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Abstract
This paper is devoted to the study of generalized tilting theory of functor categories in different levels. First, we
extend Miyashita’s proof (Math Z 193:113–146,1986) of the generalized Brenner–Butler theorem to arbitrary func-
tor categories Mod(C) with C an annuli variety. Second, a hereditary and complete cotorsion pair generated by a
generalized tilting subcategory T of Mod(C) is constructed. Some applications of these two results include the
equivalence of Grothendieck groups K0(C) and K0(T ), the existences of a new abelian model structure on the
category of complexes C(Mod(C)), and a t-structure on the derived category D(Mod(C)).

1. Introduction

Tilting theory arises as a universal method for constructing equivalences between categories. Since its
advent, it has been an essential tool in the study of many areas of mathematics, including algebraic group
theory, commutative and noncommutative algebraic geometry, and algebraic topology.

Tilting theory can trace its history back to the article by Bernstein et al. [8], where they used reflec-
tion functors to construct recursively all the indecomposable modules from simple modules over a
representation-finite hereditary algebra. The major milestone in the development of tilting theory was
the article by Brenner and Butler [9]. They introduced the notion of a tilting module over a finite dimen-
sional algebra and established the so-called Brenner–Butler theorem by a tilting module. In this article,
the behavior of the associated quadratic forms was investigated as well. Dropping a more restrictive
notion of tilting module defined by Brenner and Butler, Happel and Ringel [15] successfully simplified
the definition of original tilting modules. A few years later, Miyashita [26] generalized the concept of
tilting modules allowing modules of any finite projective dimension and over any ring, for which a gen-
eralization of the Brenner–Butler theorem was still valid. Indeed, the authors, like Brenner and Butler
[9], Happel and Ringel [15], and Miyashita [26], considered finitely generated tilting modules, obtaining
portions of the Brenner–Butler theorem. Colpi and Trlifaj [10] generalized the notion of tilting module
to not necessarily finitely generated modules. Later on, Angeleri-Hügel and Coelho [1] did the same
with the concept of Miyashita.

On the other hand, functor categories, introduced by Auslander [2], are used as a potent tool for
solving some important problems in representation theory. Martsinkovsky and Russell have studied the
injective stabilization of additive functors (see [23–25]). Recently, Martínez-Villa and Ortiz-Morales
[20–22] initialed the study of tilting theory in arbitrary functor categories with applications to the functor
category Mod(A) for A a category of modules over a finite dimensional algebra. The first one [20] in
a series of three is to deal with the concept of tilting subcategory T of Mod(C), which is the category
of contravariant functors from a skeletally small additive category C, to the category of abelian groups.
They showed that the Brenner and Butler theorem holds for T . In the second and third papers [21,
22], replacing a tilting subcategory with a generalized tilting subcategory T of Mod(C), they continued
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the project of extending tilting theory to the same functor category with particular focusing on the
equivalence of the derived categories of bounded complexes Db(Mod(C)) and Db(Mod(T )).

In the same spirit as in the above-mentioned results of Martínez-Villa and Ortiz-Morales, in this
paper, we aim at extending some well-known results, relating generalized tilting modules in module
category, to a generalized tilting subcategory of Mod(C). We now give a brief outline of the contents of
this paper.

In Section 2, we collect preliminary notions and results on functor categories that will be useful
throughout the paper and we fix notation. We also give an example of a generalized tilting subcategory
of Mod(C) (see Example 2.4).

In Section 3, we are interested in studying a generalized version of the Brenner–Butler theorem in
functor category. More precisely, we show in Theorem 3.4 that for a generalized tilting subcategory T
of Mod(C) one gets an equivalence between the categories KE∞

e (T ) and KT∞
e (T ). As an application of

this main theorem, we state in Theorem 3.8 that if C is an abelian category with enough injectives and
T is an n-tilting subcategory of mod(C) with pseudokernels, then the Grothendieck groups K0(C) and
K0(T ) are isomorphic.

In Section 4, we prove in Theorem 4.3 that for a generalized tilting subcategory T of Mod(C),
(⊥∞ (T ⊥∞ ), T ⊥∞ ) is a hereditary and complete cotorsion pair. Furthermore, this induces an abelian model
structure on C(Mod(C)), where the trivial objects are the exact complexes, the cofibrant objects are dg-
⊥∞⇐T ⊥∞⇒ complexes, and the class of fibrant objects is given by the complexes whose terms are in
T ⊥∞ (see Corollary 4.6).

In Section 5, we use the model structure on C(Mod(C)) to describe the t-structure on the derived
category D(Mod(C)), induced by a generalized tilting subcategory T of Mod(C) (see Theorem 5.5).

2. Preliminaries

Throughout this paper, C will be an arbitrary skeletally small additive category, and Mod(C) will denote
the category of additive contravariant functors from C to the category of abelian groups. It follows from
[28, Theorem 1.2 and Proposition 1.9] or [20, Section 1.2] that Mod(C) is a Grothendieck category
with enough projective objects. In addition, Mod(C) also has enough injective objects by [19, p.384,
Theorem B.3]. If M, N ∈ Mod(C), we denote the set Mod(C)(M, N) of natural transformations M → N
by HomC(M, N). Following [3], a functor F is called representable if it is isomorphic to C( , C) for
some C ∈ C. A functor F is finitely generated if there is an epimorphism C( , C) → F → 0 with C ∈
C. A functor F is finitely presented, if there exists a sequence of natural transformations C( , C1) →
C( , C0) → F → 0 with C0, C1 ∈ C such that for any C ∈ C the sequence of abelian groups C(C, C1) →
C(C, C0) → F(C) → 0 is exact. We denote by mod(C) the full subcategory of Mod(C) consisting of
finitely presented functors. An object P in Mod(C) is projective (finitely generated projective) if and
only if P is a summand of

∐
i∈I C( , Ci) for a (finite) family {Ci}i∈I of objects in C (see [20, Paragraph 3

of Section 1.2]). We recall from [3, p.188] that an annuli variety is a skeletally small additive category
in which idempotents split.

Let A be an abelian category and F ∈ mod(A), then there is an exact sequence A( , X)
( ,f )−→

A( , Y) −→ F → 0, the value of v at F is defined by the following exact sequence X
f−→ Y → v(F) → 0.

This assignment extends to the defect functor v: mod(A) →A.

