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Abstract. We review briefly the different prescriptions which have been 
proposed to predict the extent of convective penetration (or overshoot) 
in stellar interiors, and we confront them with the results of numerical 
simulations and with helioseismic data. It appears that the penetrative 
motions are structured in plumes, and that thermal diffusion plays an 
important role in controlling the temperature stratification in the stable 
domain. The most recent high-resolution simulations suggest that these 
plumes are less space-filling than thought before, and that they are there­
fore less efficient in establishing an adiabatic temperature profile. This 
property is compatible with the solar profiles obtained through acoustic 
sounding. 

1. Introduction 

Thirty years ago, convective overshoot has been introduced in stellar models to 
achieve better agreement with observational data. By adjusting the amount of 
overshoot from convective cores, thus increasing the size of the well mixed inner 
region, it became easier to match theoretical and observed isochrones in the 
temperature/luminosity diagram (Castellani et al., 1971; Prather & Demarque, 
1974; Cogan, 1975; Maeder, 1975). 

There were also good physical reasons for proceeding in that way. When a 
fluid element crosses the border of a convectively unstable region, it continues to 
move into the stable adjacent domain, until the adverse buoyancy force brings 
it to a halt. Thus the question is not whether such overshoot occurs - there are 
many examples of it in geophysical fluids and in the laboratory - but rather how 
much the motions overshoot beyond the unstable region. 

It was soon realized that this question has no easy answer. By comparing 
the steep subadiabatic temperature gradient in the radiation zone with that, 
superadiabatic and rather low, in the convection zone, Saslaw & Schwarzschild 
(1965) concluded that the amount of overshoot would be very small. But Shaviv 
& Salpeter (1973) pointed out that the overshooting eddies, by depositing their 
heat content in the radiation zone, would lower there the entropy gradient, 
thereby reducing its stability and easing the penetration of motions. This idea 
prevailed, and in most subsequent work it was assumed that the temperature 
gradient was close to adiabatic in the overshoot region. 
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2. Roxburgh's integral constraint 

A significant step forward was made by Roxburgh (1978), who gave an upper 
limit to the overshoot from a convective core. Assuming that the temperature 
gradient is almost adiabatic in the whole region occupied by the convective 
motions, he writes the horizontally averaged heat equation in the form 

T ^ - ( 4 7 r r 2 ^ 7 ) = | - ( L - i r a d ) , (1) 

with the usual notations, w and s' being respectively the vertical velocity and 
the fluctuation of specific entropy from its horizontal mean. He then divides this 
equation by T and integrates it over the entire convective core, up to the edge 
of the overshoot region (r = rc). He thus obtains the following relation 

J*'(L-LTad)d(J^=0, (2) 

which yields the value of rc, with the contributions of the unstable region (L > 
Lrad) and of the stable region (L < Lrad) compensating each other. 

This constraint has the merit of being very simple and apparently rigorous. 
However it predicts a substantial overshoot, much more than allowed by the 
observations. The reason is that it neglects viscous dissipation. When this 
effect is included, 

with dm = 4Ttr2pdr. The term in brackets is the viscous dissipation rate, 
whose contribution is far from negligible. To illustrate this, it may be expressed 
in terms of the largest convective eddies (of velocity V;), which initiate the 
turbulent cascade: 

where we have introduced a suitably defined eddy-viscosity Vf By standard 
mixing-length arguments one can verify that this viscous dissipation integral 
may be large enough to cancel most of the negative part of the integral on the 
left-hand side of (3). 

Aware of that problem, Roxburgh & Simmons (1993) have performed nu­
merical simulations of 3-dimensional penetrative convection, in order to estimate 
the effect of viscous dissipation. However the spatial resolution they used did 
not allow them to reach the regime where the result would not depend any more 
from mesh size. 

3. Early numerical simulations 

Such numerical simulations have been performed well before, with much less 
computer resources, because it was clear that the non-linear terms would play 
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an essential role in convective penetration, and these could not be captured 
easily by the analytical approach, as was pointed out by Veronis (1963). The 
first calculations have been carried out in the Boussinesq approximation, thus 
neglecting the density stratification; they were either 2-dimensional, or they 
postulated a given horizontal structure (one may call them 1.5-dimensional), 
a technique called modal expansion. Because of the lack of spatial resolution, 
they remained confined to rather low values of the Rayleigh number (typically 
10 times critical); as a result the solutions were laminar, and most often sta­
tionary. They all showed a substantial amount of penetration into the stable 
layers (Moore & Weiss, 1973), which seemed to correlate with the flux of kinetic 
energy (Zahn et al., 1982). 

