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BIRATIONAL RIGIDITY OF ORBIFOLD DEGREE 2 DEL PEZZO
FIBRATIONS
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Abstract. Varieties fibered into del Pezzo surfaces form a class of possible

outputs of the minimal model program. It is known that del Pezzo fibrations of

degrees 1 and 2 over the projective line with smooth total space satisfying the

so-called K2-condition are birationally rigid: their Mori fiber space structure is

unique. This implies that they are not birational to any Fano varieties, conic

bundles, or other del Pezzo fibrations. In particular, they are irrational. The

families of del Pezzo fibrations with smooth total space of degree 2 are rather

special, as for most families a general del Pezzo fibration has the simplest

orbifold singularities. We prove that orbifold del Pezzo fibrations of degree 2

over the projective line satisfying explicit generality conditions as well as a

generalized K2-condition are birationally rigid.

§1. Introduction

Birational classification of complex algebraic varieties is a central research area in

algebraic geometry. Given an algebraic variety, one can produce a somewhat simpler

birational model of it by first taking a resolution of singularities and then running the

minimal model program (MMP). We work in dimension 3 and over the field of complex

numbers, where both these theories are settled. The result of this procedure is either a Mori

fiber space or a minimal model, depending on whether the initial variety was uniruled or

not. We are interested in explicit classification of Mori fiber spaces, that is, the study or

birational relations among Mori fiber spaces as end points of the MMP. A Mori fiber space

can be a unique product of the MMP, so-called Birationally Rigid, and can have a few, or

infinitely many birational models (see Definition 1.2 for a precise definition of rigidity). For

example, a smooth quartic in P4 is known to be birationally rigid [18], whereas a quartic

with a single cA2 singular point has precisely two birational models [12]. On the other

hand, the projective space P3 is birational to any Fano variety V22, whose moduli contain

an uncountable set (see, e.g., [23]).

A Mori fiber space is a normal projective variety X together with a morphism π : X → S

with connected fibers to a lower-dimensional variety S, where

• X is Q-factorial with terminal singularities,

• −KX is π-ample, and

• the relative Picard number ρX/S is 1.

Based on the dimension of S, either X is a conic bundle over the surface S, or it is a

fibration of del Pezzo surfaces over a curve S, or it is a Fano threefold when S is a point.
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Definition 1.1. Let πX : X → S and πY : Y → Z be Mori fiber spaces. A birational

map χ : X ��� Y is called square if it fits into a commutative diagram

X
χ �����

πX

��

Y

πY

��
S

g ����� Z,

where g is birational and, in addition, the induced map on the generic fibers χη : Xη ��� Yη

is an isomorphism. In this case, we say that X/S and Y/Z are square-birational.

Definition 1.2 [11, Def. 1.2]. A Mori fiber space πX : X → S is said to be birationally

rigid if existence of a birational map χ : X ��� Y to a Mori fiber space πY : Y → Z implies

that there exists a birational self-map ϕ : X ��� X such that the birational map χ ◦ϕ is

square.

Birational rigidity of conic bundles has been studied extensively (see, e.g., [31]). The

reader is encouraged to consult [11, §4] for an overview and some interesting related

questions on birational geometry of conic bundles. Comparatively, the question of (stable)

nonrationality of conic bundles has recently had more development [4], [8], [16]. Birational

rigidity and nonrationality of Fano threefolds has progressed in the past decades, but is yet

to be completed (see [17], [25] for rationality and [6] for birational rigidity and investigate

the references therein for further details). The focus of this paper is on birational rigidity

of threefold del Pezzo fibrations.

del Pezzo fibrations form 10 classes, according to their degrees 1 ≤ d≤ 9, and there are

two classes in degree 8. If the degree is 5 or higher, then the fibration is rational over the

base [10], [24]. Degree 4 fibrations admit a conic bundle structure [7], and hence they are

not birationally rigid. Their stable rationality was recently studied in [17].

A smooth degree 2 del Pezzo surface can be defined as the zeros of a quartic form in

P(1,1,1,2), and a general such form defines a smooth del Pezzo surface of degree 2. However,

when defined over a base curve, this typically has some orbifold singularities of type 1
2(1,1,1)

enforced by the zeros of the coefficient of the quadratic monomial in the defining polynomial

of the threefold (see [30, §1] for notation and explanation of this type of singularities). This

coefficient degree imposes a discrete invariant that splits the moduli space of such fibrations

into an infinite set of families. As a result, whenever we use the term general, we mean

general after fixing a family. In low degrees, most results on birational rigidity concentrate

on smooth models, for example, stable rationality of very general del Pezzo fibrations in low

degrees with smooth total space was recently studied in [22]. Smoothness of the total space

is a strong restriction in degrees 1 and 2 as they are satisfied in very few families. However,

a general cubic surface (degree 3 del Pezzo) fibration has smooth total space, which is no

longer true in degrees 1 and 2.

The following is the main result in the literature for birational rigidity of del Pezzo

fibrations over P1 with smooth total space, which was later improved slightly by Grinenko

[13]–[15] and Sobolev [33], also with the smoothness condition.

Theorem 1.3 [28, Th. 2.1]. Let π :X → P1 be a del Pezzo fibration of degree 1, 2, or 3,

with smooth X, and assume generality in degree 3. If K2
X is not in the interior of the Mori

cone of effective 1-cycles NE(X)o, then X is birationally rigid.
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890 H. ABBAN AND I. KRYLOV

This theorem is the center of attention in this article. The only birational rigidity

statement for del Pezzo fibrations of low degree with quotient singularities is proved in

[21], which proves Pukhlikov’s theorem above for special families of fibrations with such

singularities. We generalize these results for the general case with orbifold families of del

Pezzo fibrations in degree 2 in the following precise setting. There is a fundamental difference

in the geometry of the models in the general case, which makes the proof more complicated:

the singular points produce elementary Sarkisov links to other models square-birational to

X, and that the construction of the staircase (explained below) for smooth points near the

singular point is more complex.

Main Theorem. Let π : X → P1 be a del Pezzo fibration of degree 2. Suppose X is a

general quasi-smooth hypersurface in a P(1,1,1,2)-bundle over P1 satisfying the K2-total

condition. Then X is birationally rigid.

1.1 Conditions in the Main Theorem

Here, we spell out assumptions in the theorem above, and explain their necessity.

1.1.1. Quasi-smoothness

Quasi-smooth means that no singularities come from the defining equation of X, and

hence all singularities are indeed of type 1
2(1,1,1) and inherited from the ambient toric

variety (see Remark 1.5 for a precise definition). This condition cannot be removed as there

exists an example of a nonbirationally rigid degree 2 del Pezzo fibration satisfying other

conditions that has a nontoric singular point [2].

1.1.2. The K2-total condition

The K2-condition is precisely as in Theorem 1.3, that is, K2
X /∈ NE(X)o. For every

singular point Q of X, there is a Sarkisov link starting by blowing up X at Q and resulting

in a new quasi-smooth model of X, that is, square-birational. This manoeuvre is explicitly

described in §4. Let N be the number of singularities of X and denote the singular points

by Qi for i ∈ {1, . . . ,N}. Denoting by XI the model acquired by combining the elementary

links corresponding to Qi, i ∈ I, I ⊂ {1, . . . ,N}, we say X satisfies the K2-total condition

if for every I ⊂ {1, . . . ,N} the model XI satisfies the K2-condition. We are convinced that

K2-condition on X may be enough, and the totality assumption is redundant. In §4, we
give an explicit recipe for constructing all XI models from X. Given X embedded in a

P(1,1,1,2)-bundle, it is rather easy to check this condition using the recipe. Note that in

[32, Cor. 6.4], it is stated that X is birationally rigid if the K2-condition holds for any del

Pezzo fibration X ′ → P1 such that there is a square-birational map g :X ���X ′. Of course,

this result is impossible to apply in practice, and usually one works with only X in order

to show birational rigidity. However, in our situation, we have explicit descriptions of all

necessary models (for this check to be carried out) as described in §4.

