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Abstract

We propose the following simple stochastic model for phylogenetic trees. New types are
born and die according to a birth and death chain. At each birth we associate a fitness to
the new type sampled from a fixed distribution. At each death the type with the smallest
fitness is killed. We show that if the birth (i.e. mutation) rate is subcritical, we obtain a
phylogenetic tree consistent with an influenza tree (few types at any given time and one
dominating type lasting a long time). When the birth rate is supercritical, we obtain a
phylogenetic tree consistent with an HIV tree (many types at any given time, none lasting
very long).

Keywords: Phylogenetic tree; influenza; HIV; stochastic model

2000 Mathematics Subject Classification: Primary 60K35

1. Introduction

The influenza phylogenetic tree is peculiar in that it is very skinny: one type dominates for
a long time and any other type that arises quickly dies out. Then the dominating type suddenly
dies out and is immediately replaced by a new dominating type. The models proposed so far
are very complex and make many assumptions. See, for instance, Koelle et al. (2006) and van
Nimwegen (2006). We use a simple stochastic model for such a tree. The other motivation
for this work comes from the comparison between influenza and HIV phylogenetic trees. An
HIV tree is characterized by a radial spread outward from an ancestral node, in sharp contrast
with an influenza tree. Moreover, Korber et al. (2001) noted that the influenza virus is less
diverse worldwide than the HIV virus is in Amsterdam alone. However, both types of tree are
supposed to be produced by the same basic mechanism: mutations. Can the same mathematical
model produce two trees that are so different? Our simple stochastic model will show a striking
difference in behavior depending on the mutation rate.

Our model has a birth-and-death component and a fitness component. For the birth and
death components, we do the following. If there are n ≥ 1 types at a certain time t then there is
birth of a new type (by mutation) at rate nλ. We think of a birth as the appearance of one new
type, not the replacement of one type by two new types. If there are n ≥ 2 types then there is
death of one type at rate n. If only one type is left, it cannot die. That is,

n → n + 1 at rate nλ, n → n − 1 at rate n if n ≥ 2.
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Moreover, each new individual is assigned a fitness value chosen from a fixed distribution,
independently each time. Every time there is a death event then the type that is killed is the
one with the smallest fitness. Since all that matters are the ranks of the fitness, we might as
well take their distribution to be uniform on [0, 1]. For simplicity, the process is started with a
single type.

We give no specific rule on how to attach a new type after a birth to existing types (in order
to construct a tree). Our results do not depend on such a rule. Two natural possibilities are
to either attach the new type to the type which has the maximum fitness or to a type taken at
random.

Theorem 1. Take α ∈ (0, 1). If λ ≤ 1 then

lim
t→∞ P(maximal types at times αt and t are the same) = α,

while if λ > 1 then this limit is 0.

We see that if λ < 1, the dominating type (i.e. the fittest type) at time t has likely been present
for a time of order t and at any given time there will not be many types. This is consistent with
the observed structure of an influenza tree. On the other hand, if λ > 1 then the dominating
type at time t has likely been present for a time of order shorter than t and at any given time
there will be many types. This is consistent with an HIV tree.

2. Proof of Theorem 1

The proof is divided into three cases, depending on whether the birth-and-death chain is
positive recurrent, null recurrent, or transient. We present them in order of difficulty.

2.1. λ < 1 case

Let τ1, τ2, . . . be the (continuous) times between successive visits of the chain to 1, let
Tn = τ1 + · · · + τn, let σ1, σ2, . . . be the number of new types introduced in cycles between
successive visits to 1, and let Sn = 1 + σ1 + · · · + σn. Note that the τ s and σ s are not
independent of each other, but the sequence (τ1, σ1), (τ2, σ2), . . . is independent and identically
distributed (i.i.d.) and independent of the fitness sequence. Define the usual renewal process
N(t) corresponding to the τ s by {N(t) = n} = {Tn ≤ t < Tn+1}.

For 0 < s < t , recalling that TN(t) ≤ t < TN(t)+1, and noting that the maximal type is
increasing in time, we see that

P(maximal types at times s and t are the same, N(s) < N(t)) (1)

lies between

P(maximal types at times TN(s) and TN(t)+1 are the same, N(s) < N(t))

and
P(maximal types at times TN(s)+1 and TN(t) are the same, N(s) < N(t)).

Let F be the σ -algebra generated by (τ1, σ1), (τ2, σ2), . . .. Then, for k ≤ l, since the fitness
sequence is i.i.d. and independent of F ,

P(maximal types at times Tk and Tl are the same | F ) = Sk

Sl

.
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More precisely, conditional on F , there are Sl fitnesses observed by time Tl and Sk of them
are observed by time Tk . We claim that in n i.i.d. observations the probability that the largest
occurs among the first m is m/n, since any one of the n is equally likely to be the largest. Since
N(s) and N(t) are F measurable, it follows that (1) lies between

E

[
SN(s)

SN(t)+1
, N(s) < N(t)

]
and E

[
SN(s)+1

SN(t)

, N(s) < N(t)

]
. (2)

Since λ < 1, E[τ ] < ∞, and the renewal theorem gives

N(s)

s
→ 1

E[τ ] almost surely (a.s.),

while the strong law of large numbers gives SN(s)/N(s) → E[σ ] a.s., so that SN(s)/s →
E[σ ]/ E[τ ] a.s. It follows by the bounded convergence theorem that

lim
t→∞ P(maximal types at times αt and t are the same) = α. (3)

This completes the proof of Theorem 1 in the subcritical case.

