5 7 8 12 17 19 21 22 24
11 1 4 10 12 13 14 16 18 19 20 22 23
12 5 8 9 13 14 15 17 19 20 21 22 23
13 3 4 6 11 13 14 18 20 21 22 23 24
14 4 6 7 9 11 12 16 17 18 21 22 23
15 2 3 7 9 11 15 16 17 18 20 21 23
16 1 2 5 8 9 14 15 16 18 19 22 24
17 3 5 7 10 11 14 15 17 18 20 21 24
18 1 2 5 6 8 9 12 15 16 19 20 24
19 2 3 6 7 8 12 14 16 17 18 19 23
20 1 5 6 7 12 13 16 17 18 20 21 22
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