1.1.3. Generality

For each singular point, let the fiber containing the point, that is defined by a quartic F

in P(1x,1y,1z,2w), be given by
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wq(x,y,z)+ r(x,y,z) = 0,

where q and r are homogeneous polynomials of degrees 2 and 4, respectively. We require

that the intersection q(x,y,z) = r(x,y,z) = 0 on P2 consists of eight distinct points, for all

singular points of X. Let σ : F̃ → F be the blowup of F at the point (0 : 0 : 0 : 1). We also

require that F̃ is smooth. This generality condition is necessary in our computations, as

otherwise there are several arrangements of singularities and curves of low degree on F to

be considered in the “exclusion” process of the proof. In a few cases we have checked, this

condition can be dropped. Upon improving the techniques, we believe that the generality

condition can be dropped altogether. Note that the models considered in [21] are special

cases in our setting as for them q= 0. They admit no Sarkisov link and in a sense are “more

rigid.”

1.2 Method of the proof

Birational rigidity is often proved via the method of maximal singularities [29]. Roughly

speaking, the method goes as follows: assume there is a birational map χ : X ��� Y , where

Y →Z is another Mori fiber space. Then considerH, the transform of a very ample complete

linear system H′ on Y. Essentially, H is mobile and there exists a rational number n > 0

and a divisor A pulled back from the base of the fibration such that H ⊂| −nKX +A |.
It follows that the pair (X, 1nH) is not canonical (this is standard; see, e.g., the discussion

after Theorem 1.9 in [11]). This implies that there exists a valuation E with center C ⊂X

such that

mE(H)> naE(KX),

where aE(KX) is the discrepancy of E with respect to KX and mE is the multiplicity

of H along C. This inequality together with the geometry of X is then used to exclude

many centers (curves and points on X ) to satisfy this conditions by concluding various

contradictions. Pukhlikov in [28, §6] studied multiplicities on towers of blowups of center

on X and introduced the construction of the staircase to achieve the desired contradiction.

Corti in [11, §5] refines Pukhlikov’s methods for the situations where the staircase technique

is not necessary to reduce the computations without the tower by introducing a new

inequality. We use a combination of these two techniques in §§5 and 6 to exclude all smooth

centers; we then have to use the staircases together with Corti’s inequality at various stages

to obtain our results. We then show that the singular points produce Sarkisov links to other

models XI of the del Pezzo fibration π : X → P1. We show that there is at least one XI

with centers only at the smooth points, which allows a combination of techniques of Corti

and Pukhlikov to be efficiently used.

1.3 Models

Suppose X → P1 is a del Pezzo fibration of degree 2, and view X as a hypersurface of

bi-degree (d,4) in a toric variety T with Picard group Z2, where Cox ring of T is given by

the following data:

(i) the homogeneous coordinate ring of T is Cox(T ) = C[u,v,x,y,z, t],

(ii) with the irrelevant ideal I = (u,v)∩ (x,y,z, t) and
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(iii) the grading given by the columns of the matrix⎛
⎝ u v x y z w

1 1 α β γ δ

0 0 1 1 1 2

⎞
⎠ ,

where α,β,γ,δ are integers. As this description is invariant under an action of SL(2,Z)

on the weight matrix, we can rescale to the following:⎛
⎝ u v x y z w

1 1 0 a b c

0 0 1 1 1 2

⎞
⎠ ,

where 0 ≤ a ≤ b are positive integers and c ∈ Z. We denote this toric variety

by P(1,1,1,2)(0,a,b,c), and say X, the hypersurface, has bi-degree (l,4) in the new

coordinate weights.

Remark 1.4. Note that, once a,b, and c are fixed, not all values of l can define a

suitable hypersurface. For example, if l
4 < a,b, c2 , where a,b,c are positive integers, then the

equation of X is divisible by x, making X reducible. There are various restrictions that

one must take into account to have a suitable del Pezzo fibration. We refer to §5 in [1] for

various cases that are not suitable. For us, the set of discrete invariants that make sense in

the Main Theorem are stated in Proposition1.7 and in the Appendix.

Definition 1.5. Assume that the discrete invariants define a suitable del Pezzo

fibration. Then quasi-smoothness means that the singular locus of the affine cover of X

in C6 is included entirely in the irrelevant locus defined by I.

Remark 1.6. A general member of a family of hypersurfaces of bi-degree (4, l) in

P(1,1,1,2)(0,a,b,c) is smooth only if l=2c. Note that this is because such a hypersurface does

not intersect the singular curve of the ambient toric variety. This confirms how restrictive

the smoothness condition is for these varieties.

For more analysis of this construction, and a complete list of those models that admit a

Sarkisov link of Type III or IV, we refer the reader to [1].

The following results describe some X ⊂ T , as above, which satisfy K2-total condition

in the Main Theorem.

Proposition 1.7. Let X be a hypersurface of bi-degree (4, �) in a P0,a,b,c(1,1,1,2)-

bundle over P1. Suppose

7�/2> 2a+4b+3c+8,

then X satisfies K2-total condition.

Corollary 1.8. Suppose c � 2b and X does not satisfy the K2-total condition. Then

X belongs to one of the 20 families with a,b,c, � from the following table. In particular, if

c� 2b, X satisfies the generality conditions, and X is not birationally rigid, then X belongs

to one of these 20 families.
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a b c �

0 0 0 0,1,2
0 0 1 2,3
0 0 2 4
0 1 2 4,5
0 1 3 6
0 2 4 8
1 1 2 4,5
1 1 3 6
1 2 4 8
2 2 4 8,9
2 2 5 10
2 3 6 12
3 3 6 12
4 4 8 16

1.4 Convention

We denote numerical equivalence by ≡ and use ∼Q for linear equivalence of Q-divisors.

All varieties are algebraic, normal, and defined over C unless stated otherwise. For

a rational map χ : Y ��� X, we denote the proper transform on Y of an object on

X as χ−1
∗ (A).

§2. Preliminary results: Singularities of pairs

In this section, we recall the notion of singularities of pairs. We also state some results

which let us find relations between multiplicities and singularities.

Let X be an algebraic variety, possibly nonprojective and singular. Let E be a prime

divisor on X. Then it is easy to associate a discrete valuation νE of C(X) corresponding to

E by

νE(f) = multE(f) for f ∈ C(X).

Definition 2.1 [27]. Let ϕ : X̃ →X be a projective birational morphism, and let ν be

a discrete valuation of C(X). We say that a triple (X̃,ϕ,E) is a realization of the discrete

valuation ν if E is a prime divisor on X̃ and νE = ν. Then ϕ(E) is called the center of the

discrete valuation νE on X.

Note that if X is projective, then every discrete valuation of the field C(X) admits a

center on X, which does not depend on the realization.

Definition 2.2. Let D be a Q-divisor on X. The multiplicity of a discrete valuation ν

at D is

ν(D) = multE ϕ∗(D) ∈Q

for some realization (X̃,ϕ,E) of ν. If the center of ν on X is of codimension � 2, then we

can write

ϕ∗(D) = ϕ−1
∗ (D)+ν(D)E+

∑
aiEi,
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where Ei are the exceptional divisors of ϕ that differ from E and ai ∈Q. It is important to

note that the multiplicity does not depend on the choice of the realization.