Lemma 2.1. Let C be an annuli variety and T a skeletally small full subcategory of Mod(C). We define
the following functor:

φ : Mod(C) → Mod(T ), φ(M) := Hom( , M)T ,

where the contravariant functor Hom( , M)T : T → Ab is given by Hom( , M)T (T) = Hom(T , M) for
any T ∈ T . Then the following statements hold.
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(1) The functor φ has a left adjoint − ⊗ T : Mod(T ) → Mod(C).
(2) T ( , T) ⊗ T = T for any T ∈ T .
(3) − ⊗ T |mod(T ) = v.

Proof. (1) and (2) come from [21, Theorem 3] and [20, Remark 1], respectively.
(3) It suffices to show that (v, φ) is an adjoint pair. Let M ∈ mod(T ) and N ∈ Mod(C), we need to find

an isomorphism

θ : HomMod(T )(M, φ(N)) → HomMod(C)(v(M), N)

which is natural in both M and N. Suppose that there is an exact sequence T ( , T1) −→ T ( , T0) −→
M → 0 with T1, T0 ∈ T . By the construction of defect functor, we get an exact sequence T1

f−→
T0 → v(M) → 0 in Mod(C). It follows from the Yoneda Lemma that (T ( , T1), φ(N)) ∼= (T1, N) and
(T ( , T0), φ(N)) ∼= (T0, N). Then we have the following commutative diagram with exact rows

So θ is an isomorphism and it is easy to check that θ is natural in both M and N.

Following [20] and [21], given categories C and T as in Lemma 2.1, since Mod(C) and Mod(T )
have enough projective and injective objects, we can define the nth right derived functors of the functors
HomC(M, ) and HomC( , N), which will be denoted by Extn

C(M, ) and Extn
C( , N), respectively.

In the same way, the functor φ : Mod(C) → Mod(T ) has an nth right derived functor, denoted by
Extn

C( , −)T , and they are defined as Extn
C( , −)T (M) = Extn

C( , M)T . Analogously, the functor − ⊗
T : Mod(T ) → Mod(C) has an nth left derived functor, denoted by TorTn ( , T ).

Let T be a subcategory of Mod(C). Add(T ) (resp. add(T )) will denote the class of functors isomor-
phic to summands of (finite) direct sums of objects in T and Genn(T ) will denote the full subcategory
consisting of M ∈ Mod(C) for which there exists an exact sequence of the form Tn → · · · → T2 → T1 →
M → 0 with Ti ∈ Add(T ). For any i � 1, we write

T ⊥i := {M ∈ Mod(C) | Exti
C(T , M) = 0 for any T ∈ T },

⊥iT := {M ∈ Mod(C) | Exti
C(M, T) = 0 for any T ∈ T },

T ⊥∞ := {M ∈ Mod(C) | Exti
C(T , M) = 0 for any T ∈ T and any i � 1},

⊥∞T := {M ∈ Mod(C) | Exti
C(M, T) = 0 for any T ∈ T and any i � 1},

	∞T := {N ∈ Mod(T ) | TorTi (N, T ) = 0 for any T ∈ T and any i � 1}.
We denote by T X the full subcategory of T ⊥∞ consisting of functors M such that there is an exact
sequence of the form · · · f2−→ T1

f1−→ T0
f0−→ M → 0 with Ti ∈ Add(T ) and Im fi ∈ T ⊥∞ . It is easy to see

that objects in T X are in Genn(T ) for each n.
Next we recall the concept of cotorsion pairs in abelian categories, due to Holm and Jørgensen [16,

Section 6].

Definition 2.2. Let A, B be two classes in Mod(C).
(1) The pair (A, B) is called a cotorsion pair if A⊥1 =B and ⊥1B =A.
(2) A cotorsion pair (A, B) is generated by a class X of objects if X ⊥1 =B.
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(3) A cotorsion pair (A, B) has enough projectives, that is, for every M ∈ Mod(C) there exists an
exact sequence 0 → B → A → M → 0 with A ∈A and B ∈B. Dually, we say that a cotorsion
pair (A, B) has enough injectives, that is, for every M ∈ Mod(C) there exists an exact sequence
0 → M → B → A → 0 with A ∈A and B ∈B.

(4) A cotorsion pair (A, B) is complete when it has enough injectives and enough projectives.
(5) A cotorsion pair (A, B) is hereditary if A⊥∞ =B and ⊥∞B =A.

Now we will introduce the notion of a generalized tilting subcategory T of Mod(C).

Definition 2.3. ([21, Definition 6]). Let C be an annuli variety. A full subcategory T of Mod(C) is
generalized tilting if the following statements (1)–(3) hold.

(1) There exists a fixed integer n such that every object T in T has a projective resolution

0 → Pn → · · · → P1 → P0 → T → 0,

with each Pi finitely generated.
(2) For each pair of objects T and T ′ in T and any positive integer i, we have Exti

C(T , T ′) = 0.
(3) For each representable functor C( , C), there is an exact sequence

0 → C( , C) → T0
C → · · · → Tmc

C → 0,

with Ti
C in T .

(3′) There is a fixed integer m such that each representable functor C( , C) has an exact
sequence

0 → C( , C) → T0
C → · · · → Tm

C → 0,

with Ti
C in T .

For a general subcategory T of Mod(C), we use pdim T to denote the the supremum of the set of
projective dimensions of all T in T . If T is generalized tilting with pdim T � n satisfying condition
(3′), and the integer m in condition (3′) equals n, then we say T is n-tilting. It should be pointed that
a tilting subcategory T defined in [20, Definition 8] is exactly 1-tilting when T is closed under taking
direct summands.

Finally, we end this section by showing that there exists a natural example of a generalized tilting
subcategory T of Mod(C).

Example 2.4. Let� be an artin R-algebra and C = add�. Assume that Mod� has a classical n-tilting
module T . Then we have an n-tilting subcategory T of Mod( add�).

Proof. Since T is a classical n-tilting module, it follows from [6] that T satisfies the following
conditions:

(1) There exists a projective resolution 0 → Pn → · · · → P1 → P0 → T → 0 with each Pi finitely
generated,

(2) Exti�1
�

(T , T) = 0,
(3) There is an exact sequence 0 →�→ T0 → T1 → · · · → Tn → 0 with Ti ∈ add(T).

