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Abstract

We prove a necessary and sufficient condition for embeddability of an operator system into O2. Using
Kirchberg’s theorems on a tensor product of O2 and O∞, we establish results on their operator system
counterparts S2 and S∞. Applications of the results, including some examples describing C∗-envelopes
of operator systems, are also discussed.
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1. Introduction

Operator systems with universal generators for some well-studied C∗-envelopes have
attracted considerable interest in recent years. Zheng [21] introduced the operator
system Sn generated by Cuntz isometries and, later, in [17], Paulsen and Zheng
explored tensor products and nuclearity for this operator system.

In 1977, Cuntz [5] introduced the C∗-algebras On (1 ≤ n ≤ ∞). These were the
first explicit examples of simple infinite separable C∗-algebras. Cuntz proved that his
algebras are simple and purely infinite and independent of the choice of generators.

These algebras played an important role in the classification theory of purely
infinite, simple, separable and nuclear C∗-algebras, by Kirchberg and Philips. The
classification theory for separable C∗-algebras with certain properties in terms of the
Cuntz algebras O2 and O∞ was given by Kirchberg and Rørdam (see [19]).

Kirchberg established three fundamental theorems: the embedding of separable
exact C∗-algebras into the Cuntz algebra O2 and the tensor product theorems for O2
and O∞. Many generalisations were later proved by Kirchberg and Rørdam. Recently,
Lupini [15] established an operator system analogue of Kirchberg’s nuclear embedding
theorem involving the Gurarij operator system GS.

For 1 ≤ n ≤ ∞, On is a simple C∗-algebra, so On is the C∗-envelope of Sn (see [21]).
This motivates our study of Kirchberg’s theorems on On (2 ≤ n ≤ ∞) in terms of the
C∗-envelopes of operator systems.
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After collecting prerequisites in Section 2, we prove an embedding theorem for
operator systems motivated by Kirchberg’s exact embedding theorem in Section 3. It
gives a necessary and sufficient condition for embedding an operator system into O2
in terms of exactness of its C∗-envelopes. We extend these embeddability conditions
to finite minimal tensor products of operator systems. We also discuss some nuclearity
properties of operator systems which embed into O2.

In Section 4, we prove results on the embedding of operator systems of the form
S ⊗min=c S2 into O2 and obtain some equivalent conditions for their C∗-envelopes to
be ∗-isomorphic either to O2 or to a C∗-subalgebra of O2. We also prove results on
operator systems of the form S ⊗min=c S∞.

Finally, in Section 5, as an application of our results, we check the embeddability
into O2 of some operator systems whose C∗-envelopes are already calculated. We
describe the C∗-envelopes of some operator systems with tensor product factor S2 or
S∞, adding more operator systems to the short list with known C∗-envelopes.

2. Preliminaries

2.1. Cuntz algebras and Kirchberg’s theorems. The Cuntz algebra On, where
2 ≤ n < ∞, is the universal unital C∗-algebra generated by isometries s1, s2, . . . , sn
satisfying s1s∗1 + s2s∗2 + · · · + sns∗n = 1. The Cuntz algebra O∞ is the universal unital
C∗-algebra generated by an infinite sequence of isometries s1, s2, s3, . . . with mutually
orthogonal range projections s js∗j which add up to the identity. (See [5].)

A finite set {t j}
n
j=1 of isometries in a unital C∗-algebra A is said to satisfy the Cuntz

relation if t1t∗1 + t2t∗2 + · · · + tnt∗n = 1. A sequence {t j}
∞
j=1 of isometries satisfies the

Cuntz relation if their range projections {t jt∗j}
∞
j=1 are mutually orthogonal. The Cuntz

algebras are independent of the choice of generating isometries.
A self-contained survey of the theorems stated below can be found in [19].

Theorem 2.1 [5]. For each n ∈ N and for n = ∞, the Cuntz algebra On is unital,
separable, simple, nuclear and purely infinite.

Theorem 2.2 [4]. The C∗-algebras O2 ⊗C∗- min O2 and O2 are isomorphic.

Theorem 2.3 [12, Theorem 2.8]. A unital separable C∗-algebra A is exact if and only
if it admits a unital embedding into O2.