The effect of stratification has been explored using the anelastic approxi­
mation, whose role is to filter out the acoustic waves, while keeping the other 
properties of compressibility. As expected, the solutions showed a pronounced 
up/down asymmetry, but there was no significant change in the amount of pen­
etration (Massaguer et al., 1984). The first realistic case examined was that 
the upper layers of an A-type star, which has two superposed unstable zones, 
one due to the ionization of hydrogen and the other to the second ionization 
of helium. In the mixing-length treatment, these are two separated convection 
zones. However the modal simulations showed that motions connect the two 
unstable zones (Latour et al., 1981), a result which was later confirmed by more 
sophisticated 2-D simulations (Freytag et al., 1996). 

Similar 2-D simulations had been carried out earlier by Hurlburt et al. 
(1986) in a simplified atmosphere (superposed polytropic layers). They showed 
that penetration was achieved by slim, strong downdrafts which were long-lived, 
but highly time-dependent. However it was not clear whether those structures 
were not an artifact of reducing the problem to 2 dimensions, where large eddies 
may build up through inverse turbulent cascade. 

4. A scaling law 

The idea that the up/down asymmetry could play an important role in convec­
tive penetration was carried further by Schmitt et al. (1984). They postulated 
that penetration below the solar convection zone was achieved by descending 
plumes, which they modeled as is done in atmospheric sciences. In addition, 
they assumed that the (negative) convective flux in the stable region was trans­
ported exclusively by these plumes. With this simplified model, they were able 
to explore a vast parameter space, and they found that the penetration depth 

scales as <ipen oc f1/2Wi' , where Wi is the initial velocity of the plumes at the 
edge of the unstable zone and / their filling factor (i.e. the fraction of horizontal 
area occupied by them). 

It is not difficult to derive the scaling law which was established empirically 
by Bohn et al. For simplicity, let us work in plane-parallel geometry. We linearize 
the radiative flux around its value at the base of the unstable zone, located at 
z = Z{ (z is directed downwards, but fluxes are counted positive when upwards): 

^=KfL=Mi+(^)>-4 (5> 
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Figure 1. Convective penetration at the base of a convection zone 
(from Zahn, 1991). (A) designates the unstable region, which ends at 
z = Zi, where the radiative flux, which increases with the conductivity 
X, matches the total flux. The motions penetrate into the stable region 
(B), where they are slowed down by the buoyancy force, and where 
they establish an almost adiabatic temperature gradient, due to their 
high Peclet number (see text). When the Peclet number becomes less 
than unity, the temperature gradient relaxes to the radiative gradient, 
in the thermal adjustment layer (C). (D) is the radiative interior. 
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Figure 2. Extent of convective penetration as a function of the sta­
bility parameter S characterizing the stratification in the stable layer 
(Hurlburt et al., 1994, courtesy ApJ). 
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where x is the radiative conductivity. Neglecting the kinetic energy flux, the 
convective flux is given by Fconv = Ftotai - Fvad, or 

Fcoav = -Ftotal(^-y(z-zi). (6) 

But 
-̂ conv is also the flux of enthalpy: 

Fconv = -fpCpWAT, (7) 

where W is the vertical velocity, AT the temperature fluctuation from its hori­
zontal mean, and / the filling factor. The variation of kinetic energy obeys 

IdW2 Ap AT 
2 dz p T 

assuming the perfect gas law. After some straightforward eliminations, we in­
tegrate Eq. (8) from W = W% to W = 0, which yields the penetration depth 
(Zahn,1991) 

« - - I " A {'££}• (.) 
with Hp and Hx being respectively the scale-height of pressure and conductivity. 
This is the relation found by Bohn et al. 

One may expect that the term in brackets does not depend much on the 
size of the unstable zone, provided it is thick enough, and this was confirmed by 
subsequent numerical simulations, which gave {...} « 1/5. Thus the extent of 
penetration predicted by this scaling is 0.2 — 0.3Hp. 

So far we have assumed that the motions proceed adiabatically, which allows 
them to establish an almost adiabatic stratification in the stable zone. But this 
is true only as long as the Peclet number characterizing the flow, Pec = Wd/K, 
remains larger than unity (d is the size of the plume and K = x/pCp the thermal 
diffusivity). When Pec < 1, radiative diffusion must be taken into account, 
and one finds that the temperature gradient changes from nearly adiabatic to 
radiative in a thermal adjustment layer, labelled (C) in Fig. 1, whose thickness 
is of order 

d2
th*Ktd, where * < * = ( — ] (10) 

is the local dynamical time. In the Sun, this is merely a boundary layer, since 
dth is °f order of 1 km. 