We set T = {C( , T ′) | T ′ ∈ add T}. It is easy to verify that T is an n-tilting subcategory of
Mod(C).
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3. Equivalences induced by a generalized tilting subcategory

Our purpose in this section is to study category equivalences induced by a generalized tilting subcategory
T of Mod(C). First, we observe the following key result, which is vital in proving the main theorem of
this section.

Proposition 3.1. Assume that T is generalized tilting with pdim T � n for some integer n. Then the
following statements are equivalent for any M in Mod(C).

(1) M ∈ T ⊥∞ .
(2) M ∈ T X .
(3) M ∈ Genn(T ).

Proof. (1) ⇒ (2) For each representable functor C( , C), since T is generalized tilting, there is an
exact sequence

0 → C( , C) → T0
C → · · · → Tmc

C → 0,

with Ti
C in T . Note that M ∈ T ⊥∞ , we have a commutative diagram

(3.1)

where TrT0
C
(M) = ∑{Imψ |ψ ∈ HomC(T0

C, M)}. Then it follows from Diagram (3.1) that α is epic. Since
α is also monic, by Yoneda’s lemma, we have

TrT0
C
(M)(C) ∼= HomC(C( , C), TrT0

C
(M)) ∼= HomC(C( , C), M) ∼= M(C).

Thus M ∈ Gen1(T ) and there is an exact sequence 0 → M1 → ∐
T∈T T (XT ) → M → 0 with XT =

HomC(T , M). Moreover, this exact sequence remains exact after applying the functor φ to it. Observe that
Exti�1

C (T , T ′(X)) = 0 for any T , T ′ ∈ T and any set X by [20, Proposition 4]. So M1 ∈ T ⊥∞ . Now repeating
the process to M1, we obtain that M ∈ T X .

(2) ⇒ (3) is obvious.
(3) ⇒ (1) The case for n = 0 is trivial. Now suppose that n> 0, then by assumption there is an exact

sequence 0 → N → Tn → · · · → T1 → M → 0 with Ti ∈ Add(T ). Because T is self-orthogonal, we have
Exti

C(T , M) ∼= Exti+n
C (T , N) for any T in T and any i � 1 by dimension shift. But the latter equals 0, since

pdim T � n. Therefore, M ∈ T ⊥∞ .

The following two results, dual to each other, will be used throughout.

Lemma 3.2. Assume that T is generalized tilting and M is an object in T ⊥∞ . Then φ(M) ⊗ T ∼= M and
φ(M) ∈ 	∞T .

Proof. Since M ∈ T ⊥∞ , M ∈ T X by Proposition 3.1, in particular there is an exact sequence

· · · fn+1−→ Tn
fn−→ · · · f2−→ T1

f1−→ T0
f0−→ M → 0 (3.2)

with Ti = ∐
T∈T T (Xi) and each Im fi ∈ T ⊥∞ . Applying the functor φ to (3.2) yields the following exact

sequence

· · · φ(fn+1)−→ φ(Tn)
φ(fn)−→ · · · φ(f2)−→ φ(T1)

φ(f1)−→ φ(T0)
φ(f0)−→ φ(M) → 0.

Thanks to [20, Theorem 2], the functor φ preserves direct sums. Thus, each φ(Ti) is projective in
Mod(T ). Moreover, by Lemma 2.1, we have the following commutative diagram

https://doi.org/10.1017/S0017089523000162 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089523000162


600 Xi Tang

Consequently, we obtain that φ(M) ⊗ T ∼= M and φ(M) ∈ 	∞T .

Analogously, dualizing the proof of the above lemma, we have the following

Lemma 3.3. Assume that T is generalized tilting and N is an object in 	∞T . Then N ∼= φ(N ⊗ T ) and
N ⊗ T ∈ T ⊥∞ .

Proof. Consider the following projective resolution of N

· · · → Pi → · · · → P1 → P0 → N → 0 (3.3)

with Pi = ∐
ji∈Ji

T ( , Tji ). Since (− ⊗ T , φ) forms an adjoint pair by Lemma 2.1, the functor − ⊗ T pre-
serves direct sums and (

∐
ji∈Ji

T ( , Tji )) ⊗ T ∼= ∐
ji∈Ji

Tji . By the assumption of N, applying the functor
− ⊗ T to (3.3) yields the following exact sequence

· · · → Pn ⊗ T · · · → P1 ⊗ T → P0 ⊗ T → N ⊗ T → 0.

Note that T is generalized tilting, we have that Pi ⊗ T ∈ T ⊥∞ for any i � 0. Moreover, we have the
following commutative diagram

So we get that N ∼= φ(N ⊗ T ) and N ⊗ T ∈ T ⊥∞ .

In order to present the main theorem in this section, we need to introduce the following notions.

KEn
e(T ) := {M ∈ Mod(C) | Exti

C( , M)T = 0 if 0 � i � n and i �= e},
KTn

e(T ) := {N ∈ Mod(T ) | TorTi (N, T ) = 0 if 0 � i � n and i �= e},
KE∞

e (T ) := {M ∈ Mod(C) | Exti
C( , M)T = 0 if 0 � i<∞ and i �= e},

KT∞
e (T ) := {N ∈ Mod(T ) | TorTi (N, T ) = 0 if 0 � i<∞ and i �= e}.

Theorem 3.4. Assume that T is generalized tilting and e is a non-negative integer. Then there are two
category equivalences

Proof. We can apply Lemmas 3.2 and 3.3 to conclude that the equivalence holds for e = 0. Now
assume that e � 1 and M ∈ KE∞

e (T ). Consider an injective resolution of M

0 → M
f0−→ I0

f1−→ I1
f2−→ · · · fi−→ Ii

fi+1−→ · · · . (3.4)

Since Exti
C( , Im fe)T ∼= Exti+e

C ( , M)T = 0 for any i � 1. It follows from Lemma 3.2 that φ(Im fe) ⊗
T ∼= Im fe and φ(Im fe) ∈ 	∞T . Applying the functor φ to (3.4), we get an exact sequence

0 → φ(I0) → φ(I1) → · · · → φ(Ie−1) → φ(Im fe) → X → 0
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with X ∼= Ext1
C( , Im fe−1)T ∼= Exte

C( , M)T . Because every term except X in the exact sequence belongs
to 	∞T , the ith-homology can be computed by it. Therefore, we obtain that TorTi (X, T ) = 0 for any
0 � i<∞ and i �= e, TorTe (X, T ) ∼= M.

