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1.   Introduction
Cryptography, the mathematics of protecting secret or sensitive information,

is a continuously evolving area of interest. A concrete example of this is the fact
that worldwide spending on information security and risk management
technology and services has been estimated to reach over $150 billion in 2021.
Modern cryptography is actually not a single separate domain of mathematics but
an advanced encryption scheme can be based on applications of results in number
theory, such as the Euler–Fermat Theorem, or involve the discrete logarithm
problem using either a primitive root of a large prime or an element of an elliptic
curve over a prime field. In the background, probability theory, statistics, studies
on computational models and finite geometries, etc. play a major role. Recent
research has considered even DNA-based molecular cryptography systems.

To get a grasp of how a modern encryption scheme works, let us revise
an example from [1]. This example deals with a public-key cryptosystem
called RSA and it exploits modular arithmetic. Another fundamental premise
is the mathematical fact that it is easy to find two, say, 125-digit primes but it
is much harder to factorise 250-digit numbers into prime numbers. In
February 2020, a 250-digit product of two primes was successfully factorised
and it was announced that the process took computing time equivalent to
using 2700 computers continuously for a full year.

First, we need a modulus for the public and private keys:  where
and  are different primes such that , the number of letters in the
english alphabet. Then we compute the totient  and
choose a coding power  which has to be coprime with . Following
[1, p. 201], we take  and . Next, we convert letters to
numbers by setting ,   etc. Then, for instance,

m = pq p
q m ≥ 26

t = (p − 1) (q − 1)
1 < c < t t

m = 3 · 11 = 33 c = 3
A = 01 B = 02, C = 03

HAVE A NICE DAY
becomes

08 01 22 05 01 14 09 03 05 04 01 25.
To encrypt this message with aid of the public keys  and , we take the
cubes of these numbers modulo 33:

c m

17 01 22 26 01 05 03 27 26 31 01 16.
To decrypt this sequence, we need the private key  which is found by
solving the congruence

d

cd ≡ 1 (mod  t) ,
i.e. . Now . Taking the seventh powers modulo 33
of successive pairs of digits in the encrypted message gives us the original
message in its numerical form because

3d ≡ 1 (mod 20) d = 7

xcd ≡ x (mod m)
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for all . The usefulness of RSA is based on the fact that, when  is a very
large number,  and  can be made public so that anyone can send an
encrypted message to the owner of these numbers but the owner is the only
one who is able to decrypt the message as he or she is the only one who
knows  and  which are needed for computing .

x m
m c

p q d
However, a weakness in the above example and in many traditional

encryption schemes is that each letter, number, or another symbol is always
substituted by the same (obviously, other than the original) symbol. The
invention of frequency analysis techniques sometime in the early ninth
century made these schemes vulnerable. If the encrypted text is long
enough, the cipher can be broken by comparing the letter frequencies of a
natural language with the symbol frequencies in the cipher.

There is an encryption scheme which is suitable to be discussed at early
undergraduate level and yet it does not have the above-mentioned weakness
of the traditional schemes. It is based on using perpendicularity relations in
an Abelian group and serves well as supplementary material in a first course
in abstract algebra. Before looking at the scheme, let us record a few basic
facts about such perpendicularities. To learn more about them, the reader
can consult the articles [2, 3] listed at the end of this paper. The reference
list also contains a couple of articles published in the Gazette which serve
well as an introduction to the basics of cryptography [1, 4].