Definition 2.3. Let D be a Q-divisor on X such that KX +D is Q-Cartier. Let π :

X̃ →X be a birational morphism, and let D̃= π−1
∗ (D) be the proper transform of D. Then

K
˜X + D̃ ∼ π∗(KX +D)+

∑
E

a(E,X,D)E,

where E runs through all distinct exceptional divisors of π on X̃ and a(E,X,D) are rational

numbers. The number a(E,X,D) =a(νE ,X,D) is called the discrepancy of the divisor E

(discrete valuation νE) with respect to the pair (X,D).

Definition 2.4. Let D be a divisor on X. We say that the pair (X,D) is terminal

(resp. canonical) at a discrete valuation ν with a center on X if a(E,X,D) > 0 (resp.

a(E,X,D)� 0) for some realization (X̃,ϕ,E) of ν. We say that the pair (X,D) is terminal

(resp. canonical) at a subvariety Z if it is terminal (resp. canonical) at every discrete

valuation ν on K(X) such that a center of ν on X is Z. We say that the pair (X,D)

is terminal (resp. canonical) if it is terminal (resp. canonical) at every subvariety of

codimension � 2. If D = 0, we simply say that X has only terminal (resp. canonical)

singularities.

Definition 2.5. Let M be a linear system, not necessarily mobile, on X. We say that

the pair (X,λM) is terminal (resp. canonical) if for every subvariety Z of codimension � 2

and for a general D ∈M, the pair (X,λD) is terminal (resp. canonical) at Z.

Remark 2.6. Consider the pair (X,M). Let f : Y → X be a projective birational

morphism, let Ei be the exceptional divisors of f, and let M̃ be the proper transform

of M on Y. Then

KY +M̃−
∑

a(Ei,X,M)Ei ∼ f∗(KX +M).

The pair (
Y,M̃−

∑
a(Ei,X,M)Ei

)
is called the log pullback of the pair (X,M). It follows from the definition that the

log pullback of the pair has the same singularities as the pair. Note that we view

M̃−
∑

a(Ei,X,M)Ei as a multiple of a linear system with fixed components.

Lemma 2.7 [9, Th. 1.8]. Let M be a mobile linear system on C2. Let C be a curve

passing through the origin. Suppose the pair (C2, 1nM−αC) is not canonical at 0, then for

general D1,D2 ∈M,

mult0D1 ·D2 > 4n2α.

Proposition 2.8 (Corti’s inequality [11, Th. 3.12]). Let
∑

Fi ⊂C3 be a reduced surface.

Let M be a mobile linear system on C3, and let Z =D1 ·D2 be the intersection of general

divisors D1,D2 ∈M. Write Z = Zh+
∑

Zi, where the support of Zi is contained in Fi and
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Zh intersects
∑

Fi properly. Let γi > 0 be rational numbers such that the pair (C3, 1nM−∑
γiFi) is not canonical. Then there are positive rational numbers 0< ti � 1 such that

mult0Zh+
∑

timult0Zi > 4n2(1+
∑

γitimult0Fi).

Remark 2.9. Decomposition of Z = Zh+
∑

Zi is not unique, but the inequality holds

for any choice of the decomposition. Note that it is not a requirement that
∑

Fi is a normal

crossing divisor, nor do we ask the surfaces Fi to be smooth.

§3. Rigidity of del Pezzo fibrations

3.1 Noether–Fano method for del Pezzo fibrations

Let us first describe the framework of proving birational rigidity for del Pezzo fibrations.

Let π :X → P1 be a del Pezzo fibration (satisfying K2-condition), and let χ : X ��� Y be a

birational map to a variety admitting a Mori fiber space πY : Y →Z. Let H be a very ample

divisor on Y, and let M= χ−1
∗ (

∣∣H∣∣); we say that M is a mobile linear system associated to

χ. There are nonnegative numbers n ∈ Z and l ∈Q such that M⊂
∣∣−nKX +nlF

∣∣, where
F is a fiber of π.

The core of the Noether–Fano method is the following. Suppose χ is not an isomorphism,

then the pair (X, 1nM) is not canonical. There are several possibilities for the centers of

singularities of this pair: a singular point of X, a curve passing through a singular point of

X, any other curve of X, and a nonsingular point of X. To prove X is birationally rigid,

one uses the geometric properties of X to exclude a center or untwist χ using that center.

Excluding goes by proving that the pair is canonical at the center, and untwisting composes

χ with some square-birational map ϕ : X ���X ′, where χ◦ϕ−1 has lower Sarkisov degree

than χ (see [11, §2.1] for the definition). Thus, the mobile linear system associated to χ◦ϕ−1

is less complicated, and the model X is replaced by X ′.

We do this analysis for orbifold del Pezzo fibrations of degree 2. Let X be a quasi-smooth

hypersurface in a P(1,1,1,2)-bundle over P1. Suppose also that π :X → P1 is a del Pezzo

fibration of degree 2 and that X satisfies the K2-condition.

3.2 Step 1: Curves not passing through singular locus of X

This part is well known by the work of Pukhlikov [28].

Proposition 3.1 [28, §3, Cases 2 and 4]. Let C be a curve on X which is not a section

of π. Suppose also that C does not pass through singular points of X. Then the pair (X, 1nM)

is canonical at C.

Proposition 3.2 [28, §3, Case 2]. Let C be a section of π which does not pass through

a singular point of X. Then either the pair (X, 1nM) is canonical at C or there exists a

birational involution ϕC such that

• there are numbers n′ < n and l′ such that ϕC(M)⊂
∣∣−n′KX +n′l′F

∣∣, and
• the pair

(
X, 1

n′ (ϕC)(M)
)
is canonical at C.

Corollary 3.3 [28, §3]. There is a birational map ϕ : X ���X such that for the linear

system ϕ(M)⊂
∣∣−n′KX +n′l′

∣∣, the pair (X, 1
n′ϕ(M)) is canonical at curves in X \SingX

and ϕ= ϕC1 ◦ · · · ◦ϕCm , where Ci are sections of X.

Proof. Apply Proposition 3.1 and then apply Proposition 3.2 as many times as necessary.

The process terminates since for every application of Proposition 3.2, we have n′ < n.
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In what follows, we write χ instead χ◦ϕ−1 to simplify notation, and safely assume it is

canonical at curves in the smooth locus. In the remainder of this article, we show that points

and curves passing through singular points are either excluded or untwisted, as explained

in the following steps.

3.3 Step 2: Singular points of X and curves passing through them

Singular points of X are cyclic quotient singularities. By the famous result of Kawamata

on extremal extractions from such points, if the center of noncanonicity contains the singular

point, then it is only that point and cannot be a curve (see §4). So it remains to study the

singular points as centers. In §4, we construct birational maps to other models of del Pezzo

fibration ϕI :X ���XI , with the diagram

X
ϕI �����

π
��

XI

πI

��
P1 g

P1,

being commutative. Let MI ⊂
∣∣−nKXI

+nlIF
∣∣ be the linear system corresponding to the

map χ ◦ϕI . We prove that the pair (XI ,
1
nMI) may only be noncanonical at nonsingular

points of XI for appropriate choice of I. Furthermore, we show that by construction XI

satisfies the generality conditions in the Main Theorem. This untwists χ for singular points.

From that point on, with an abuse of notation, instead of χ, we work with χ◦ϕI and call

it χ.