Conversely, suppose that N ∈ KT∞
e (T ). Consider a projective resolution of N

· · · gi+1−→ Pi
gi−→ · · · g2−→ P1

g1−→ P0
g0−→ N → 0 (3.5)

with Pi = ∐
ji∈Ji

T ( , Tji ). Since TorTi (Im ge, T ) ∼= TorTi+e(N, T ) = 0 for any i � 1. It follows from
Lemma 3.3 that Im ge

∼= φ(Im ge ⊗ T ) and Im ge ⊗ T ∈ T ⊥∞ . Applying the functor − ⊗ T to (3.5), we
get an exact sequence

0 → Y → Im ge ⊗ T → Pe−1 ⊗ T → · · · → P1 ⊗ T → P0 ⊗ T → 0

with Y ∼= TorT1 (Im ge−1, T ) ∼= TorTe (N, T ). Because every term except Y in the exact sequence belongs
to T ⊥∞ , the ith-cohomology can be computed by it. Therefore, we obtain that Exti

C( , Y)T = 0 for any
0 � i<∞ and i �= e, Exte

C( , Y)T ∼= N.

Given a 1-tilting subcategory T , Martínez-Villa and Ortiz-Morales in [20, Theorem 3] proved that φ
and − ⊗ T induce an equivalence between KE1

0 (T ) and KT1
0 (T ). We generalize this result to n-tilting

subcategory T as follows.

Corollary 3.5. Assume that T is n-tilting. Then for any 0 � e � n, there are two category equivalences

Proof. Since pdim(T ) � n, it is obvious that KEn
e(T ) = KE∞

e (T ). For each representable functor
C( , C), there is an exact resolution

0 → C( , C) → T0 → · · · → Tn → 0

with Ti in T . Then we get a projective resolution of (C( , C), )T :

0 → (Tn, )T → · · · → (T1, )T → (T0, )T → (C( , C), )T → 0.

Then [20, Proposition 14] implies that TorTi ((C( , C), )T , N) ∼= TorTi (N, T )(C) = 0 for any N ∈
Mod(T ) and i � n + 1. So the two categories KTn

e(T ) and KT∞
e (T ) coincide. Finally, the conclusion

follows by Theorem 3.4.

According to [21], we say C has pseudokernels if given a map f : C1 → C0 in C, there is a map g : C2 →
C1 in C such that the sequence of representable functors C( , C2)

C( ,g)−→ C( , C1)
C( ,f )−→ C( , C0) is exact.

Since Mod(C) is an abelian category, C has pseudokernels if and only if Ker(, f ) is finitely generated
for each f : C1 → C0 in C. Next we turn to investigating the invariance of Grothendieck groups under
generalized tilting. To this end, we need the following.

Definition 3.6. ([20, Definition 10]) Let C be a skeletally small preadditive category with pseudoker-
nels. Let’s define by | mod(C)| the set of isomorphism classes of objects in | mod(C)|. Let A be the free
abelian group generated by | mod(C)| and R the subgroup of A generated by relations [M] − [K] − [L]
where 0 → K → M → L → 0 is a short exact sequence in mod(C). Then, the Grothendieck group of C
is K0(C) =A/R.

It was proved in [4] that mod(C) is abelian if and only if C has pseudokernels. We will use this result
to show the following proposition.
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Proposition 3.7. Let C be an annuli variety and T a generalized tilting subcategory of mod(C). Assume
C and T have pseudokernels. Then the following statements hold.

(1) Exti
C( , M)T ∈ mod(T ) for any M ∈ mod(C) and any i � 0.

(2) TorTi (N, T ) ∈ mod(C) for any N ∈ mod(T ) and any i � 0.

Proof. (1) Since T is generalized tilting, we may assume that pdim T � n for some integer n. Let M ∈
mod(C), then there is an exact sequence 0 → K1 → C( , C0) → M → 0 with K1 ∈ mod(C). Applying the
functor φ to this exact sequence gives rise to the following exact sequence

0 → φ(K1) → φ(C( , C)) → φ(M) → Ext1
C( , K1)T → Ext1

C( , C( , C0))T

→ Ext1
C( , M)T → · · · → Extn

C( , K1)T → Extn
C( , C( , C0))T → Extn

C( , M)T → 0.

It follows from the proof of [21, Proposition 6] that Exti
C( , K1)T is in mod(T ) for any i � 0. On the

other hand, by [21, Lemma 5], we know that Exti
C( , C( , C0))T is also in mod(T ) for any i � 0. So

Exti
C( , M)T ∈ mod(T ) for any i � 0 since mod(T ) is abelian.
(2) Let N ∈ mod(T ) and

· · · fi+1−→ T ( , Ti)
fi−→ · · · f2−→ T ( , T1)

f1−→ T ( , T0)
f0−→ N → 0

a projective resolution of N. Set Li = Im fi and split the resolution in short exact sequences: 0 → Li+1 →
T ( , Ti) → Li → 0. Thus it follows from the long homology sequence that there are exact sequences:

0 → TorT1 (N, T ) → L1 ⊗ T → T0 → N ⊗ T → 0,

0 → TorT1 (L1, T ) → L2 ⊗ T → T1 → L1 ⊗ T → 0.

Since T1 ∈ mod(C), L1 ⊗ T is finitely generated. Thus, Im(L1 ⊗ T → T0) is finitely generated and so
N ⊗ T is finitely presented. Similarly, as L1 ∈ mod(C), L1 ⊗ T is finitely presented. Note that mod(C)
is abelian. We get that TorT1 (N, T ) is finitely presented. Because TorTi (N, T ) ∼= TorT1 (Li−1, T ) for any
i � 2, TorTi (N, T ) ∈ mod(C).

We now come to the first application in this section, our method in the following has its origin in [26,
Theorem 1.19].

Theorem 3.8. Let C be an abelian category with enough injectives and T an n-tilting subcategory of
mod(C) with pseudokernels. Then the Grothendieck groups K0(C) and K0(T ) are isomorphic.

Proof. We define two group homomorphisms

F : K0(C) → K0(T ), [M] →
∑

i�0

(−1)i[Exti
C( , M)T ],

G : K0(T ) → K0(C), [N] →
∑

i�0

(−1)i[TorTi (N, T )].