5. Penetration versus overshoot 

We thus see that we have to distinguish between two regimes, depending on 
the value of the Peclet number. Since we have two names which are loosely 
employed to designate what seems at first sight a single phenomenon, we may 
use them in a way to insist on that difference. When Pec S> 1, the fluid motions 
retain their heat content, and they tend to establish an adiabatic stratification 
beyond the unstable zone, where they are slowed down by the buoyancy force; 
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we propose to call this convective penetration. On the contrary, when Pec < 1, 
the motions are unable to keep their temperature and density contrasts, and 
since they do not feel the buoyancy force, they are able to proceed much deeper 
into the stable zone, which remains in nearly radiative stratification; we suggest 
to call that convective overshoot. For instance, the link between the two unstable 
zones in the atmosphere of an A-type star, which we mentioned above, is due 
to overshoot: the convective motions have a Peclet number less than unity, and 
they do not disturb the radiative stratification. On the contrary, at the base 
of the solar convection zone Pec « 106, and we are in presence of convective 
penetration. 

In numerical simulations, where the Peclet number is not much larger than 
unity, it is possible to observe the transition from one regime to the other. Take 
for instance the 2-D calculations made by Hurlburt et al. (1994), in a piecewise 
polytropic envelope. The unstable layer, with polytropic index munst, is on the 
top of the stable domain with polytropic index rost. The relative stability of this 
stable stratification may be characterized by the parameter 

where ma(j is the adiabatic index (= 1.5 for a perfect gas). The simulations show 
that the properties of convection in the unstable layer are not much affected by 
the degree of stability outside and by the extent of penetration. Thus the Peclet 
number at the top of the stable region varies as the inverse of the conductivity, 
which means roughly as 1/5. For small 5, the penetration is adiabatic, and based 
on the arguments developed above, its extent should scale as S - 1 ; for large S, 
thermal diffusion dominates, and the extent of overshoot should scale as S - 1 / 4 . 
(This shows that one cannot extrapolate results of calculations done at low Pec 
number to the high Pec regime - to penetration in the Sun, for instance.) The 
results of the simulations agree rather well with these predictions, as can be 
verified on Fig. 2. 

One is thus tempted to take this agreement as a proof that penetration is 
due to such plumes, and that it extends over a fraction of the pressure scale-
height (or of the size of the unstable domain). How does this compare with the 
observations ? 

6. The seismic evidence 

Convective penetration has two signatures which may be detected in stars. 
Firstly, it leads to a larger well-mixed zone than predicted by the classical 
mixing-length treatment, and this is visible in the evolutionary tracks in the 
temperature/luminosity diagram. And secondly it modifies the temperature 
stratification, which can be detected through acoustic sounding, at least in the 
Sun, where the seismic diagnostic reaches a precision of order 10~4. 

If there were no penetration at the base of the solar convection zone, the 
temperature gradient would be continuous there and its derivative would present 
a discontinuity; thus the second derivative of the sound speed would be discon­
tinuous. With penetration, there will be a jump in the temperature gradient, 
since the thermal adjustment layer (which is labeled C in Fig. 1) is extremely 
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Figure 3. Phase shift a in the asymptotic relation (14) versus fre­
quency v. The upper panel shows the observed mode frequencies, the 
mid panel the frequencies predicted from a solar model without pen­
etration below the convection zone, and the lower panel shows the 
same but using a model with a penetration of 0.56Hp (Roxburgh & 
Vorontsov, 1994, courtesy MNRAS). 
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thin, and it is the first derivative of the sound speed which will be discontinuous. 
These discontinuities can be detected by helioseismology. 

To show this, we follow the treatment by Roxburgh & Vorontsov (1994). 
They cast the wave equation in the form of a Schrodinger equation: 

g + [c2 - V(r)} C = 0, (12) 

where r is the acoustic depth (dr = dr/c), £2 is the kinetic energy density of 
the wave, and V the acoustic potential 

V = N 2 C d 

2dr 

2 JV2 _ g__ J_d<^ 
r g c2 2c2 dr 

c2 (2 N2 g 1 dc2\2
 A „ 

The oscillation frequency u> obeys an asymptotic relation, first described by 
Duvall (1982), which may be written 

n + a „fl+l/2\ , , 
n = F + higher order terms, (14) 

w V w J 

where n is the radial order and £ the spherical order of the mode. When the 
acoustic potential V is a smooth function of T, the phase shift does not vary much 
with frequency w. But a sharp variation or a discontinuity in the derivatives 
of the sound speed c imprints an oscillation on a, whose frequency indicates 
the location of the discontinuity, and whose amplitude is proportional to its 
strength. 

Figure 3 displays this phase shift with the observed solar frequencies, and 
compares it with that obtained with two solar models, one without penetration 
and the other with a penetration of 0.56HP. By visual inspection it seems that 
there is a small amount of penetration in the Sun. 