3.4 Step 3: Non-singular points of X

After Steps 1 and 2, we conclude that if (X, 1nM) is not canonical at a subvariety B, then

B is a point and X is smooth at B. This may indeed occur if χ is square-birational. If we

assume that χ is not square-birational, then we can use Proposition 5.1 to get a stronger

requirement: (X, 1nM−γF ) is not canonical at B, where F is a fiber containing B and γ is

a number depending on M. Recall that there are lines in the fibers that contain singular

points of X which intersect −KX with 1
2 . If B does not lie on a such line, in particular, when

F does not contain singularities of X, then Corti’s inequality together with Proposition 5.1

gives us the necessary contradiction to exclude B. This is the approach of [11], and we cover

it in §5. Sections 6–8 are entirely devoted to the remaining case: excluding the possibility

that the center is a nonsingular point on a curve in a fiber intersecting −KX by 1
2 . As the

reader expects, this is the most complicated case. We combine the approach of [11] with the

staircase used for cubic fibrations in [28, §§6 and 7] to exclude these nonsingular points.

§4. Square maps from 1
2
(1,1,1)-points

In this section, we explicitly work out the square-birational maps produced by blowing

up the singular points. Let X be the hypersurface of bi-degree (�,4) given by the equation

f(u,v)w2+ q(x,y,z;u,v)w+ r(x,y,z;u,v) = 0

in the toric variety T = P(1x,1y,1z,2w)(0,a,b,c)/P
1
u:v.

https://doi.org/10.1017/nmj.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.13


BIRATIONAL RIGIDITY OF ORBIFOLD DEGREE 2 DEL PEZZO FIBRATIONS 897

4.1 Simple case: X has one singular point

First, for simplicity, suppose f(u,v) = u. Then the fiber F given by u = 0 contains the

singular point of X. We now describe each map of the following diagram:

Ũ
ψ �����

σ

��

U

σ̄

��
U

ϕ ����� U.

The variety U is the open subset of X given by v 
= 0. It can be viewed as the locus

{f(u,1)w2 + q(x,y,z;u,1)w+ r(x,y,z;u,1) = 0} inside P(1x,1y,1z,2w)×C1
u. The map σ

is the Kawamata blowup of U along the 1
2(1,1,1)-point [20]. We may describe Ũ as a

hypersurface in Ṽ , where Ṽ is a quasi-projective toric variety with Cox Ṽ =C[x,y,z,w,u, ū].

The grading of this ring is given by the matrix⎛
⎝ u x y z w ū

0 1 1 1 2 0

2 1 1 1 0 −2

⎞
⎠

and irrelevant ideal (u,x,y,z)∩ (w,ū)∩ (x,y,z,w) (see [3, §3.2] for a general treatment of

Cox rings of blowups of rank 2 toric varieties). Note that we are looking at the open set

{v 
= 0}, and hence the rank drops to 2 and the ideal simplifies. We may well-form [3, §2]
the matrix above and rewrite it as⎛

⎝ u x y z w ū

0 1 1 1 2 0

−1 0 0 0 1 1

⎞
⎠ .

The equation of Ũ is

uw2+ q(x,y,z; ūu)w+ ūr(x,y,z; ūu) = 0,

where q(x,y,z;u) = q(y,x,z;u,1) and r(x,y,z;u) = r(x,y,z;u,1). To produce a Sarkisov

link on Ũ , we run a 2-ray game on the ambient space (Ṽ to begin with) and restrict it

to the threefold [5]. Note that the 2-ray game corresponds to the variation of Geometric

Invariant Theory (GIT), inevitably changing (u,x,y,z)∩ (w,ū) part in the irrelevant ideal.

The component (x,y,z,w) in the ideal remains unchanged, and preserves the fibers (the

2-ray game is relative over the base of the fibration). The first step of the game on Ṽ does

not produce a 2-ray game on Ũ , caused by the fact that the equation of the hypersurface

belongs to the irrelevant component (w,ū), and hence we are forced to do an unprojection

(preserving Ũ). This embeds Ũ in the toric variety defined by the Cox ring C[x,y,z,w,u, ū]

graded by ⎛
⎝ u t x y z w ū

0 2 1 1 1 2 0

−1 −1 0 0 0 1 1

⎞
⎠ .

The irrelevant ideal is (u,t,x,y,z)∩ (w,ū)∩ (x,y,z,w,t), and Ũ is a complete intersection

of two hypersurfaces:

uw+ q(x,y,z; ūu) = ūt and −wt= r(x,y,z; ūu).
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The toric 2-ray game now restricts to a 2-ray game on Ũ . The first step is the flop of

eight lines, which corresponds to the eight solutions of {q(x,y,z,0) = r(x,y,z,0) = 0} ⊂ P2,

mapping Ũ to Ū by crossing the (1,0) wall. Recall that the solutions of {q(x,y,z,0) =
r(x,y,z,0) = 0} are distinct because of the generality conditions in the Main Theorem.

The map σ̄ is defined as

(x,y,z,w,t,u, ū) �→ (u
1
2x,u

1
2 y,u

1
2 z,w,ut,uū).

It contracts the proper transform of F into a 1
2(1,1,1)-point. Thus, we see that the equations

of the image of σ̄ are

ūt= w+ q(x,y,z; ū) and wt+ r(x,y,z; ū) = 0.

We can eliminate the variable w, and thus we have only one equation

ūt2− q(x,y,z; ū)w+ r(x,y,z; ū) = 0.

Clearly, this variety is isomorphic to U. Thus, the map ϕ is a birational automorphism. We

may write the map ϕ in coordinates as

(x,y,z,w,u) �→
(
x,y,z,−w+

q(x,y,z;u)

u
;u

)
.

In particular, we see that ϕ is a local involution.

4.2 Birational models of X : Square-birational maps

Note that the description of maps and models in the simple case in §4.1 works out for

any calculations around the local ring near the point in the image of the singular point at

the base curve. We use this to describe all models XI .

Embed X into V, a toric P(1,1,1,2,2)-bundle over P1, as a complete intersection as

follows. Let N be the degree of f ∈C[u,v]. Let the weight matrix of the toric variety V be⎛
⎝ v u x y z w s

0 0 1 1 1 2 2

1 1 0 a b c c+N

⎞
⎠

with irrelevant ideal (u,v)∩ (x,y,z,w,s), and suppose the equations of X are

s= f(u,v)w+ q(x,y,z;u,v), sw+ r(x,y,z;u,v) = 0.

Note that the variable s can be eliminated altogether using the first equation, and then

what we are left with is the model presented in §1.3.
The quasi-smoothness of X implies that f has N distinct zeros, and hence it can be

written in the form f(u,v) = l1(u,v) . . . lN (u,v), a product of distinct linear forms.

Following the Sarkisov link described in §4.1, we can construct X{1}, the variety obtained

at the end of the Sarkisov link starting from the Kawamata blowup of the singular point

in the fiber l1 = 0:

The threefold X{1} is defined as a complete intersection defined by equations

l1s= l2 . . . lNw+ q(x,y,z;u,v) and sw+ r(x,y,z;u,v) = 0
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in the toric fivefold V1 with grading⎛
⎝ v u x y z w s

0 0 1 1 1 2 2

1 1 0 a b c+1 c+N −1

⎞
⎠ .

Note that the irrelevant ideal remains unchanged. Similarly, XI ⊂ V∣∣I∣∣ is defined by

∏
i∈I

lis=
∏
j �∈I

ljw+ q(x,y,z;u,v) and sw+ r(x,y,z;u,v) = 0,

where V∣∣I∣∣ is graded by

⎛
⎝ v u x y z w s

0 0 1 1 1 2 2

1 1 0 a b c+
∣∣I∣∣ c+N −

∣∣I∣∣
⎞
⎠ .

At last, we denote by πI :XI → P1
u,v the restriction of the projection V∣∣I∣∣ → P1

u,v.

While this defines the birational maps between, say, XI and XI∪{j} for j /∈ I, the

description of this birational map as an elementary Sarkisov link is identical to the case in

§4.1, after a suitable change of coordinates.