It is easily seen by Proposition 3.7 that F and G are well defined. For any M ∈ mod(C), since mod(C)
has enough injectives by [29, Section 6], we have an injective resolution

0 → M
f0−→ I0

f1−→ I1
f2−→ · · · fi−→ Ii

fi+1−→ · · · .

in mod(C). Set Ki = Im fi. Then Kn ∈ KE∞
0 (T )

⋂
mod(C). Thus, K0(C) is generated by the set of all

[X] with X ∈ KE∞
0 (T )

⋂
mod(C). Dually we have that K0(T ) is generated by the set of all [Y] with
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Y ∈ KT∞
0 (T )

⋂
mod(T ). Since GF([X]) = [X] and FG([Y]) = [Y] by Theorem 3.4, we conclude that

K0(C) and K0(T ) are isomorphic.

Given M ∈ Mod(C), since M has an injective envelope by [19, Theorem B.3], we have a minimal
injective resolution 0 → M → I0

f0−→ I1
f1−→ · · · . Then cTrT M := Coker φ(f0) is called the cotrans-

pose of M with respect to T . The notion is analogous to the cotranspose of a module with respect to a
semidualizing bimodule defined in [32, Defintion 3.1]. Using the tool of cotransposes, Tang and Huang
in [32, Proposition 3.2] established the so-called dual Auslander sequence. We will apply Theorem 3.4
to conclude that the dual Auslander sequence still holds in functor categories, but the approach used
here is different.

Corollary 3.9. Assume that T is generalized tilting. Then for any M ∈ Mod(C), there is an exact
sequence

0 → TorT2 ( cTrT M, T ) → φ(M) ⊗ T → M → TorT1 ( cTrT M, T ) → 0.

Proof. Let 0 → M → I0 → I1 → · · · be a minimal injective resolution of M. Applying the functor φ
to it yields an exact sequence

(3.6)

where K = Im(φ(I0) → φ(I1)). By Theorem 3.4, now applying the functor ⊗T to Diagram (3.6) gives
rise to the following diagram

Therefore the left most column in the above diagram is as desired.

4. Cotorsion pair and model category structure

Our goal in this section is to construct a cotorsion pair induced by a generalized tilting subcategory T
of Mod(C), allowing us to provide a model category structure on the category of complexes C(Mod(C)).
For the definition of a model structure, we refer to the book by Hoevy [18].
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The following lemma is straightforward, but we include a proof as we have not been able to find a
suitable reference for it.

Lemma 4.1. Suppose that T is a subcategory of Mod(C). Then the following statements hold.

(1) If T is closed under cokernels of monomorphisms and contains all injective objects in Mod(C),
then ⊥∞T = ⊥1T .

(2) If T is closed under kernels of epimorphisms and contains all projective objects in Mod(C),
then T ⊥∞ = T ⊥1 .

Proof. We show the first statement of the lemma. The second statement follows from a dual argument.
(1) It is enough to show that ⊥1T ⊆ ⊥∞T . Let X ∈ ⊥1T and M ∈ T , then we have an exact sequence

0 → M → I0 → I1 → · · · → Ii → · · · with Ii injective. Set Ki = Ker(Ii → Ii+1). By assumption, both Ii

and Ki are in T . So Exti
C(X, M) ∼= Ext1

C(X, Ki−1) = 0 for any i> 1.

Now we consider the relation between Genn(T ) and Genn(T X ).

Lemma 4.2. Assume that T is a subcategory of Mod(C). If there is an exact sequence 0 → L → Kn →
· · · → K1 → M → 0 in Mod(C) with Ki ∈ T X , then there is an exact sequence 0 → Un → Vn → L → 0
for some Un ∈ T X , and some Vn such that there is an exact sequence 0 → Vn → Tn → · · · → T1 → M →
0 with Ti ∈ Add(T ).

Proof. The proof is modeled on [33, Lemma 3.5(1)]. We shall prove the statement by induction
on n. When n = 1, we have an exact sequence 0 → L → K1 → M → 0 with K1 ∈T X . Thus, we have
another exact sequence 0 → U1 → T1 → K1 → 0 with T1 ∈ Add(T ) and U1 ∈T X . Consider the following
pull-back diagram

(4.1)

Then the middle row and left column in Diagram (4.1) are the desired exact sequences. Now assume that
the conclusion is true for n − 1. We will show that the conclusion holds for n. Set L′ = Coker(L → Kn).
Then, by the induction assumption, there is an exact sequence 0 → Un−1 → Vn−1 → L′ → 0 for some
Un−1 ∈ T X , and some Vn−1 such that there is an exact sequence 0 → Vn−1 → Tn−1 → · · · → T1 → M → 0
with Ti ∈ Add(T ). Then we can construct the following pullback diagram
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(4.2)

Since Un−1, Kn ∈ T X and T X is closed under extensions by [11, Lemma 8.2.1], we get that X ∈ T X .
Thus, there is an exact sequence 0 → Un → Tn → X → 0 with Tn ∈ Add(T ) and Un ∈ T X . Consider the
following pull-back diagram

(4.3)

Now the left column in Diagram (4.3) is the desired exact sequence.

Our main aim in this section is to show that the following holds.

Theorem 4.3. Suppose that T is a generalized tilting subcategory of Mod(C) with pdim(T ) � n. Then
the following statements hold.

(1) (⊥∞ (T ⊥∞ ), T ⊥∞ ) is a hereditary and complete cotorsion pair.
(2) pdim(⊥∞(T ⊥∞ )) � n.
(3) ⊥∞ (T ⊥∞ ) ∩ T ⊥∞ = Add(T ).

Proof. (1) Since T ⊥∞ is closed under cokernels of monomorphisms and contains all injective objects,
it follows from Lemma 4.1(1) that ⊥∞ (T ⊥∞ ) =⊥1 (T ⊥∞ ). On the other hand, since ⊥∞ (T ⊥∞ ) is closed
under kernels of epimorphisms and contains all projective objects, we have (⊥∞(T ⊥∞ ))⊥1 = (⊥∞(T ⊥∞ ))⊥∞

Lemma 4.1(2). Thus, (⊥∞(T ⊥∞ ))⊥1 = T ⊥∞ . Hence, (⊥∞ (T ⊥∞ ), T ⊥∞) forms a hereditary cotorsion pair.
For each T ∈ T , by assumption, there is a projective resolution 0 → Pn(T) → · · · → P1(T) → P0(T) →
T → 0. Set Ki(T) = Im(Pi(T) → Pi−1(T)) for 1 � i � n and X = {Ki(T) | T ∈ T } ∪ T . Obviously, X is a
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set and X ⊥1 = T ⊥∞ . It implies that (⊥∞(T ⊥∞ ), T ⊥∞ ) is generated by a set X . We conclude by [16] that
(⊥∞ (T ⊥∞ ), T ⊥∞ ) is a complete cotorsion pair.