Theorem 2.4 [12, Theorem 3.7]. The tensor product A ⊗C∗- min O2 is isomorphic to O2
if and only if A is unital, simple, separable and nuclear.

Theorem 2.5 [12, Theorem 7.2.6]. For a simple, nuclear and separable C∗-algebra A,
A � A ⊗C∗- min O∞ if and only if A is purely infinite.

Theorem 2.6 ([19, Theorem 6.1.10], [20, Corollary 4.21]).

(i) Every C∗-subalgebra of an exact C∗-algebra is again exact.
(ii) Every quotient of an exact C∗-algebra is again exact.
(iii) If A and B are exact, then so is A ⊗C∗- min B.
(iv) If A and B are simple C∗-algebras, then A ⊗C∗- min B is also simple.
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2.2. Operator systems. For further details on operator systems and their tensor
products, see [9–11].

A concrete operator system is a unital self-adjoint subspace of B(H) for some
Hilbert space H. A C∗-cover [8, Section 2] of an operator system S is a pair (A, i)
consisting of a unital C∗-algebra A and a complete order embedding i : S → A such
that i(A) generates the C∗-algebra A. The C∗-envelope, C∗e(S), of an operator system
S is a C∗-cover defined as the C∗-algebra generated by S in its injective envelope
I(S). From [8, Corollary 4.2], the C∗-envelope C∗e(S) has the following universal
‘minimality’ property: identifying S with its image in C∗e(S), for any C∗-cover (A, i)
of S, there is a unique surjective unital ∗-homomorphism π : A→ C∗e(S) such that
π(i(s)) = s for every s in S.

Remark 2.7. If an operator system S has a simple C∗-cover (A, i), then using this
minimality property π is injective and A is ∗-isomorphic to the C∗-envelope of S.

From [21], for the Cuntz algebra On with generators s1, s2, . . . , sn (n ≥ 2), the Cuntz
operator system Sn is the operator system generated by s1, s2, . . . , sn, that is,

Sn = span{I, s1, s2, . . . , sn, s∗1, s
∗
2, . . . , s

∗
n} ⊂ On,

where I is the identity. Similarly, for the generators s1, s2, . . . of O∞,

S∞ = span{I, s1, s2, . . . , s∗1, s
∗
2, . . .} ⊂ O∞.

The following well-known fact follows directly from Remark 2.7 and Theorem 2.1.

Proposition 2.8 [21]. C∗e(Sn) = On for 1 ≤ n ≤ ∞.

Kavruk et al. [10] introduced a lattice of tensor products of operator systems
admitting a natural partial order: min ≤ e ≤ el, er ≤ c ≤ max. A natural operator
system tensor product ‘ess’ arising from the enveloping C∗-algebras, namely,
S ⊗ess T ⊆ C∗e(S) ⊗max C∗e(T ), was defined in [6].

Kavruk et al. [11] formalised the notion of quotient for operator systems, leading
to the notion of exactness. An operator system S is said to be exact if for every unital
C∗-algebra A and a closed ideal I in A, we have the exact sequence

0 −→ S ⊗̂min I −→ S ⊗̂min A→ S⊗̂min (A/I)→ 0.

Given two operator system tensor products α and β, an operator system S is said to
be (α, β)-nuclear if the identity map between S ⊗α T and S ⊗β T is a complete order
isomorphism for every operator system T , that is, S ⊗α T = S ⊗β T . An operator
system S is said to be C∗-nuclear if S ⊗min A = S ⊗max A for all unital C∗-algebras A.
For a C∗-algebra A, A ⊗c S = A ⊗max S for every operator system S [10, Theorem 6.7],
that is, A is (min,max)-nuclear if and only if it is (min, c)-nuclear. Exactness is one
of the few intrinsic properties of operator systems that has been used as a tool in
characterising nuclearity properties of operator systems (see Kavruk [9]).