Remark 4.1. The extremal contraction X̃ →X is constructed so that the image of the

exceptional locus is a terminal quotient singularity [20, Th. 5], and locally is the Kawamata

blowup of that point. This is a unique extremal extraction according to Kawamata. Then

the 2-ray game is followed by a simple Atiyah flop, in particular, it does not change the

singularities of X̃. In short, the links we described here are unique elementary Sarkisov links

starting at 1
2(1,1,1)-points, and, as it can be seen from the coordinate description of the

birational map, the links we constructed are birational involutions in analytic neighborhood

of the central fiber. In particular, it follows that πI :XI → P1
u,v is a del Pezzo fibration.

Remark 4.2. It is clear from the symmetric equation of XI described above that XI
∼=

XJ , where J = {1, . . . ,N}\I. Furthermore, in particular, X{1,...,N} ∼=X.

4.3 Canonicity at 1
2
(1,1,1)-point

Let M ⊂
∣∣− nKX + lF

∣∣ be the mobile linear system associated to a birational map

χ : X ��� Y to a total space Y of a Mori fiber space. Let MI be the proper transform of

M on XI . We now prove that there is an I ⊂ {1, . . . ,N} for which the linear system MI is

canonical at 1
2(1,1,1)-points and at curves passing through them.

Proposition 4.3 [20, Th. 5]. Let g : X̃ →X be the blowup at a 1
2(1,1,1)-point Q, let

D be an effective Q-divisor on X, and let EQ be the exceptional divisor of g. Then a pair

(X,D) is canonical at Q if and only if it is canonical at νEQ
, that is, a(EQ,X,D)� 0.

Corollary 4.4. Suppose the pair (X,D) is not canonical at a curve C passing through

the 1
2(1,1,1)-point Q. Then the pair (X,D) is not canonical at Q.

Because of this corollary, we only concentrate on 1
2(1,1,1) being the center of noncanon-

icity. Note that it is possible for the pair (X, 1nM) to be noncanonical at a singular point

of X. What is true, and proved here, is that there always exist a model XI of X for which

the pair (XI ,
1
nMI) is canonical at singular points.
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Proposition 4.5. Let π :X → P1 be a del Pezzo fibration as in the Main Theorem. Let

M⊂
∣∣−nKX + lF

∣∣ be the mobile linear system associated to a birational map χ : X ��� Y
to the total space Y of a Mori fiber space. Denote singular points of X by Q1, . . . ,QN . Let

I ⊂ {1, . . . ,N} be the maximal subset of indices such that the pair (X, 1nM) is not canonical

at Qi for i ∈ I. Let MI be the proper transform of M on XI . Then the pair (XI ,
1
nMI) is

canonical at all singular points of XI .

Proof. We prove it for I = {1}, and the rest follows by induction. Suppose ϕ : X ���
X ′ = XI is the birational transform described earlier starting from the blowup of the 1

2

point Q1, which factors as

X̃
ψ �����

f

��

X̃I

fI

��
X

ϕ ����� XI

with f and fI being the Kawamata blowups of the singular points and ψ the flopping map

between X̃ and X̃I . We have the following relations:

M∼−nKX + lF and MI ∼−nKXI
+ lIFI ,

M̃= f∗M−νE and M̃I = g∗M−νIEI ,

f∗F = f−1
∗ F +E and f∗

I FI = (fI)
−1
∗ FI +EI ,

where E and EI are the exceptional divisors of f and fI , and M̃ and M̃I are the strict

transforms of M and MI with multiplicities ν, νI positive integers.

Let g : V → X̃ and h : V → X̃I be the resolution of the flopping map ψ. Denote

FV = (f ◦g)∗(F ) = (fI ◦h)∗(FI), and MV = (f ◦g)−1
∗ (M) = (fI ◦h)−1

∗ (MI).

Then we have the following equivalence:

lFV +

(
1

2
− ν

n

)
g−1
∗ (E)+

∑
aiEi ∼KV +

1

n
MV ∼ lIFV +

(
1

2
− νI

n

)
h−1
∗ (EI)+

∑
biEi

for some rational ai and bi. Since ψ is small, the divisors Ei in the sums on the left-hand

side and on the right-hand side are the same. We rearrange the terms:

(l− lI)FV ∼
(
1

2
− νI

n

)
h−1
∗ (EI)+

(
ν

n
− 1

2

)
g−1
∗ (E)+

∑
(bi−ai)Ei. (1)

On the other hand, we have

FV ∼ g−1
∗ (E)+h−1

∗ (EI)+
∑

ciEi (2)

for some ci.

It follows from linear independence of Ei,g
−1
∗ (E),h−1

∗ (EI) that equivalences (1) and (2)

are proportional, in particular, we have

ν+νI = n.
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It implies that at most one of (X, 1nM) and (XI ,
1
nMI) can be noncanonical at those

particular singular points.

Remark 4.6. Note that MI ⊂
∣∣−nKXI

+ lIFI

∣∣ for some lI , that is, n does not change.

This is the case since the maps ϕI induce isomorphisms on general fibers.

Lemma 4.7. All the varieties XI satisfy the generality conditions in the Main Theorem.

Proof. The maps ϕI are compositions of maps ϕi, where the map ϕi is a birational

involution of the analytical neighborhood of the fiber containing Qi. Thus, the fibers,

containing singularities on XI , are isomorphic to the fibers containing singularities on X.

Note that quasi-smoothness of XI can be checked explicitly. The ambient space is singular

along the surface {x = y = z = 0}, which is a P(2,2)-bundle over P1. This is cut out by X

at the solutions to sw = (
∏

i∈I li)s− (
∏

j �∈I lj)w = 0}, which is a finite set of points. Locally

near each singular point s or w, as well as a local parameter in the base, appears as linear

term (because li’s are distinct), and hence can be eliminated so that the analytic type of

singularity at each point is 1
2(1,1,1). There are no other singularities by the generality

assumptions on X.

§5. Supermaximal singularities

In this section, we establish a framework for excluding smooth points. We follow the

approach of Pukhlikov [28]. We exclude the points that lie on π-vertical curves intersecting

−KX by 1
2 in §6–8, and all the other points in Proposition 5.4.

By Corollary 3.3, we may assume that the pair (X, 1nM) is canonical at curves in the

smooth locus. In §§3 and 4, we have shown that there is a model XI for which the pair

(XI ,
1
nMI) is canonical at all the singularities of XI . By Corollary 4.4, the pair (XI ,

1
nMI)

is also canonical at curves passing through the singular locus of XI . Thus, if the pair

(XI ,
1
nMI) is not canonical at B, then B is a point and X is smooth at B. This allows us

to use the following result.

Proposition 5.1 [26, Prop. 2.7]. Let π :X → P1 be a del Pezzo fibration. Suppose that

we are given a nonsquare-birational map χ : X ��� Y to a Mori fiber space πY : Y → Z,

and let M⊂
∣∣−nKX + lnF

∣∣ be a mobile linear system associated to χ. Suppose in addition

that the pair (X, 1nM) is canonical at curves on X and l � 0. Then there exist divisorial

valuations νi centered at points P1, . . . ,Pk of X contained in distinct π-fibers and there exist

positive rational numbers γ1, . . . ,γk with the following properties:

• (X, 1nM−
∑

γjFj) is not canonical at ν1, . . . ,νk, where Fi is the π-fiber containing Pi.

•
∑k

j=1 γj > l.

We combine this proposition with Corti’s inequality to derive a contradiction from the

existence of a nonsquare-birational map χ : X ��� Y . Note that l � 0 since XI satisfies the

K2-condition. This is why we require the total K2-condition in the Main Theorem.