(2) Let M ∈ Mod(C), there is an exact sequence 0 → M → I0 → I1 → · · · → In−1 → K → 0 with
Ii injective. Then Ii ∈ T X by Proposition 3.1. Thus, K ∈ Genn(T ) by Lemma 4.2. It follows from
Proposition 3.1 again that K ∈ T ⊥∞ . Given X ∈ ⊥∞(T ⊥∞ ), we know that Exti+n

C (X, M) ∼= Exti
C(X, K) = 0

for any i � 1. Therefore, the result holds.
(3) Add(T ) ⊆ ⊥∞ (T ⊥∞ ) ∩ T ⊥∞ is trivial. Conversely, let M ∈⊥∞ (T ⊥∞) ∩ T ⊥∞ , then there is an exact

sequence 0 → K → T → M → 0 with T ∈ Add(T ) and K ∈ T ⊥∞ by Proposition 3.1. So the sequence
splits, which implies that M ∈ Add(T ).

Let A be an abelian category. A complex A = (An, dA
n ) is a sequence · · · → An+1

dA
n+1−→ An

dA
n−→ An−1 →

· · · with An ∈A and dn ∈ HomA(An, An−1) satisfying dA
n dA

n+1 = 0 for any n ∈ Z. We denote by C(A)
the category of complexes. A morphism f : X → Y is said to be a quasi-isomorphism if the induced
morphism H(f ) : H(X) → H(Y) is an isomorphism. Given a complex A = (An, dA

n ), the suspension of A,
denoted�A, is the complex given by (�A)n = An−1 and d�A

n = −dA
n−1. For complexes X and Y , we define

the homomorphism complex Hom(X, Y) ∈ C(A) to be the complex

· · · →
∏

k∈Z
HomA(Xk, Yk+n)

δn−→
∏

k∈Z
HomA(Xk, Yk+n−1) → · · · ,

where (δnf ) = dY
k+nfk − (−1)nfk−1dX

k . We let Ext1
C(A)(Y , X) to be the group of (equivalence classes) of short

exact sequences 0 → X → Z → Y → 0 in C(A). Recall that a morphism f : X → Y of complexes is called
null-homotopic if there exists sn ∈ HomA(Xn−1, Yn) such that fn = dY

n+1sn+1 + sndX
n for each n ∈ Z. For

morphisms f , g : X → Y in C(A), we denote f ∼ g if f − g is null-homotopic. We denote by K(A) the
homotopic category, that is, the category consisting of complexes such that the morphism set between
X, Y ∈ C(A) is given by HomK(A)(X, Y) = HomC(A)(X, Y)/∼. Furthermore, there is a corresponding
derived category D(A), which is also triangulated.

In order to obtain an abelian model structure, we have to introduce the following classes in
C(Mod(C)).

Definition 4.4. ([12]). Let (A, B) be a cotorsion pair on an abelian category C. Let X be a complex.

(1) X is called an A complex if it is exact and Zn(X) ∈A for all n.
(2) X is called a B complex if it is exact and Zn(X) ∈B for all n.
(3) X is called a dg-A complex if Xn ∈A for each n, and Hom(X, B) is exact whenever B is a B

complex.
(4) X is called a dg-B complex if Xn ∈B for each n, and Hom(A, X) is exact whenever A is an A

complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by dgÃ. Similarly, the
class of B complexes is denoted by B̃ and the class of dg-B complexes is denoted by dgB̃.

Inspired by [5, Theorem 2.5], we present the following theorem.

Theorem 4.5. Suppose that T is a generalized tilting subcategory of Mod(C). Let A=⊥∞ (T ⊥∞ ), B =
T ⊥∞ . Then there is an abelian model structure on C(Mod(C)) given as follows:

(1) Weak equivalences are quasi-isomorphisms,
(2) Cofibrations (trivial cofibrations) consist of all the monomorphisms f such that

Ext1
C(Mod(C))( Coker f , X) = 0 for any X ∈ B̃(Coker f ∈ Ã),

(3) Fibrations (trivial fibrations) consist of all the epimorphisms g such that Ext1
C(Mod(C))(X, Ker g) =

0 for any X ∈ Ã(Ker g ∈ B̃).

The homotopy category of this model category is D(Mod(C)).
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Proof. Since Mod(C) is a Grothendieck category, it is a bicomplete abelian category by [30, Chapter
V] and [20, Section 1.2]. Because (⊥∞ (T ⊥∞ ), T ⊥∞ ) is a hereditary and complete cotorsion pair by
Theorem 4.3, it follows from [34, Theorem 2.4] that there are two induced complete cotorsion pairs
(Ã, dg-B) and (dg-A, B̃). So we claim that X ∈ dg-A if and only if Ext1

C(Mod(C))(X, B) = 0 for any B ∈ B̃
and Y ∈ dg-B if and only if Ext1

C(Mod(C))(A, Y) = 0 for any A ∈ Ã.
Next, we know from [13, Corollary 3.8] that there is an abelian model structure on C(Mod(C)).

Furthermore, weak equivalences, cofibrantions, and fibrations are described exactly as in the statements.
Observe that exact dg-A complexes are exactlyA complexes by [34, Theorem 2.5]. In particular, f : M →
N is a trivial cofibration if and only if there is an exact sequence 0 → M

f−→ N → L → 0 such that f is a
quasi-isomorphism and Coker f ∈ dg-A if and only if there is an exact sequence 0 → M

f−→ N → L → 0
such that L ∈ Ã. The case for trivial fibrations can be shown similarly. The last statement follows from
[14, Introduction].

According to [17, 18], suppose that an abelian category A has a model structure, X is trivial if 0 → X
is a weak equivalence, X is cofibrant if 0 → X is a cofibration and X is fibrant if X → 0 is a fibration.

Corollary 4.6. In the notations of Theorem 4.5, then we have the following statements.