Theorem 2.9 [17, Proposition 1.1 and Corollary 2.8]. Sn is (min, c)-nuclear but not
(min,max)-nuclear.
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Remark 2.10. Since C∗e(Sn) = On is C∗-nuclear (Theorem 2.1), by [7, Proposition 4.2],
Sn is (min, ess)-nuclear. By [7, Proposition 5.2], for 1 ≤ n < ∞, Sn is not (ess,max)-
nuclear. This gives an alternative proof that Sn is not (min,max)-nuclear.

Kirchberg and Wassermann [13, Section 3] introduced the universal C∗-algebra
C∗u(S), which has the following universal ‘maximality’ property: every unital
completely positive map φ : S → A, where A is a unital C∗-algebra, extends uniquely
to a unital ∗-homomorphism π : C∗u(S)→ A.

A subspace J of an operator system S is said to be a kernel if it is the kernel of
some unital completely positive map from S into some operator system T . From
[11, Corollary 3.8], a subspace J of an operator system S is a kernel of S if and only
if J is an intersection of a closed two-sided ideal in C∗u(S) with S. We note that C∗u(S)
is never simple.

Proposition 2.11. For an operator system S with dim(S) > 1, C∗u(S) is not simple.

Proof. Let J ⊂ S be a kernel in S. By [11, Corollary 3.8], J = I ∩ S for some closed
two-sided ideal I in C∗u(S). If C∗u(S) is simple, then either J = (0) or J = S. But, by
[9, Corollary 6.12], any operator system with dimension greater than 1 has a nontrivial
kernel, which is a contradiction. �

By the minimality property of C∗-envelopes, there is a surjective ∗- homomorphism
σS : C∗u(S)→ C∗e(S) that fixes S. The simplicity of C∗u(S ) implies simplicity of C∗e(S)
(Remark 2.7). Therefore, an operator system kernel has no relation with the simplicity
of its C∗-envelope.

An operator system S for which σS is a ∗-isomorphism is said to be universal [13].
In particular, this property implies that if σS : S → A is any C∗-cover of S , then
A � C∗u(S) � C∗e(S). From Proposition 2.11, we have the following corollary.

Corollary 2.12. There does not exist any universal operator system S with simple
C∗-cover unless S = C.

In general, the isomorphism between operator systems need not extend to their C∗-
covers, but the following result from [3] is quite useful.

Theorem 2.13 [3, Theorem 2.2.5]. For S ⊆ C∗e(S) and T ⊆ C∗e(T ) and for any
complete order isomorphism φ of S onto T , there exists a ∗-isomorphism φ̂ from C∗e(S)
onto C∗e(T ) with φ̂|S = φ.

An operator subsystem S of a unital C∗-algebra A is said to contain enough
unitaries of A if the unitaries in S generate A as a C∗-algebra [11, Section 9]. The
next lemma is folklore.

Lemma 2.14. For operator systems S and T with either both C∗e(S) and C∗e(T ) simple,
or both S and T having enough unitaries of C∗e(S) and C∗e(T ), respectively, the
inclusion of S ⊗min T into C∗e(S) ⊗C∗-min C∗e(T ) extends to a ∗-isomorphism between
C∗e(S ⊗min T ) and C∗e(S) ⊗C∗-min C∗e(T ), that is,

C∗e(S ⊗min T ) � C∗e(S) ⊗C∗-min C∗e(T ).
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Proof. Consider the natural inclusions iS : S ↪→ C∗e(S) and iT : T ↪→ C∗e(T ). Then
iS ⊗ iT : S ⊗min T ↪→ C∗e(S) ⊗C∗-min C∗e(T ) is a C∗-cover of S ⊗min T . If C∗e(S) and
C∗e(T ) are simple, so is the cover by Proposition 2.6(iv) and the statement follows
by Remark 2.7. For the case of enough unitaries, S ⊗min T has enough unitaries of
C∗e(S) ⊗C∗-min C∗e(T ). By [11, Proposition 5.6], C∗e(S ⊗min T ) = C∗e(S) ⊗C∗- min C∗e(T )
up to ∗-isomorphism that fixes S ⊗min T . �

3. Embedding of exact operator systems into O2

The relationship between an operator system and its C∗-envelope is a mysterious
one. In [13], Kirchberg and Wassermann gave an example of a universal separable
exact operator system S with nonexact C∗-envelope. Another interesting example was
recently constructed by Lupini in [14], namely, the Gurarij operator system GS, which
is exact but does not admit any complete order embedding into any exact C∗-algebra.
Thus, in general, unlike C∗-algebras, separable exact operator systems need not embed
into O2. But, in the next theorem we prove an embedding theorem that shows that it
is the exactness of the C∗-envelope, rather than that of the operator system, that makes
an operator system embeddable into O2.