2.2. λ > 1 case

Define the τ s and σ s as above, except that now the cycles used are between the successive
times the chain reaches a new high. In other words, Tn is the hitting time of n + 1, σn is the
number of new types born during a first passage cycle from n to n+1, and Sn is the number of new
types seen up to time Tn. Of course, the σ s and τ s are no longer identically distributed. However,
(τ1, σ1), (τ2, σ2), . . . are independent. The key to the proof is the following lemma.

Lemma 1. Assume that λ > 1. Then e−(λ−1)tN(t) is a.s. bounded.

In order to prove Lemma 1, we will need the following recursion formula, which is easy to
prove by induction.

Lemma 2. Let an and bn be two sequences of real numbers such that a1 = λ−1b1 and, for
n ≥ 2, λan = bn + an−1. Then,

an =
n∑

j=1

λ−j bn+1−j .

Proof of Lemma 1. Our first step in this proof is to estimate the first two moments of τn.
Following Keilson (1979, Equation (5.1.2)) we note that τn has the same distribution as

X

(1 + λ)n
+ Y (τn−1 + τ ′

n) for n ≥ 2, (4)

where X has a mean 1 exponential distribution, τ ′
n has the same distribution as τn, Y is a

Bernoulli random with P(Y = 1) = 1/(λ+1), and X, Y , τn−1, and τ ′
n are independent. Letting

µn = E[τn], it follows from (4) that

λµn = 1

n
+ µn−1 for n ≥ 2 and µ1 = 1

λ
. (5)

https://doi.org/10.1239/jap/1245676110 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1245676110


604 T. M. LIGGETT AND R. B. SCHINAZI

Applying Lemma 2 to (5) we obtain

µn =
n∑

j=1

λ−j

n + 1 − j
.

Writing 1/(λ − 1) as a geometric series we have

µn − 1

n(λ − 1)
=

n∑
j=1

λ−j

(
1

n + 1 − j
− 1

n

)
− 1

n

∞∑
j=n+1

λ−j .

Changing the order of summation gives

∞∑
n=1

n∑
j=1

λ−j

(
1

n + 1 − j
− 1

n

)
=

∞∑
j=1

λ−j
∞∑

n=j

(
1

n + 1 − j
− 1

n

)
.

Note that, for j ≥ 2,
∞∑

n=j

(
1

n + 1 − j
− 1

n

)
=

j−1∑
k=1

1

k
,

and this term is 0 for j = 1. Hence,

∞∑
n=1

1

n

∞∑
j=n+1

λ−j =
∞∑

j=2

λ−j

j−1∑
k=1

1

k
.

We conclude that ∞∑
n=1

∣∣∣∣µn − 1

n(λ − 1)

∣∣∣∣ < ∞

and ∞∑
n=1

(
µn − 1

n(λ − 1)

)
= 0.

Therefore,

E[Tn] − 1

λ − 1

n∑
k=1

1

k
converges to 0. (6)

We also need an almost-sure result for Tn, and for this, we will estimate the second moment
of τn. Let vn = var(τn). It is easy to check that if Y is a Bernoulli random variable and is
independent of a random variable Z, then

var(ZY ) = E[Y ] var(Z) + var(Y )(E[Z])2.

Using this remark and (4), we have, for n ≥ 2,

vn = 1

(1 + λ)2n2 + 1

1 + λ
(vn + vn−1) + λ

(1 + λ)2 (µn + µn−1)
2.

Therefore, for n ≥ 2,
λvn = bn + vn−1, (7)
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where

bn = 1

(1 + λ)n2 + λ

1 + λ
(µn + µn−1)

2.

Set µ0 = 0. Then λv1 = b1. Hence, Lemma 2 applies to (7), giving

vn =
n∑

j=1

λ−j bn+1−j . (8)

Since µn ∼ 1/n(λ − 1) (that is, the ratio converges to 1), bn ∼ C/n2, where C depends on λ

only. From (8) we obtain

vn ∼ C′bn ∼ CC′

n2 ,

where C′ depends on λ only. This implies the almost-sure convergence of the random series∑
(τn − E[τn]) (see, for instance, Corollary 47.3 of Port (1994)). Therefore, the partial sums

converge a.s. and
Tn − E[Tn] converges a.s.

Using (6), we find that Tn − log n/(λ − 1) converges a.s. and is therefore a.s. bounded. Now
use the fact that {N(t) ≥ n} = {Tn ≤ t} to conclude that N(t) exp(−(λ − 1)t) is a.s. bounded.
This concludes the proof of Lemma 1.

