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Abstract

In this paper the following result is proved. Suppose there exists a C-matrix of
order n+1. Then if n= 1 (mod 4) there exists a Hadamard matrix of order
2nr(n+l), while if »=3 (mod 4) there exists a Hadamard matrix of order
nr(n +1) for all r>0. lfn= 1 (mod 4) is a prime power, the method is adapted
to prove the existence of a Hadamard matrix of the Williamson type, of order
2nT(n+\), forallrSsO.

1. C-matrices

A C-matrix of order n + 1 is a square matrix C with zero diagonal and other
elements + 1 satisfying CCT = nl. Turyn (1971) has found a method of deriving
new C-matrices from old, while Delsarte et al. (1971, Corollary 2.2) prove that if
K S I (mod 4) C is equivalent (under multiplication of rows and columns by —1)
to a symmetric matrix, but if «=3 (mod 4) C is equivalent to a skew-symmetric
matrix.

Case 1. »= 1 (mod4). Here we may assume that

0 e

eT Q

where e is the all-one vector of order n, Q is a square symmetric matrix of order n
with zero diagonal, and satisfying Q2 = nIn—Jn, JnQ = QJn = 0, where Jn is the
nxn matrix with every entry 1. We use this decomposition of C to define inductively
a sequence of matrices {Ar,Br} (r>0) by Ao = C+I, Bo = C—I,

x (Q-In)

for r ̂  0 (where x denotes Kronecker product). We have

THEOREM 1. For each r^O, Ar,Br are symmetric commuting ± 1 matrices of order
«r(«+l) such that

(Ar - Brf = Arf I, (Ar + Brf = 4nr+11.
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PROOF. The first part of the theorem is obvious. For the second, observe that

while
(Ar+1+fir+1)

2 = {Ar - Br)
2 x nJn+(Ar+Brf x (nln - Jn).

The proof is completed by induction.

COROLLARY 2. If there exists a C-matrix of order n +1 where n=l (mod 4) then
there exists a symmetric Hadamard matrix H, of order 2nr(n+1) for all i

PROOF. Take

Ar Br

Br -Ar

In particular, since a C matrix exists when n= 1 (mod4) is a prime power (Paley,
1933), we have

COROLLARY 3. Ifq= 1 (mod4) is a prime power there exists a symmetric Hadamard
matrix of order 2qr(q+X)for all r^O.

However, in this case a little more can be said, for a similar construction yields
Hadamard matrices of the Williamson type of order 2qr(q+1). (This generalizes a
result of Whiteman, 1976, and Wallis, 1973.)

Williamson (1944) considered Hadamard matrices of the form

H =

D

-E

-F

E

D

G

F

-G

D

G

F

-E
(1.1)

-G -F E D

where D, E, F, G are + 1 matrices of order v which pairwise satisfy

MNT = NMr (1.2)
and for which

DDT + EET + FFr + GGT = 4vl. (1.3)

To satisfy condition (1.2) Williamson used symmetric circulant matrices D, E, F, G.
We shall call a Hadamard matrix of the form (1.1) a Williamson matrix if it satisfies
conditions (1.2) and (1.3).

The following two classes of Williamson matrices of order 4v have been found:
(i) when v = (q+1)/2, q= 1 (mod4), q a prime power (Turyn, 1972; Whiteman,

1973),
(ii) when v = q(q+1)/2, q= 1 (mod 4), q a prime power, (Wallis, 1973; Whiteman,

1976).
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We shall extend these results by showing that we can take v = qr(q+l)/2 for
allr^O.

Goethals and Seidel (1967) have shown that when q=\ (mod4) is a prime
power there exists a C-matrix of order q+1, with zero diagonal and other elements

r D c "1

± 1 of the form , where R, S are symmetric circulants of order (q+1)/2.

Turyn (1972) observed that if we take D = E=S, F=I+R, G = -I+R, then
H as constructed in (1.1) is a Williamson matrix of order 2(q+1). In what follows
Q will denote the Paley matrix of order q (see Paley, 1933), so that Q is a symmetric
matrix with zero diagonal and other elements +1 satisfying Q2 = qI—Ja,
JqQ = QJa = o.