Theorem 3.1. For a separable operator system S, the C∗-envelope C∗e(S) is exact if
and only if there exists a unital complete order embedding of S into O2.

Proof. For the if part, let ψ : S → O2 be a complete order embedding. By
Theorem 2.13, ψ can be extended to a ∗-isomorphism on the C∗-envelope of S,
say, ψ̂ : C∗e(S)→ C∗e(ψ(S)), such that ψ̂|S = ψ. Consider the C∗-algebra generated by
ψ(S) ⊂ O2, C∗(ψ(S)) ⊆ O2. By Theorem 2.3, C∗(ψ(S)), being a C∗-subalgebra of O2,
is exact. By the universal (minimality) property of C∗-envelopes of operator systems,
there is a surjective ∗-homomorphism π : C∗(ψ(S))→C∗e(ψ(S)) such that the following
diagram commutes:

O2

C∗(ψ(S))

ψ(S) C∗e(ψ(S))

S C∗e(S)

π

iψ(S)

ψ

iS

ψ̂

Here iS and iψ(S) denote the natural complete order inclusions of S and ψ(S) into their
respective C∗-envelopes. Thus, C∗e(ψ(S)) is the ∗-homomorphic image of an exact C∗-
algebra C∗(ψ(S)) and so exact by Theorem 2.6(ii). Therefore, ψ̂−1(C∗e(ψ(S))) = C∗e(S)
is exact.
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Conversely, let C∗e(S) be exact. From Kirchberg’s embedding theorem, there is a
complete order embedding φ of C∗e(S) into O2. Then φ ◦ iS : S → O2 is the required
unital complete order embedding of S into O2, where iS denotes the natural complete
order inclusion of S into C∗e(S). �

Corollary 3.2. For an exact separable operator systemS containing enough unitaries
of its C∗-envelope, S embeds into O2.

Proof. By [11, Proposition 10.12], for the case when S contains enough unitaries of
C∗e(S), exactness of S is equivalent to exactness of C∗e(S). Therefore, the result follows
from Theorem 3.1. �

Proposition 3.3. Let T1 and T2 be separable operator systems. If C∗e(T1) and C∗e(T2)
are exact, then the operator system T1 ⊗min T2 embeds into O2. The converse holds if
either both C∗e(T1) and C∗e(T2) are simple, or both T1 and T2 contain enough unitaries
of C∗e(T1) and C∗e(T2), respectively.

Proof. Let C∗e(T1) and C∗e(T2) be exact C∗-algebras. By Kirchberg’s embedding
theorem (Theorem 3.1), there exist complete order embeddings φ1 : C∗e(T1) ↪→O2 and
φ2 : C∗e(T2) ↪→O2. Since C∗- min is injective, we have the complete order isomorphism

φ1 ⊗min φ2 : C∗e(T1) ⊗C∗- min C∗e(T2) ↪→O2 ⊗C∗- min O2. (3.1)

The operator system min tensor product is injective [10, Theorem 4.6], so,
using the natural complete order inclusions iT1 and iT2 of T1 and T2 into their
respective C∗-envelopes, gives the complete order isomorphism iT1 ⊗ iT2 of T1 ⊗min T2

into C∗e(T1) ⊗min C∗e(T2). Since the operator system min tensor product of C∗-
algebras embeds complete order isomorphically into their C∗- min tensor product
[10, Corollary 4.10], the complete order isomorphism can be considered as

iT1 ⊗min iT2 : T1 ⊗min T2 ↪→ C∗e(T1) ⊗C∗- min C∗e(T2). (3.2)

The isomorphism O2 ⊗C∗- min O2 � O2 (Theorem 2.2) and the composition of complete
order isomorphisms in (3.1) and (3.2) give the required complete order isomorphism

T1 ⊗min T2 ↪→O2.