We are now ready to complete the proof of Theorem 1 in the supercritical case. Let (Zi)i≥1
be a discrete-time random walk starting at 0 that goes to the right with probability λ/(λ + 1)

and to the left with probability 1/(λ + 1). For every n ≥ 1, let Zi,n be a discrete-time random
walk starting at 0 with the same rules of evolution as Zi except that the random walk Zi,n has
a reflecting barrier at −n + 1. For every n ≥ 1, the two random walks Zi and Zi,n are coupled
so that they move together until (if ever) they hit −n + 1, and thereafter we still couple them
so that Zi ≤ Zi,n for every i ≥ 0. Let U and Un be the hitting times of 1 for the random walks
Zi and Zi,n, respectively.

First note that a new type appears every time there is a birth. Therefore, σn is the number
of steps to the right of the random walk Zi,n stopped at 1. That is, σn is (1 + Un)/2. We now
show that Un converges a.s. to U . Let δ > 0. We have

P(|Un − U | > δ) ≤ P(U > Un) ≤ P(Zi = −n + 1 for some i ≥ 1).

The last probability decays exponentially with n. Therefore,
∑
n≥1

P(|Un − U | > δ) < ∞.

An easy application of the Borel–Cantelli lemma implies that Un converges a.s. to U . Since
Un ≤ U , the dominated convergence theorem implies that, for every k ≥ 1, the kth moment of
σn converges to the kth moment of (1 + U)/2. In particular, var(σn) is a bounded sequence.
This is enough to prove that

1

n

n∑
i=1

(σi − E[σi]) converges a.s. to 0;

see, for instance, Proposition 47.10 of Port (1994). Since E[σn] is a convergent sequence, we
find that Sn/n converges a.s. to the limit of E[σn].
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Since N(t) → ∞ a.s., this strong law of large numbers shows that SN(t)/N(t) converges
to the limiting expectation of σn. This together with Lemma 1 shows that the two terms in (2)
converge to 0 when we let s = αt and t go to ∞. The proof of Theorem 1 in the supercritical
case is complete.

2.3. λ = 1 case

In this subsection we go back to the notation of Subsection 2.1 where Tn is the time of the
nth visit of the chain to 1.

Lemma 3. Let λ = 1. Then,

Tn

n log n
→ 1 in probability.

Proof. When the chain hits 1, it waits a mean 1 exponential time and then jumps to 2. Hence,

Tn =
n∑

i=1

Xi +
n∑

i=1

Hi,

where the Xi are independent mean 1 exponential times and Hi are the hitting times of 1 starting
at 2. The Hi are i.i.d. with distribution function F . From the backward Kolmogorov equation,

∫ F(t)

0

ds

1 + s2 − 2s
= t,

we obtain

F(t) = t

1 + t
.

We now use a weak law of large numbers; see Theorem 2 of Feller (1971, Section VII.7). It is
easier to redo the short proof rather than check the hypotheses of the theorem. The key is the
following consequence of Chebyshev’s inequality applied to the truncated random variables:

P

(∣∣∣∣ 1

nmn

n∑
i=1

Hi − 1

∣∣∣∣ > ε

)
≤ 1

nε2m2
n

sn + n(1 − F(ρn)),

where

mn =
∫ ρn

0
tF ′(t) dt and sn =

∫ ρn

0
t2F ′(t) dt;

see (7.13) of Feller (1971, Section VII.7). We will take ρn = n
√

log n. A little calculus shows
that

mn ∼ log ρn ∼ log n and sn ∼ ρn.

With our choice of ρn, n(1 − F(ρn)) converges to 0 and

1

nmn

n∑
i=1

Hi

converges to 1 in probability. This completes the proof of Lemma 3.
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Since the events N(t) ≥ n and Tn ≤ t are the same, it follows that

N(t)
log t

t
→ 1 (9)

in probability as t ↑ ∞.
Now, Sn/n2 converges in distribution to a one-sided stable law of index 1

2 (see Theorem
(7.7) of Durrett (2004)). By (9), it follows that SN(t)/N(t)2 also has this distributional limit.
In fact,

SN(αt)

N2(t)
converges to Yα

in the sense of convergence of finite-dimensional distributions, where Yα is a stable subordinator
(increasing stable process) of index 1

2 . (Note that independence between the σ s and τ s is not
required here, which is good since they are highly dependent. All that is needed is that the limit
in (9) is constant and that both Sn and N(t) are monotone.) So, the limit in (3) is

lim
t→∞ E

[
SN(αt)

SN(t)

]
= E

[
Yα

Y1

]
= α.

To check the final equality, it is enough to verify by monotonicity for rational α. If α = m/n,
this boils down to the simple fact that if V1, . . . , Vn are i.i.d. and positive, then

E

[
Vi

V1 + · · · + Vn

]
= 1

n
.
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