We now introduce the notions and notations necessary for application of Corti’s

inequality. First, we simplify the notations by dropping the index I, that is, from now

on, we denote XI by X, πI by π, and so forth.

Let D1, D2 ∈M be general members, and consider the effective 1-cycle Z =D1 ·D2. For

some point P, we find an upper bound on multP Z using the degrees and a lower bound

using Corti’s inequality.
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We decompose Z =Zv+Zh into the vertical and horizontal components with relation to

the fibration π. For the vertical components, we have the decomposition

Zv =
∑
t∈P1

Zv
i +Z ′,

where the support of Zv
i is contained in Fi from Proposition 5.1 and the support of Z ′

is disjoint from F1, . . . ,Fk. We define the degree of a vertical 1-cycle Cv by the number

degCv = Cv · (−KX) and the degree of a horizontal 1-cycle Ch by the number degCh =

Ch ·F . Let f be the class of a line in a fiber, then degf = 1.

Now, we look for the pair, and the point, at which we apply Corti’s inequality.

Lemma 5.2 [21, Cor. 4.8]. There is an index i such that

degZv
i < 4n2γi.

We say that νi is a supermaximal singularity if degZv
i < 4n2γi, and clearly Lemma 5.2

implies that a supermaximal singularity exists. Fix such a supermaximal singularity νi. To

simplify the notations, from now on, denote Fi as F, γi as γ, Pi as P, Z
v
i as Zv, Z

h as Zh,

and νi as ν.

Lemma 5.3 [28, Prop. 1.1]. Let P be a nonsingular point, and let C be a vertical curve

on X. Suppose degC � 1, then multP C � degC.

Proof. For a sufficiently big integer a, the base locus of the linear system
∣∣−KX +aF

∣∣
consists of singular points of X. Let H⊂

∣∣−KX +aF
∣∣ be the subsystem of divisors passing

through P. Then H has a base curve L if and only if L is the vertical curve of degree 1
2

passing through P. In particular, if degC � 1, then C is not in the base locus of H. Thus,

for general H ∈H, we have

multP C �H ·C =−KX ·C = degC.

Proposition 5.4 [28, §4]. Let P be a nonsingular point on X. Suppose the degree of

every vertical curve passing through P is at least 1. Then P cannot be the center of a

supermaximal singularity.

Proof. By definition of the degree of a horizontal cycle, we have

multP Zh � Zh ·F = degZh =D2 ·F = 2n2

for a general divisor D ∈M.

Suppose P is the center of a supermaximal singularity, and denote by F the fiber

containing P. A general member H ∈ H
∣∣
F

does not share components with Zv since H|F
does not have fixed components. Thus, we see that

multP Zv �D ·Zv = degZv < 4n2γ.

On the other hand, the pair (X, 1nM−γF ) is not canonical at the point P by Proposition

5.1. Hence, by Corti’s inequality, there is a number 0< t� 1 such that

multP Zh+ tmultP Zv � 4n2(1+γtmultP F )> 4(1+γt)n2.

Combining the bounds, we get a contradiction.

https://doi.org/10.1017/nmj.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.13


BIRATIONAL RIGIDITY OF ORBIFOLD DEGREE 2 DEL PEZZO FIBRATIONS 903

Remark 5.5. Let F be a fiber not containing a singular point of X. Then every curve

in F has a positive integer degree and Proposition 5.4 applies for every P ∈ F . Let F be

a fiber containing a 1
2(1,1,1)-point. Then there are curves on F which intersect −KX by

1
2 . If F satisfies the generality condition in the Main Theorem, then there are exactly eight

such curves. If P lies on such a curve, then the bound on multiplicity of Zv at P becomes

multP Zv < 8n2γ which is not enough to lead to a contradiction. Sections 6–8 are entirely

devoted to dealing with this issue.

§6. Construction of the staircase in the generic case

Let X(0) be a projective threefold, let F (0) ⊂X(0) be a surface, let L0 ⊂ F (0), L0
∼= P1,

and suppose X(0) and F (0) are smooth in the neighborhood of L0. Let us associate the

following construction to L0 which goes by the name staircase. The notion of the staircase

has been introduced by Pukhlikov in [28, §6]. The staircase associated to L0 is the following

chain of morphisms which we define inductively:

X(M) σM �� X(M−1) σM−1 �� · · · σ1 �� X(0).

The morphism σi : X
(i) → X(i−1) is the blowup at Li−1, and we denote E(i) to be its

exceptional divisor. Clearly, for every i, we have that E(i) ∼=Fm, for some m. If m> 0, then

let Li be the exceptional section of E(i). If m = 0, then let Li be a line from the ruling

of E(i) ∼= P1 × P1 horizontal with respect to the P1-fibration σi|E(i) . Denote the proper

transform of E(i) on X(j) as E(i,j) and the proper transform of F (0) on X(j) as F (j). Let

fi ∈A2(X(i)) be the class of a fiber of the ruled surface E(i).

Theorem 6.1. Let X(0) be a projective threefold, let F (0) be a surface in it, and suppose

L0 is a smooth rational curve in F (0). Suppose X(0) and F (0) are smooth in the neighborhood

of L0. Moreover, assume that L0 ·KX(0) = 0 and L0 ·F (0) = −1. Then, for the staircase

associated to L0, the following assertions are true:

(i) E(1) ∼= P1×P1,

(ii) E(i) ∼= F1, for i� 2,

(iii) σ∗
1(L0)≡ L1−f1,

(iv) σ∗
i (Li−1)≡ Li, for i� 2,

(v) Li ⊂ E(1,i), for all i,

(vi) E(i,i+1)|E(i+1) is disjoint from Li+1, for i� 2,

(vii) F (1) either contains L1 or is disjoint from it, and νE(1)(F (0)) = 1, and

(viii) F (i) is disjoint from Li, for i� 2, and νE(i)(F (0)) = i−1+ δ, where δ =multL1 F
(1).

F

E1

Ln
En

En−1

E2

The staircase when δ = 0

F E2

E3

En

Ln

E1

The staircase when δ = 1
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We use the following result in the proof of the theorem.

Lemma 6.2 [19, Lem. 2.2.14]. Let σ : Y →X be the blowup of a threefold X at a smooth

projective curve C. Suppose also that X is smooth along C. Let E be the exceptional divisor

of σ, then E is a projectivization of the normal bundle NC/X . Denote the class of the fiber

of E as f, then the following equalities hold:

(i) E2 =−σ∗(C)+deg(NC/X)f ,

(ii) E3 = deg(NC/X),

(iii) E ·f =−1,

(iv) E ·σ∗(D) = (C ·D)f , for some divisor D on X,

(v) f ·σ∗(D) = 0, for some divisor D on X,

(vi) E ·σ∗(Z) = 0, for any Z ∈A2(X), and

(vii) deg(NC/X) = 2g(C)−2−KX ·C.

To prove Theorem 6.1, we combine the following lemmas.

Lemma 6.3. With the assumptions of Theorem 6.1, we have degNL0/X(0) =OL0(−1)⊕
OL0(−1). In particular, E(1) ∼= P1×P1.

Proof. Recall that L0 is a smooth rational curve, and thus Lemma 6.2 implies

degNL0/X(0) = 2g(L0)−2−KX(0) ·L0 =−2.

Since F (0) ·L0 =−1, we have (NF (0)/X(0))
∣∣
L0

∼=OL0(−1). There is the exact sequence

0→NL0/F (0)
e→NL0/X(0)

s→ (NF (0)/X(0))
∣∣
L0

→ 0.