Conversely, suppose that there is an embedding of T1 ⊗min T2 into O2. If C∗e(Ti)
is simple for i = 1, 2 or Ti, i = 1, 2, contains enough unitaries of C∗e(Ti), then, by
Lemma 2.14,

C∗e(T1 ⊗min T2) � C∗e(T1) ⊗C∗- min C∗e(T2),

which is separable (being the minimal C∗-tensor product of separable C∗-algebras). By
Theorem 3.1, C∗e(T1) ⊗C∗- min C∗e(T2) is exact and, for each i, the C∗-subalgebras C∗e(Ti)
(through the injective ∗-homomorphisms of C∗e(T1) and C∗e(T2) given by C∗e(T1) 3
a1 7→ a1 ⊗ 1 ∈ C∗e(T1) ⊗C∗- min C∗e(T2), C∗e(T2) 3 a2 7→ 1 ⊗ a2 ∈ C∗e(T1) ⊗C∗- min C∗e(T2))
are exact (Theorem 2.6(iii)). �
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Since min is associative [10, Theorem 4.6], the preceding proposition can be
extended to a finite tensor product.

Corollary 3.4. Let T1,T2, . . . ,Tm be separable operator systems. If C∗e(Ti) is exact
for 1 ≤ i ≤ m, then the operator system T1 ⊗min T2 ⊗min · · · ⊗min Tm embeds into O2.
The converse holds if either C∗e(Ti) is simple for all i or each Ti contains enough
unitaries of C∗e(Ti) for 1 ≤ i ≤ m.

Proof. Suppose that C∗e(Ti) is exact for all i = 1,2, . . . ,m. Then, using the associativity
of min and C∗- min and the complete order isomorphism

⊗m
i=1 O2 � O2 [19,

Corollary 5.2.4] in Proposition 3.3, we have the required complete order isomorphism

T1 ⊗min T2 ⊗min · · · ⊗min Tm ↪→O2.

For the converse, the associativity of min and C∗- min, extends Lemma 2.14 to
finitely many factors, so that if either C∗e(Ti) is simple for all i or each Ti contains
enough unitaries of C∗e(Ti) for 1 ≤ i ≤ m,

C∗e(T1 ⊗min T2 ⊗min · · · ⊗min Tm) � C∗e(T1) ⊗C∗- min C∗e(T2) ⊗C∗- min · · · ⊗C∗- min C∗e(Tm).

Therefore, the embedding T1 ⊗min T2 ⊗min · · · ⊗min Tm into O2 implies the exactness of
C∗e(T1 ⊗min T2 ⊗min · · · ⊗min Tm) (Theorem 3.1) and hence of each of its C∗-subalgebras
C∗e(Ti) for i = 1, 2, . . . ,m. �

Nuclearity properties of operator systems have been characterised in terms of
various intrinsic properties (see [9]), and the relation with the nuclearity of their C∗-
envelope was studied in [7]). The double commutant expectation property (DCEP)
was introduced in [11] as a generalisation of the weak expectation property (WEP).
An operator system S has the DCEP if for every complete order embedding S ⊂ B(H)
there exists a completely positive map ϕ : B(H)→ S′′ fixing S. A C∗-algebra has
DCEP if and only it has WEP. In the next corollary, we give some nuclearity properties
of operator systems embeddable into O2.

Corollary 3.5. For a separable operator system S having an embedding into O2:

(i) S is exact and hence (min, el)-nuclear;
(ii) C∗e(S) is nuclear if and only if C∗e(S) has the DCEP and then S is (min, ess)-

nuclear;
(iii) if S has enough unitaries of C∗e(S), S is (min, ess)-nuclear if and only if C∗e(S)

has the DCEP (or WEP).

Proof. (i) Since exactness passes to operator subsystems [11, Corollary 5.8]
and (min, el)-nuclearity is equivalent to exactness of the operator system
[11, Theorem 5.7], we have (i) from Theorem 3.1.