(1) X is trivial if and only if X is exact.
(2) C is a cofibrant if and only if C ∈ dg-A.
(3) F is a fibrant if and only if F ∈ dg-B if and only if F has all the terms in B.

Proof. (1), (2) and the first equivalence of (3) follow from Theorem 4.5 easily. We only need to show
that F ∈ dg-B if and only if F all the terms in B. If F ∈ dg-B, then F has all the terms in B. Conversely,
if F has all the terms in B, since (Ã, dg-B) is a complete cotorsion pair by the proof of Theorem 4.5,
there is an exact sequence 0 → F → B → A → 0 with B ∈ dg-B and A ∈ Ã. The fact that the cotorsion
pair (A, B) is hereditary implies that An ∈B for each n. For any T ∈ T and any i ∈Z, since T has finite
projective dimension, we have that Extj�1

C (T , Zi(A)) = 0 by dimension shifting. Thus, A ∈ B̃. Let X ∈ Ã.
Since all components of F are in B and all components of X are in A, we deduce that the sequence
0 → Hom(X, F) → Hom(X, B) → Hom(X, A) → 0 is exact. Observe that A ∈ B̃ ⊆ dg-B and B ∈ dg-B.
The complexes Hom(X, B) and Hom(X, A) are exact. So is Hom(X, F). Therefore, F ∈ dg-B.

Corollary 4.7. In the notations of Theorem 4.5, let F be a complex with terms inB and let C be cofibrant
in the model structure induced by T . Then there is a natural isomorphism

HomK( Mod(C))(C, F) ∼= HomD( Mod(C))(C, F).

In particular, this applies to the complexes C bounded below and with terms in A.

Proof. We know by Corollary 4.6(3) that F is a fibrant. Then it follows from [14] that
HomK(Mod(C))(C, F) ∼= HomD(Mod(C))(C, F). In particular, if C is a bounded below complex with terms in
A, then C ∈ dg-A by [12, Lemma 3.4(1)]. It implies that C is a cofibrant by Corollary 4.6(2). So the
equivalence also applies to C.

5. A t-structure induced by a generalized tilting subcategory

In this section, we mainly show that there exists a t-structure on the derived category D(Mod(C)), relating
a generalized tilting subcategory T of Mod(C). For the sake of completeness, let us recall the definition
of a t-structure.

Definition 5.1. ([7]). Let D be a triangulated category. A t-structure on D is a pair of full subcategories
(D�0,D�0) with the following properties: write D�n =�−nD�0 and D�n =�−nD�0 for n ∈Z.
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(1) HomD(X, Y) = 0 for all X ∈D�0 and Y ∈D�1.
(2) D�0 ⊆D�1 and D�0 ⊇D�1.
(3) For every object Z ∈D there is a distinguished triangle X → Z → Y →�X with X ∈D�0 and

Y ∈D�1.

Notation 5.2. Suppose that T is a generalized tilting subcategory of Mod(C). For any k ∈Z, we denote
by D�k

T and D�k
T the full subcategories of D(Mod(C)) given by

D�k
T = {X ∈ D( Mod(C)) | HomD( Mod(C))(�

iT , X) = 0 for any i< k and T ∈ T },
D�k

T = {Y ∈ D( Mod(C)) | HomD( Mod(C))(�
iT , Y) = 0 for any i> k and T ∈ T }.

Let A be an abelian category and F be a class of objects in A. Then a morphism ϕ : F → M of A
is called an F-precover of M if F ∈F and HomA(F′, F) → HomA(F′, M) → 0 is exact for all F′ ∈F .
If every object of A has an F-precover, F is said to be precovering [11]. Given k ∈Z, we say that a
complex X ∈ C[k,∞] (F) if Xi = 0 for i< k and Xi ∈F for i � k.

Lemma 5.3. Suppose that A is an abelian category and F is a class of objects in A. If F is precovering,
then for every complex X in D(A) and every k ∈Z, there is a chain map f : F → X with F ∈ C[k,∞] (F)
such that HomK(A)(� iF, f ) is an isomorphism for any F ∈F and any i � k.

Proof. Given a complex X := · · · → Xn+1

dX
n+1−→ Xn

dX
n−→ Xn−1 → · · · with Xn ∈A. We will inductively

construct a chain map f : X → F

such that Fi ∈F for i � 0. Consider anF-precover of Ker dX
k , Fk

ϕk−→ Ker dX
k , and let fk be the composition

of ϕk with the inclusion Ker dX
k → Xk. By induction construct fi+1 : Fi+1 → Xi+1 as follows. Having defined

fi : Fi → Xi and dF
i : Fi → Fi−1. Let λi : Ki → Fi be the kernel of dF

i and let gi = fiλi. Consider the pullback
Pi+1 of the maps gi and dX

i+1. Let ϕi+1 : Fi+1 → Pi+1 be an F-precover of Pi+1 and let fi+1 be the obvious
composition. All the maps used in the inductive step are depicted in the following diagram

where dF
i+1 = λiαi+1ϕi+1. It is easy to see that F is a complex with all terms in F and f is a chain map

between F and X. Now we claim that HomK(A)(� iF′, X) = 0 for any F′ ∈F and any i � k. If i � k, given
a map h :� iF′ → X in C(A), our task is to prove that

(a) h factors through f : F → X, and
(b) If h is null-homotopic, so is any such factorization t :� iF′ → F.
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Regarding (a), since h is a chain map, dX
i hi = 0. Using the pullback property of Pi, we construct a map

θi : F′ → Pi such that βiθi = hi and αiθi = 0. We can factor θi further through the F-precover ϕi : Fi → Pi

to obtain a map ti : F′ → Fi. Thus, dF
i ti = λi−1αiϕiti = λi−1αiθi = 0. It means that t :�iF′ → F is a chain

map. On the other hand, as fiti = βiϕiti = βiθi = hi, we conclude that h = ft.
Regarding (b), assume that h is null-homotopic and h = ft for some t :�iF′ → F in C(A), we will

show that t is also null-homotopic. Since h is null-homotopic, there exists a map si+1 : F′ → Xi+1 such
that dX

i+1si+1 = hi. Note that t is a chain map and λi : Ki → Fi is the kernel of dF
i . We get a map γi : F′ → Ki

with λiγi = ti. Then giγi = fiλiγi = fiti = hi = dX
i+1si+1. By the pullback property of Pi+1, there is a map

δi+1 : F′ → Pi+1 such that si+1 = βi+1δi+1 and γi = αi+1δi+1. We further factor δi+1 through the F-precover
ϕi+1 : Fi+1 → Pi+1 to obtain a map ηi+1 : F′ → Fi+1. Then dF

i+1ηi+1 = λiαi+1ϕi+1ηi+1 = λiαi+1δi+1 = λiγi = ti.
So t is null-homotopic, and we are done.