2.   Perpendicularities
Let  be an Abelian group. We call  a perpendicularity in

 if  is a binary relation in  satisfying
G = (G, +) ⊥

G ⊥ G
(A1) ,∀a ∈ G : ∃b ∈ G : a ⊥ b
(A2) ∀a ∈ G \  {0} : a ⊥ ⁄ a,
(A3) ,∀a, b ∈ G : a ⊥ b ⇒ b ⊥ a
(A4) ,∀a, b, c ∈ G : a ⊥ b ∧ a ⊥ c ⇒ a ⊥ (b + c)
(A5) .∀a, b ∈ G : a ⊥ b ⇒ a ⊥ − b

It is easy to see that A1–A5 can be derived from the basic properties of
an inner product given that the inner product of orthogonal vectors equals
zero. The above definition would make sense also for a general group, but it
is more convenient if  for all . Anyway,
implies both  and .

b + c = c + b b, c ∈ G a ⊥ b ∧ a ⊥ c
a ⊥ (b + c) a ⊥ (c + b)

For every Abelian group, there is the trivial perpendicularity
x ⊥0 y ⇔ x = 0 ∨ y = 0.

Most Abelian groups have also non-trivial perpendicularities. For example,
if we define  and , and vice versa, for the
elements of the cyclic group , then  is a perpendicularity in .

0 ⊥ 0,  1,  2,  3,  4,  5 3 ⊥ 2,  4
�6 ⊥ �6

We call maximal if it is not a subrelation of any other
perpendicularity in . Also a maximal perpendicularity exists for every
Abelian group. This follows from Zorn's lemma; if  are

⊥
G

⊥0 ⊆ ⊥1 ⊆…
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perpendicularities in , then  is a perpendicularity in . An Abelian
group may have more than one maximal perpendicularity. The
perpendicularity in  discussed above is maximal.

G ∪∞
i = 0 ⊥i g

�6

3.   The encryption scheme
Now we are ready to discuss the encryption scheme. It has been shown

that there are infinitely many Abelian groups that have infinitely many
maximal perpendicularities [3]. For simplicity, we consider .G = (�2. +)

Let  so thate1, e2 ∈ �2

G = �e1� ⊕ �e2� ,
i.e. every element of  can be expressed as a direct sum , where

. Observe that there are infinitely many ways to choose these
‘base elements’. Then a maximal perpendicularity related to  and  can be
defined via

G me1 + ne2
m, n ∈ �

e1 e2

x ⊥ y ⇔ ac + bd = 0, (1)
where  and .x = ae1 + be2 y = ce1 + de2

Let us choose, as an example, , ,
and . Then  because

e1 = (1, 0) e2 = (−2, 1) x = (−1, 1)
y = (6, −2) x ⊥ y

x = 1e1 + 1e2,  y = 2e1 − 2e2,
and . On the other hand, if we had chosen, say,

 and , then  because now
1 · 2 + 1 · −2 = 0

e1 = (1,  0) e2 = (2,  1) x ⊥ ⁄ y

x = −3e1 + 1e2,  y = 10e1 − 2e2,
and . This example demonstrates that, except for certain
obvious cases, it is impossible to say whether or not two non-zero elements
 and  are perpendicular to one another if one does not know . So, if  is

known only by a sender and a receiver, it works well with encrypting a bit
by taking a pair of perpendicular elements for 0 or a pair  with  for
1. There are infinitely many ways of doing this: for each , there are
infinitely many  such that  and . For instance, if

, then it suffices to select any  and set  and
 in  to have . In other words, one never needs

to use the same pair twice for encrypting the same bit. Moreover, choosing a
pair does not depend on the selection of the previous pairs.

−3 · 10 + 1 · −2 ≠ 0

x y ⊥ ⊥

(x, y) x ⊥ ⁄ y
x ∈ �2

y, z ∈ �2 x ⊥ y x ⊥ ⁄ z
x = ae1 + be2 m ∈ � c = mb
d = −ma y = ce1 + de2 x ⊥ y

For those who know the correct , the decrypting of⊥

(x1, y1) , … . (xk, yk) ,  xi, yi ∈ G (2)
into a sequence of  bits is an easy procedure. It suffices to compute , ,
and  for each  – which is also a simple problem of solving a system
of linear equations – and then apply the rule

k ai bi ci
di (xi, yi)