(ii) A unital C∗-algebra is nuclear if and only if it is exact and has DCEP (see [18,
Section 17] and [11, Section 7]) and nuclearity of the C∗-envelope implies (min, ess)-
nuclearity of the operator system [7, Proposition 4.2]. Thus, Theorem 3.1 implies the
result.

(iii) For an operator system having enough unitaries in C∗e(S), (min, ess)-nuclearity
is equivalent to nuclearity of C∗e(S) [7, Theorem 4.3], so (iii) follows from (ii). �
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4. Tensor product with S2 and S∞

Next we give a characterisation of those operator systems which are absorbed by
tensoring them finitely many times with S2, in terms of their C∗-envelopes.

Proposition 4.1. Suppose that S is a separable operator system with simple C∗-
envelope. Then C∗e(S ⊗min=c S2) � O2 if and only if C∗e(S) is a nuclear C∗-algebra.

Proof. Since C∗e(S) is simple, by Lemma 2.14,

C∗e(S) ⊗C∗-min C∗e(S2) � C∗e(S ⊗min S2) � O2

and so C∗e(S) is nuclear by Theorem 2.4. Conversely, if C∗e(S) is a nuclear C∗-algebra,
then, by Lemma 2.14, C∗e(S ⊗min S2) � C∗e(S) ⊗C∗-min C∗e(S2) and then, by Theorem 2.4
and Proposition 2.8, C∗e(S ⊗min S2) � C∗e(S2) � O2. �

We have given the proof for an operator system of the form S ⊗min S2, but it
can be generalised to S ⊗min

⊗m
i=1 S2, using the identification

⊗m
i=1 O2 = O2 [19,

Corollary 5.2.4].

Corollary 4.2. For any simple, unital, separable and nuclear C∗-algebra A, we have
C∗e(A ⊗min=max S2) � O2.

Proof. The assertion follows directly from Proposition 4.1 and the fact that
C∗e(A) = A [7, Proposition 2.3]. �

Let A and B be unital C∗-algebras. Two completely positive maps φ, ψ : A→ B
are said to be unitarily equivalent, denoted by φ ∼u ψ, if there is a unitary u in B
such that uψ(a)u∗ = φ(a) for all a ∈ A [19, Definition 1.1.15]. If, for every ε > 0 and
for every finite subset F of A, there is a unitary u in B with ‖uψ(a)u∗ − φ(a)‖ ≤ ε for
all a ∈ F, then φ and ψ are said to be approximately unitarily equivalent, denoted by
φ ≈u ψ. Approximate unitary equivalence of completely positive maps has been used
extensively in [19, Theorems 5.1.1 and 6.3.8] to prove various isomorphisms of C∗-
algebras involving O2.

Corollary 4.3. For a separable operator system S with simple C∗-envelope, the
following statements are equivalent:

(i) C∗e(S) is exact;
(ii) S ⊗min=c S2 embeds into O2;
(iii) C∗e(S ⊗min=c S2) is exact;
(iv) C∗e(S ⊗min=c S2) can be embedded into O2 as a C∗-subalgebra.

Moreover, if any one of the above holds, then there exist injective ∗-homomorphisms,
ρ : O2→ C∗e(S) ⊗C∗- min O2 � C∗e(S ⊗min=c S2) and γ : C∗e(S ⊗min=c S2)→O2, such that
γ ◦ ρ ≈u idO2 and, in addition, if ρ ◦ γ ≈u idC∗e (S⊗min=cS2), then C∗e(S) is nuclear and
C∗e(S ⊗min=c S2) � O2.
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Proof. Since C∗e(S) and C∗e(S2) = O2 are both simple and exact, by the converse of
Proposition 3.3, S ⊗min S2 embeds into O2. Also, if S ⊗min S2 embeds into O2, then
C∗e(S) is exact by Proposition 3.3. Thus, (i) and (ii) are equivalent. Theorem 3.1
implies that (ii) and (iii) are equivalent. Equivalence of (iii) and (iv) follows using
Kirchberg’s exact embedding theorem (Theorem 2.3).