Write Do = Eo = S, Fo = I+R, Go = —I+R and define a sequence of matrices
{£>r,.Er,iv, Gy} (r^O) inductively by

A-+1 = KDr-Er) xJ+i(Dr+Er) x (Q+I),
Er+i = KDr-Er) xJ+\(Dr+Er) x (Q-I),

Gr+1= iiFr-Gr) XJ+ UPr + Gr) X (Q~I),

where J is of order q and, as before, x denotes Kronecker product. We then have

THEOREM 4. For each r^O the matrices D^E^F^G,. have elements ±1, are
symmetric, commute in pairs and satisfy the conditions

Df + E* + Fl + G» = 2q\q +1) /.

PROOF. Again the proof is by induction.

As an immediate corollary we have

COROLLARY 5. For each r^O the matrix

Dr Er Fr Gr

-Er Dr -Gr Fr

¥7 S~t T\ T7

— rr ijr ur —xij.

r -Fr Er Dr

of order 2qr(q+1) is a Williamson type Hadamard matrix. Thus ift is the order of a
Baumert-Hall array and q=l (mod4) a prime power, then there exists a Hadamara
matrix of order 2qr(q+ \)tfor all r > 0.

The known values of t are *e{2A:+l: <KA:^30}u{l+2a10613c, a,b,c non-
negative integers}.
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Case 2. « s 3 (mod4). Here we may assume the C-matrix to have the form

0 e
C =

L -*T Q
where Q is skew-symmetric and satisfies QQT = nI—Jn, JnQ = QJn — 0.

Define a sequence of matrices {Ur, Vr} (r ̂  1) by

and
f^+i = UrxJn + VrxQ, Vr+1 = VrxIn if r is even,

while
Ur+1 = UrxIH, Vr+1 = VrxJn + UrxQ if r is odd.

We then have the following theorem

THEOREM 6. For each r^l
(i) Ur and Vr have order nr(n +1) and have entries 0, + 1, while Ur+Vr is a +1

matrix,
(ii) Ur and Vr commute,

(iii) Ur is symmetric and Vr is skew-symmetric,
(iv) UrU? = nr+1I and VrVj = nrI if r is odd, while UrUj = nrI and

VrV? = nr+1Iifriseven,
(v) Hr = Ur+Vr is a Hadamard matrix of order nr(n+1).

PROOF. (i)-(iv) are proved by a straightforward application of induction with (v)
as an immediate consequence. This theorem is a simple generalization of the case
r = 1 due to Williamson (1944).

Mukhopadhyay (1973) has already established the existence of Hadamard
matrices of the above orders. However, his proof is different and does not suggest
the fact, established above, that such a Hadamard matrix can be written as the
sum of two orthogonal 0, + 1 matrices, one of which is symmetric and the other
skew-symmetric (a fact which is used later in Theorem 10).

Since C-matrices of order q + l exist when q=3 (mod 4) is a prime power
;Paley, 1933), we deduce

COROLLARY 7. There exists a Hadamard matrix of order qT{q+1) for every prime
wwer <7= 3 {mod A) and all r^O.

Also skew-Hadamard matrices of order 2{q +1) exist for q a prime power such that
(i) q=5 (mod 8) (Szekeres, 1969; Spence, to appear), or

(ii) q =pP where p= 5 (mod 8) is a prime and t is odd (Whiteman, 1971).
Thus we have

COROLLARY 8. For either of the two choices of q above there exists a Hadamard
natrix of order 2{q+ \)(2q+ l ) r for all
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2. Some supplementary results

In the literature there are several constructions for Hadamard matrices based on
C-matrices. More precisely, for a given C-matrix C it may be possible to find + 1
matrices X, Y of order v such that / x X+Cx Y is a Hadamard matrix. Many
such constructions are given in Wallis et al. (1972). The following two results
generalize this idea.

THEOREM 9. Let C be a (symmetric) C-matrix of order n +1 = 2 (modA). If X and
Y are ± 1 matrices of order v such that Ix X+Cx Y is a Hadamard matrix of
order v(n+l), then \(Ar-Br)x X+l(Ar+Br)x Y (Ar,Br as in Theorem 1) is a
Hadamard matrix of order nr v(n +1).

THEOREM 10. Let C be a (skew-symmetric) C matrix of order n + l = 0(mod4).
IfX,Y are ± 1 matrices of order v such that Ix X+ Cx Yis a Hadamard matrix of
order v(n+1) then one of

UrxX+VrxY, VrxX+UrxY

(depending on whether r is even or odd) is a Hadamard matrix of order nrv(n+l).
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