(xi, yi) →
⎧

⎩
⎨
⎪
⎪

.
0, aici + bidi = 0

1, aici + bidi ≠ 0
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However, there is a vulnerability in the above scheme. If the encryption
perpendicularity is constructed as above and an ‘enemy’ succeeds in finding
out that  for certain , then he or she can – again by
solving a system of linear equations – determine  uniquely. In practice,
given a sequence (2), the ‘enemy’ may simply start testing the pairs ,

, assuming that  holds and construct a corresponding
perpendicularity . Sooner or later he or she gets one right (otherwise, the
secret message would consist only of 1's). On the other hand, if the encoding
of the original message into a binary sequence does not follow any character
encoding standard such as ASCII, it may be difficult for the ‘enemy’ to
know which  is the correct key; after all, each decrypting gives only a
sequence of zeros and ones which are not yet meaningful messages as such.

x ⊥ y x, y ∈ G \ {0}
⊥

(xi, yi)
i = 1, 2, 3, … xi ⊥ yi

⊥i

⊥i

Not all maximal perpendicularities in  arise by only choosing
 and ,  but there are maximal

perpendicularities of another kind, too [4]. The existence of various types of
maximal perpendicularities makes the scheme more secure because the
finding of the correct perpendicularity becomes more difficult for the
‘enemy’.

�2

e1 = ± (1, 0) e2 = ± (z, 1) z ∈ �

Decrypting can be made harder for the ‘enemy’, without making the
encrypting of the original binary data significantly more complicated, also
by increasing the number of applied perpendicularities. As the number of
maximal perpendiculaties in  is infinite, we may select a unique
perpendicularity for each bit, or take  perpendicularities
and decide that the  pair in (2) is en- and decrypted by using , where

 and . The complexity of
decrypting increases radically as  and  increase. Another way to confuse
the ‘enemy’ is to embed  (more generally, the Abelian group in use) in a
larger mathematical structure.

�2

m > 1 ⊥1, … ⊥m
i th ⊥j

j ≡ i + n (mod  m) n ∈ {0, … , m − 1}
k m

�2

It almost seems to be ‘a law of nature’ that every encryption scheme has
some vulnerabilities or is immeasurably complicated to use. An apparent
weakness of the above scheme is that the applied perpendicularities cannot
be made public. If the ‘enemy’ succeeds to find them out, information on a
new set of perpendicularities can no longer be distributed via this scheme.
Another fragility is that all users of the scheme must know all actual
perpendicularities. This means that the scheme does not allow private
communication within the group of the users like RSA does. Therefore it is
most suitable for encrypting information that is intended only for a small
and internally open community and needs to be kept safe only temporarily.

4.   Discussion and a task
The reader may ask why the above encryption scheme has been

introduced by speaking of Abelian groups; it could also have been done by
speaking of the bases of  and the orthogonality of the plane vectors. The
answer is: for the sake of practicality. Concerning applications of
mathematics in the real world, we have to acknowledge the fact that

�2
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computers ultimately do not operate on real numbers. Finite Abelian groups
are more compatible with the real computing systems than real numbers.

Actually, the real usefulness of the above scheme depends on how rich
perpendicularity structures a finite Abelian group can have. We know [3,
Proposition 1] that, if  is cyclic, then it has a unique maximal
perpendicularity. Consequently, such a group is not useful for protecting
information. But a non-cyclic finite Abelian group may have an impressive
number of maximal perpendicularities – and other non-trivial
perpendicularities too. Already the smallest non-cyclic group, the Klein
four-group, has three non-trivial perpendicularities and all of them are
maximal [2, Example 7]. Another motivation for speaking of Abelian
groups in this context is the fact that an Abelian group underlies many
fundamental algebraic structures, and also . Thus the above scheme is
compatible with all of them.

G

�2

To demonstrate the fascination (and, perhaps, occasionally occurring
frustration) with decrypting secret messages, I share a code that represents
one of my favourite numbers as binary number.

((5, 2) (0, 2)) , ((5, 3) (−5, −2)) , ((−1, −3) (4, 2)) , ((−1,  3) (−17, 7)) .
Can you find out what it is? How much would it help if I revealed that it is
even?
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