Now, suppose that S satisfies any of these equivalent assertions and let ρ and γ
be the injective ∗-homomorphisms given by (ii) and (iv). By [19, Theorem 5.1.1],
any injective ∗-homomorphism from O2 into O2 is approximately unitarily equivalent
to idO2 , so γ ◦ ρ ≈u idO2 . If, further, ρ ◦ γ ≈u idC∗e (S⊗min=cS2), then C∗e(S ⊗min=c S2)
is isomorphic to O2 by [19, Theorem 6.3.8](ii) and so C∗e(S) is nuclear by
Proposition 4.1. �

Remark 4.4. If the complete order embedding of S ⊗min=c S2 into O2 in
Corollary 4.3(ii) is such that O2 is a C∗-cover, then trivially C∗e(S ⊗min=c S2) = O2
(Remark 2.7).

A simple C∗-algebra A is said to be purely infinite if A is not isomorphic toC and, for
every pair of nonzero elements a and b in A, there exists x in A such that b = x∗ax; [19,
Proposition 4.1.1] gives six equivalent conditions for a unital and simple C∗-algebra to
be purely infinite.

We now characterise those operator systems whose C∗-envelopes remain unaffected
by tensoring finitely many times with S∞. The proof follows that of Proposition 4.1,
using Kirchberg’s characterisation of simple, purely infinite and nuclear C∗-algebras
(Theorem 2.5).

Proposition 4.5. Let S be a separable operator system with simple C∗-envelope C∗e(S).
Then C∗e(S) is a nuclear and purely infinite C∗-algebra if and only if C∗e(S ⊗min=c S∞)
is isomorphic to C∗e(S).

Again, we stated the last proposition for operator systems of the form S ⊗min=c S∞,
but it can be generalised to operator systems of the form S ⊗min=c

⊗m
i=1 S∞, using the

identification O∞ =
⊗m

i=1 O∞ [19, Theorem 7.2.6].

Corollary 4.6. For a separable operator system S with simple, nuclear and purely
infinite C∗-envelope, there exists a complete order embedding of S ⊗min=c S∞ into
C∗e(S).

Corollary 4.7. Let A be a unital, simple, nuclear, separable and purely infinite C∗-
algebra. Then C∗e(A ⊗min=max S∞) � A.

Proof. For a unital C∗-algebra, C∗e(A) = A [7, Proposition 2.3]. �

Corollary 4.8. For a separable operator system S with simple and nuclear C∗-
envelope C∗e(S), if S � S ⊗min S∞, then S is infinite dimensional and C∗e(S) is purely
infinite.

Proof. If S ⊗min S∞ � S, the statement follows from Theorem 2.13 and
Proposition 4.5. �
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Remark 4.9. The converse of Corollary 4.8 is not known. Note that Sn is a
finite-dimensional operator system with purely infinite and simple C∗e(Sn) = On

(Theorem 2.1), but Sn � Sn ⊗min S∞.

5. Applications

Our results can be applied to operator systems with known C∗-envelopes to check
their embeddability into O2, and to describe the C∗-envelopes obtained after tensoring
with S2 or S∞.

In [6], an operator system S(u) is associated to C∗(G), the full group C∗-algebra
of the group G for a countable discrete group G with generating set u, by setting
S(u) := span{1, u, u∗ : u ∈ u} ⊂ C∗(G). It was shown in [6, Proposition 2.2] that
C∗e(S(u)) = C∗(G). On similar lines in [7], another natural operator system was
associated to a reduced group C∗-algebra by Sr(u) := span{1, u, u∗ : u ∈ u} ⊂ C∗r (G).
Further, C∗e(Sr(u)) = C∗r (G) [7, Proposition 2.9].

Kavruk et al. [10] associated an operator system to a finite graph G with
n vertices: SG = span{{Ei, j : (i, j) ∈ G} ∪ {Ei,i : 1 ≤ i ≤ n}} is a finite-dimensional
operator subsystem of Mn(C), where {Ei, j} is the standard system of matrix units in
Mn(C) and (i, j) denotes (an unordered) edge in G. For a connected graph G on n
vertices, C∗e(SG) = Mn [16, Theorem 3.2].

Example 5.1. From Theorem 3.1, the following operator systems embed into O2.