For some a and b, we have NL0/X(0)
∼= OL0(a)⊕OL0(b), and without loss of generality,

we may assume that a � b. Because degNL0/X(0) = −2, we have a+ b = −2, and since

(NF (0)/X(0))
∣∣
L0

∼=OL0(−1), we have NL0/F (0)
∼=OL0(−1).

Let pa be the projection OL0(a)⊕OL0(b)→OL0(a). Suppose pa ◦e : OL0(−1)→OL0(a)

is a nontrivial map, then b� a�−1 and therefore a= b=−1. Hence, a=−1 and b=−1.

Suppose pa ◦ e is trivial, then the map s|OL0
(b) is nontrivial and b � −1. Thus, we have

b=−1, and hence a= b=−1.

Lemma 6.4. With the assumptions of Theorem 6.1, we have

(i) σ∗
1(L0)≡ L1−f1,

(ii) E(1) ·L1 =−1,

(iii) KX(1) ·L1 =−1, and

(iv) E(2) ∼= F1.

Proof. By Lemma 6.2, we have

0 = E(1) ·σ∗
1(L0) = E(1)|E(1) ·σ∗

1(L0) =
(
−σ∗

1(L0)−2f1
)
·σ∗

1(L0),

and thus σ∗
1(L0)

2 =−2f1 ·σ∗
1(L0). Clearly, σ

∗
1(L0)≡ L1+af1 for some a, and hence

−2 = σ∗
1(L0)

2 = (L1+af1)
2 = 2a.

Therefore, σ∗
1(L0)≡ L1−f1.

We use (i) and Lemma 6.2 to prove (ii):

L1 ·E(1) = σ∗
1(L0) ·E(1)+f1 ·E(1) = f1 ·E(1) =−1.
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Thus, (iii) holds:

L1 ·KX(1) = L0 ·KX(0) +f1 ·E(1) =−1.

By Lemma 6.2, we compute

degNL1/X(1) =−2−KX(1) ·L1 =−1.

On the other hand, NE(1)/X(1) |L1
∼=OL1(−1) by (ii). Using the same argument as in Lemma

6.3, we conclude that E(2) ∼= F1.

Lemma 6.5. Suppose E(i) ∼= F1 and KX(i−1) ·Li−1 =−1, then

(i) σ∗
i (Li−1)≡ Li,

(ii) E(i) ·Li = 0,

(iii) KX(i) ·Li =−1, and

(iv) E(i+1) ∼= F1.

Proof. Since degNLi−1/X(i−1) =−1, Lemma 6.2 implies

0 = E(i) ·σ∗
i (Li−1) = E(i)|E(i) ·σ∗

i (Li−1) =
(
−σ∗

i (Li−1)−fi
)
·σ∗

i (Li−1).

Therefore, σ∗
i (Li−1)

2 = −f · σ∗
i (Li−1) = −1, and hence σ∗

i (Li−1) is equivalent to the

exceptional section Li. Thus, assertions (i) and (ii) hold.

By (i), we have

KX(i) ·Li =KX(i) ·σ∗
i (Li−1) =KX(i−1) ·Li−1+E(i) ·σ∗

i (Li−1) =−1.

Lemma 6.2 implies

degNLi/X(i) =−2−KX(i) ·Li =−1,

while NLi/E(i)
∼=OLi(−1) since L2

i =−1. Hence, computing NLi/X(i) as in Lemma 6.3, we

conclude that E(i+1) ∼= F1.

Proof of Theorem 6.1. Lemma 6.3 implies (i). Lemma 6.4 implies (iii). Lemmas 6.4 and

6.5 imply (ii) and (iv) by induction.

We prove (v) by induction. Obviously, L1 ⊂ E(1). The equality L1 ·E(1) = −1 holds by

Lemma 6.4. We show that if Li−1 ·E(1,i−1) = −1, then Li ⊂ E(1,i) and Li ·E(1,i) = −1.

Indeed, by Lemma 6.2, we have

E(1,i) ·E(i) ≡ σ∗
i (E

(1,i−1)) ·E(i)− (E(i))2 ≡
(
E(1,i−1) ·Li−1

)
fi+Li+fi ≡ Li.

The curve Li is the only effective curve in its numerical equivalence class that lies on

E(i) since E(i) ∼= F1 by assertion (ii). Thus, we see that E(i) ∩E(1,i) = Li, in particular,

Li ⊂ E(1,i). Moreover,

E(1,i) ·Li =
(
E(1,i)|E(i) ·Li

)
E(i) = L2

i =−1.

Thus, (v) holds.

By induction, Lemmas 6.4 and 6.5 imply that E(i) ·Li =0, for all i� 2. Thus, we compute

E(i−1,i) ·E(i) ≡ σ∗
i (E

(i−1)) ·E(i)− (E(i))2 ≡
(
E(i−1) ·Li−1

)
fi+Li+fi ≡ Li+fi.
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Hence, by computing the intersection,

E(i−1,i) ·Li = E(i−1,i)|E(i) ·Li =
(
(Li+fi) ·Li

)
E(i) = 0.

We conclude that either E(i−1,i) is disjoint from Li or Li ⊂ E(i−1,i). The latter does not

occur since E(1,i−1) intersects E(i−1) transversally and Li ⊂E(1,i). Therefore, we have shown

that (vi) holds.

By Lemma 6.2, we have

F (1)|E(1) ≡−
(
E(1)

)2
+
(
F (0) ·L0

)
f1 ≡ σ∗

1(L0)+2f1−f1 ≡ L1.

Using this equivalence, we compute F (1) ·L1 =
(
L1 ·L1

)
E(1) = 0. Thus, F (1) is either disjoint

from L1 or it contains L1. Since multL0 F
(0) =1, we have νE(1)(F (0)) = 1, that is, (vii) holds.

If F (1) and L1 are disjoint, then F (i) is disjoint from Li. Suppose L1 ⊂ F (1), then F (1)

and E(1) are smooth surfaces intersecting along a smooth curve L1 transversally at every

point. Thus, F (2) and E(1,2) are disjoint, in particular, L2 ⊂E(1,2) and F (2) are disjoint. It

follows that Li is disjoint from F (i) for all i� 2.

To finish the proof of (viii), we compute(
σ1 ◦σ2 ◦ · · · ◦σi

)∗
(F (0)) = F (i)+E(1,i)+(1+ δ)E(2,i)+ · · ·+(i−2+ δ)E(i−1,i)

+(i−1+ δ)E(i).

6.1 The staircase over a del Pezzo fibration

We would like to apply Theorem 6.1 to πI : XI → P1. As before, we drop the index I to

simplify the notations. Suppose π : X → P1 is a del Pezzo fibration of degree 2 such that X

is a quasi-smooth complete intersection in a P(1,1,1,2,2)-bundle over P1. Suppose Q ∈X

is a 1
2(1,1,1)-point and F is the fiber containing Q. Let σQ :X(0) →X be the Kawamata

blowup of X at Q, and let EQ be the exceptional divisor of σQ. The fiber F, containing Q,

can be embedded into P(1,1,1,2), and the equation of the image is of the form

wq(x,y,z)+ r(x,y,z) = 0.

Let L⊂ F be a half-line, that is, a curve L such that L · (−KF ) =
1
2 . Let L0 and F (0) be

the proper transforms of L and F, respectively, on X(0). We may construct the staircase

associated to L0. We also say that the staircase is associated to the half-line L.

If X satisfies the generality conditions, then F (0) and L(0) are smooth along L0. Thus,

to show that the triple X(0), F (0), L0 satisfies the assumptions of Theorem 6.1, we only

need to consider the intersections.

Lemma 6.6. The following equalities hold:

(i) L0 ·EQ = 1,

(ii) L0 ·F (0) =−1, and

(iii) L0 ·KX(0) = 0.