This is confirmed by a more quantitative treatment. Roxburgh & Voront­
sov have calculated the amplitude of the phase shift oscillation as a function 
of penetration, and concluded that the observed amplitude corresponds to an 
extent of penetration of about 0.20Hp 

One assumption made in predicting the extent of penetration in the de­
scribed in Sect. 4 is that all plumes cross the top of the radiation zone with the 
same velocity W. This is of course a very crude picture. One would rather 
expect a distribution of initial velocities, and that would smoothen the transi­
tion from adiabatic to radiative temperature gradient. Christensen-Dalsgaard 
et al. (1995) have calculated the effect of such temperature profiles on the ampli­
tude of the phase shift amplitude. Their result is shown in Fig. 4: the observed 
amplitude is compatible with profiles that connect smoothly the adiabatic and 
radiative temperature gradients. 

7. Recent work 

Another assumption made in establishing the scaling law (9) is that, for high 
Peclet number, the penetration establishes an almost adiabatic temperature gra-
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Figure 4. Amplitude of the phase shift oscillation versus the pen­
etration depth, for the temperature profiles shown the upper panel. 
The smooth profile Z(, is compatible with the observed amplitude, as 
would be a discontinuous profile with a penetration depth of « 0.10Hp 

(Christensen-Dalsgaard et al., 1995, courtesy MNRAS). 

dient. The numerical simulations performed in the 90s showed clearly such a 
trend (Muthsam et al., 1995; Singh et al., 1998) and, although the temperature 
gradient still departed from adiabatic, this could be ascribed to the fact that the 
Peclet number characterizing the plumes was not that much greater than unity. 

More recently numerical simulations have been carried out by Brummel 
et al. (2001) with much higher spatial resolution, up to 512 x 512 x 575. This 
allowed them to reach a Peclet number of 103, and thus to explore the asymptotic 
regime for Pec 3> 1. Their results are shown in Fig. 5, where it appears that the 
penetration depth scales as Pec~ll2. 

Why does this scaling differ from that derived in Sect. 4, where the extent 
of penetration does not depend on the Peclet number? The reason is that the 
plumes are much sparser in these 3-D simulations than was expected, based on 
the 2-D calculations. Therefore, in spite of their high Peclet number, they are 
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Figure 5. Penetration depth as a function of the Peclet number, 
in the high resolution 3-D simulations performed by Brummel et al. 
(2001). The penetration depth scales as Pec*1/2 

not able to enforce a nearly adiabatic stratification in the penetration region, as 
was assumed to establish that scaling. 

Such simulations are extremely costly in computer resources, and therefore 
it makes sense to experiment with other methods, in which the small scales 
are modeled in some way. The first attempts were made by Xiong (1985) and 
Kuhfuss (1986), who integrated the horizontally averaged equations, with a pre­
scription for the higher moments, assumed to represent the effect of turbulence. 
These simulations again displayed substantial penetration. Work is in progress 
by Kupka (1999), based on a formalism recently derived by Canuto (1997). To 
validate the moment equations which he uses, he compares the results with 
ab initio 3-dimensional simulations, and the agreement is rather encouraging. 
However the resolution of these 3-D calculations is still rather low, compared 
with what Brummel et al. have achieved, and it is too early to draw definite 
conclusions. 

8, Conclusion 

Fifteen years ago Renzini (1987) summarized the situation in a pessimistic for­
mula: "(convective) overshoot is found small if supposed small, large if supposed 
large". How much progress have we made since ? 

Let us first consider convective penetration below the solar convection zone. 
If we rely on acoustic sounding alone, we must confess that we find appreciable 
penetration when we assume that the temperature gradient changes smoothly 
from adiabatic to radiative, and much less penetration when we allow for a 
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discontinuous transition. At present, this diagnostic tool has not been able to 
distinguish between the two solutions, but we have seen that the most recent 
numerical simulations by Brummel et al. favor the smooth profile. This would 
mean that the convective eddies would penetrate right into the tachocline, that 
thin layer where the rotation rate changes abruptly from differential in the con­
vection zone to uniform below. The consequences of this are yet to be examined. 

As for penetration above a convective core, some mixing is clearly required 
there, but it can be produced by another process, such as a combination of merid­
ional circulation and turbulence generated by differential rotation (Zahn, 1992). 
Evolutionary sequences built with such rotational mixing are in good agree­
ment with the observations, and they need no convective penetration (Meynet 
& Maeder, 2000). In all likelihood both convective penetration and rotational 
mixing are operating there, and we must find means to model them together, 
preferably without adjustable parameters. 
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Discussion 

D. 0. Gough : Because the descending plumes are far from being space-filling, 
they transport heat globally through the tachocline yet they do mix material. 
Consequently their effect is likely to mimic that of the much slower Ekman 
circulation which is bound to be present. The issue of the transport of angular 
momentum is less clear. 

J.-P. Zahn : Indeed our picture of the tachocline would be radically changed 
with the intrusion of these plumes. But the problem would remain of finding 
which mechanism prevents the spread of differential rotation into the radiative 
interior. 
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