Next, we can give a description of the complexes in D�k
T .

Proposition 5.4. Let T be a generalized tilting subcategory of Mod(C), k ∈Z and D�k
T as in Notation

5.2. For a complex in D(Mod(C)), the following statements are equivalent.

(1) X ∈D�k
T .

(2) X is isomorphic in D(Mod(C)) to a complex B of the form

· · · → Bk+2 → Bk+1 → Bk → 0 → · · ·
with Bi ∈ T ⊥∞ for every i � k.

(3) X is isomorphic in D(Mod(C)) to a complex T as in (2), but with Ti ∈ Add(T ) for every i � k.

Proof. (3) ⇒ (2) is obvious.
(2) ⇒ (1) For any T ∈ T and i< k, we have that HomD(Mod(C))(� iT , X) = HomD(Mod(C))(� iT , B) =

HomK(Mod(C))(� iT , B) = Hi Hom(T , B) = 0 by Corollary 4.7. So X ∈D�k
T .

(1) ⇒ (3) Every complex X has a fibrant replacement in the model structure defined by the gen-
eralized tilting subcategory T , by Corollary 4.6 we can assume that X has terms in B. It follows
from Proposition 3.1 that every term of X has an Add(T )-precover. Then by Lemma 5.3 there is a
chain map f : T → X with T ∈ C[k,∞] ( Add(T )) and HomK(A)(� iT ′, f ) is an isomorphism for any T ′ ∈ T
and any i � k. For i< k. By assumption on X we know that HomD(Mod(C))(� iT ′, X) = 0 for any T ′ ∈ T .
Note that HomK(Mod(C))(� iT ′, T) = Hi Hom(T ′, T) = 0 for any T ′ ∈ T . Thus, we say that HomK(A)(� iT ′, f )
is an isomorphism for any i ∈Z. Let Cone(f ) be the mapping cone of f . It is easy to see that
Cone(f ) is a fibrant by Corollary 4.6(3). From the triangle T

f−→ X → Cone(f ) →�T in K(Mod(C)),
we obtain HomK(Mod(C))(� iT ′, Cone(f )) = 0 for any T ′ ∈ T and any i ∈Z. Moreover, by Corollary 4.7,
HomD(Mod(C))(� iT ′, Cone(f )) = 0 for any T ′ ∈ T and any i ∈Z. Because T satisfies the condition (3) of
Definition 2.3, Cone(f ) = 0 in D(Mod(C)). Consequently, f becomes an isomorphism in D(Mod(C)) and
T satisfies (3).

Motivated by [5, Theorem 3.5], we can assign a t-structure to a generalized tilting subcategory T of
Mod(C).

Theorem 5.5. Let T be a generalized tilting subcategory of Mod(C) and k ∈Z. Then (D�k
T , D�k

T ) forms
a t-structure on the derived category D(Mod(C)).

Proof. We will show that (D�0
T , D�0

T ) is a t-structure, since it is routine to check that the shifted pair
(D�k

T , D�k
T ) is also a t-structure. The proof follows the pattern of that of [31, Theorem 4.5], but in a

dual manner. By the definition of D�0
T and D�0

T , it is easy to verify that D�0
T (resp. D�0

T ) is closed under
�(resp. �−1). Thus, we only have to show the conditions (1) and (3) of Definition 5.1

In order to prove (1) of Definition 5.1, we assume that X ∈D�0
T and Y ∈D�1

T . Let X′ =�X and
Y =�−1Y ′ for some Y ′ ∈D�0

T . Then HomD(Mod(C))(X, Y) = 0 is equivalent to HomD(Mod(C))(X′, Y ′) = 0.
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In view of Proposition 5.4, X′ has the form · · · → X2 → X1 → 0 → · · · with Xi ∈ Add(T ) for every
i � 1. For every n � 1, we shall denote by τ�nX′ the brutally truncated complex · · · 0 → Xn →
Xn−1 → · · · → X1 → 0. As HomD(Mod(C))(� iT ′, Y ′) = 0 for any T ′ ∈ T and any i> 0, by induction on
n, we know from the triangle τ�n−1X′ → τ�nX′ →�nXn →�(τ�n−1X′) that HomD(Mod(C))(τ�nX′, Y ′) =
0 = HomD(Mod(C))(�(τ�nX′), Y ′) for all n � 1. Since X′ = lim

−→
τ�nX′, by [27, Proposition 11.7], there is

a triangle in D(Mod(C)) of the form
∐

n�1

τ�nX′ →
∐

n�1

τ�nX′ → X′ →
∐

n�1

�(τ�nX
′).

Hence, HomD(Mod(C))(X′, Y ′) = 0.
Now we will prove (3) of Definition 5.1. Let X ∈ D(Mod(C)), in view of Corollary 4.6, we may assume

that X has all the terms in T ⊥∞ . By Lemma 5.3, there is a chain map f : F → X with F ∈ C[0,∞] ( Add(T ))
and HomK(Mod(C))(� iT , f ) is an isomorphism for any T ∈ T and any i � 0. By Corollary 4.7, the same is
true for HomD(Mod(C))(� iT , f ). Furthermore, it is straightforward to check that F ∈D�0

T . Let Cone(f ) be
the mapping cone of f , that is, we have a triangle

F
f−→ X → Cone(f ) →�F. (5.1)

Then necessarily HomD(Mod(C))(� iT , Cone(f )) = 0 for any i> 0. Indeed, if we apply HomD(Mod(C))(T , )
to (5.1), we get an exact sequence

HomD( Mod(C))(T , F)
f ′−→ HomD( Mod(C))(T , X) → HomD( Mod(C))(T , Cone(f ))

→ HomD( Mod(C))(T ,�F).

Now f ′ is an isomorphism and HomD(Mod(C))(T ,�F) = 0 since F ∈D�0
T . Thus, HomD(Mod(C))(T , Cone(f )) =

0. Hence, Cone(f ) ∈D�1
T .
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