(i) S(u) ⊆ C∗(G), where G is a finitely generated discrete amenable group.
(ii) Sr(u) ⊆ C∗r (G), where G is any exact discrete group. In particular, for G = Fn,

the free group on n generators, Sr(un) ⊂ C∗r (Fn), embeds into O2.
(iii) SG ⊂ Mn, where G is a connected graph on n vertices, embeds into O2.

On the other hand, S(un) ⊆ C∗(Fn) does not embed into O2.

Example 5.2. From Theorems 2.1 and 2.9 and Corollary 4.2, C∗e(Sn ⊗min=c S2) � O2
for 2 ≤ n ≤ ∞.

Example 5.3. From Propositions 4.5 and 2.8 and Theorem 2.1, C∗e(Sn ⊗min=c S∞) � On

for 2 ≤ n ≤ ∞ and C∗e(Mn ⊗min=c S2) � O2 for all n ∈ N.

We know that C∗(G) is never simple unless G = C, as it always has a one-
dimensional quotient coming from the trivial representation of G and has an ideal
of co-dimension 1, called the augmented ideal. But, for n ≥ 2, C∗r (Fn) (the reduced
group algebra of a free group with n generators) is always simple.

Example 5.4. Consider Sr(un) ⊆ C∗r (Fn) for n ≥ 2. Then C∗e(Sr(un)) = C∗r (Fn) is
simple, separable, unital and exact but not nuclear, and C∗e(Sr(un) ⊗min Sn) �
C∗r (Fn) ⊗min O2 is a proper C∗-subalgebra of O2.

Example 5.5. Consider SG, the graph operator system of a connected graph G on n
vertices. Then C∗e(SG ⊗min S2) � Mn ⊗C∗- min O2 � O2.
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Argerami and Farenick [1, 2] defined operator systems generated by a single
bounded linear operator T acting on a complex Hilbert space H as the unital self-
adjoint subspace OS(T ) = span{1,T,T ∗} ⊂ B(H).

Example 5.6. For C× := C�{0} and ξ = (ξ1, ξ2, . . . , ξd) ∈ (C×)d, the irreducible
weighted unilateral shift with weights ξ1, ξ2, . . . , ξd is the operator W(ξ) on Cd+1 given
by the matrix

W(ξ) =



0 0
ξ1 0

ξ2
. . .

. . . 0
ξd 0


and C∗e(OS(W(ξ))) = Md+1(C) [1, Proposition 3.2]. By Corollary 4.3, OS(W(ξ)) and
OS(W(ξ)) ⊗min S2 embed into O2 and C∗e(OS(W(ξ)) ⊗min S2) � O2 by Proposition 4.1.

An operator J on an n-dimensional Hilbert spaceH is a basic Jordan block if there
is an orthonormal basis ofH for which J has a matrix representation of the form

Jn(λ) :=



λ 1 0 . . . 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 . . . . . . 0 λ


for some λ ∈ C.

Example 5.7. For J =
⊕∞

k=1 Jmk (λ) ∈ B(l2(N)) with m := sup{mk : k ∈ N} < ∞,
C∗e(OS(J)) = Mm(C) [2, Proposition 2.2]. Thus, OS(J) and OS(J) ⊗min=c S2 embed
into O2 and C∗e(OS(J) ⊗min=c S2) � O2 by Proposition 4.1 and Corollary 4.3.

Example 5.8. Suppose that J =
⊕n

k=1(Jmk (λk) ⊗ Idk ) with λ1 > λ2 > · · · > λn real and
max{m2, . . . ,mn−1} ≤ min{m1,mn}. By [2, Corollary 2.12], C∗e(OS(J)) is a nuclear,
simple, separable C∗-algebra for the cases m1 = 1,mn ≥ 2, |λ1 − λn| ≤ cos(π/(mn + 1))
and m1 ≥ 2,mn = 1, |λ1 − λn| ≤ cos(π/(m1 + 1)). Therefore, for these cases, OS(J) and
OS(J) ⊗min S2 embed into O2 and C∗e(OS(J) ⊗min S2) � O2.

Example 5.9. By Corollary 4.7 and Theorem 2.1, C∗e(On ⊗min=max S∞) � On for n with
2 ≤ n ≤ ∞.
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