Proof. Let P= P(1,1,1,2), and let H be the generator of Cl(P). Because F ⊂ P, we can

express L in P as the intersection H1 ·H2, for some Hi ∈
∣∣H∣∣. Let σP : PQ → P be the blowup

at the point Q, and let EP be its exceptional divisor. Clearly, σP : (σP)
−1
∗ (F ) → F is the

blowup at Q, and thus we may identify (σP)
−1
∗ (F ) with F (0) and (σP)

−1
∗ (L) with L0. Let
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Hi,Q be the proper transform of Hi on PQ, then L0 =H1,Q ·H2,Q. Denote the exceptional

divisor of σP as EP, then

L0 ·EQ = L0 ·EQ

∣∣
F (0) = L0 ·EP

∣∣
F (0) = L0 ·EP =H1,Q ·H2,Q ·EP =H1,Q

∣∣
H2,Q

·EP

∣∣
H2,Q

.

The surface H2 is isomorphic to P(1,1,2), and σP|H2,Q
is the blowup at the singular point.

It follows that H2,Q
∼=F2, EP

∣∣
H2,Q

is the exceptional section, and H1,Q

∣∣
H2,Q

is a fiber. Thus,

we have (i)

L0 ·EQ =H1,Q

∣∣
H2,Q

·EP

∣∣
H2,Q

= 1.

To prove (iii), it is enough to show that F (0) = F − 2
2EQ = F −EQ. Indeed, we find the

intersection

L0 ·F (0) = L0 · (F −EQ) =−L0 ·EQ =−1.

The equality (iii) follows from (i)

KX(0) ·L0 = (σ∗KX +
1

2
EQ) ·L0 =KX ·L+

1

2
EQ ·L0 = 0.

We now prove the claim. Recall that X is a complete intersection in P(1,1,1,2,2) given

by the equations

g(u,v)s= f(u,v)w+ q(x,y,z;u,v), and sw+ r(x,y,z;u,v) = 0.

The point Q lies on (x = y = z = 0), and up to a change of coordinates on the base, we

may assume that it is in the fiber u= 0. Thus, up to exchanging variables w and s, we may

assume that Q is given by x= y = z = w = u. Consider a neighborhood UV of Q given by

s= v = 1, then the equations of U =X ∩UV are

u(1+u(. . .)) = w(1+u(. . .))+ q(x,y,z;u,1), and w+ r(x,y,z;u,1) = 0.

We may now eliminate the second equation to acquire the embedding U ⊂ TU
∼= C3

x,y,z/

μ2×Cu given by the equation

u(1+u(. . .))+ r(x,y,z;u,1)(1+u(. . .)) = q(x,y,z;u,1).

We consider an analytic neighborhood of 0 in C3
x,y,z/μ2 and the corresponding analytic

neighborhoods Uan and TU,an. The equation of Uan is u = 0, and hence the equation of

Fan = F ∩Uan is

r(x,y,z;0,1) = q(x,y,z;0,1),

where r(x,y,z;0,1) 
= 0 by the generality conditions. It follows that F (0) = F − 2
2EQ =

F −EQ since degr(x,y,z;0,1) = 2.

We now discuss the termination condition of the staircase. Recall that there is a mobile

linear system M⊂
∣∣−nKX + lF

∣∣ and discrete valuations ν such that the pair (X, 1nM) is

not canonical at a discrete valuation ν, and ν is a supermaximal singularity. We have shown

in §§3 and 4 that the center of ν is a nonsingular point P. By Remark 5.5 and Proposition

5.4, the point P lies on a curve L such that L ·KXI
= −1

2 . In particular, P is in a fiber

containing a 1
2(1,1,1)-point Q. We want to track the center of ν as we go up the staircase,

in particular, we want to know how far up the staircase we must go.
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Proposition 6.7 [28, Prop. 7.1]. Let X(0) be a threefold, and let F (0) be a surface in

it. Suppose L0
∼= P1, L0 ⊂ F (0). Suppose also X(0) and F (0) are smooth in the neighborhood

of L0. Let σi : X
(i) → X(i−1) be the associated staircase. Let ν be a discrete valuation of

K(X(0)), and suppose that a center of ν on X(0) is a point on L0. Then there is a positive

integer M such that, for every i <M , the center of ν on X(i) is a point on Li and the center

of ν on X(M) is one of the following:

A) a fiber of a ruled surface E(M),

B) a point not on LM and not on E(M−1,M) and M � 2, or

C) a point on E(M)∩E(M−1,M) and M � 3.

The idea of the proof is the following: the discrepancy of E(i) is increasing, and therefore

the center of ν should be away from E(i) for i
 0. If the center of ν on E(1) is a point, we

can choose L1 to be the line from horizontal ruling passing through that point, and thus

we never get cases B and C for M = 1. The intersection of E(1,2) and E(2) is L2, and thus

we never get the case C for M = 2.

§7. Multiplicities on the staircase

The plan is to associate a staircase to a half-line, to apply Corti’s inequality upstairs,

and to derive a contradiction. Thus, we need to find bounds on multiplicities of the cycles

upstairs. We compute them in this section.

Let X be a projective threefold, let B be a smooth, irreducible subvariety of codimension

2, and suppose X is smooth along B. Let σ : X̃ → X be the blowup along B. Then, by

definition of the proper transform for any cycle Z such that B 
⊂ SuppZ, we have σ∗(Z) =

σ−1
∗ (Z)+ZE , where ZE is the cycle with the support on the exceptional divisor E of σ.

The following well-known results give us some information about ZE .

Lemma 7.1. Suppose B is a smooth curve, then ZE ≡ (Z ·B)Sf , where f is the class of

a fiber of the ruled surface E and S is any normal surface containing SuppZ and B which

is smooth at every point of SuppZ ∩B.

Lemma 7.2 [21, Lem. 2.14]. Let F be the hyperplane given by the equation z = 0 in C3,

let B be a smooth irreducible curve in F, and let C be an irreducible curve which does not lie

in F. Let f ∈A2(X) be the class of a fiber of the ruled surface E. Then σ∗C ≡ σ−1
∗ C+kf ,

where k � C ·F .

Suppose cycle Z is the intersection D1 ·D2. Then we can express σ∗Z in terms of the

intersection of proper transforms of D1 and D2 and a cycle supported on the exceptional

divisor.

Lemma 7.3. Let D1 and D2 be general members in a mobile linear system M on a

smooth variety X and suppose Z = D1 ·D2. Let D̃i be the proper transform of Di on X̃.

Then

D̃1 · D̃2 ≡ σ∗(Z)+ΔE ,

where SuppΔE ⊂ E.

Suppose also that B is a smooth curve. Let m= νE(M), and let f ∈ A2(X̃) be the class

of a fiber of the ruled surface E. Then

ΔE ≡m2E2−2m(D1 ·B)f.
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We use the following notations for the proper transforms on the staircase. Let A be a

cycle, a divisor, or a linear system on X. We denote its proper transform on X(i) as A(i).

For divisors and cycles on X(j), we add upper index. For example, E(1,3) is the proper

transform of E(1) on X(3). By σ∗ we mean the appropriate composition of σ∗
i . For example,

E(1,3) = σ∗(E(1))−E(2,3)−2E(3), here σ∗ = σ∗
3 ◦σ∗

2 .

Recall the notations of §5. Let Z =D1 ·D2 for general members D1,D2 ∈M. Let Zh be

the horizontal part of Z, and let Zv be the part of Z which lies in F. Let γ be the number

such that the pair (X, 1nM− γF ) is not canonical at ν and degZv < 4n2γ. Let L be the

curve passing through P and satisfying L ·KX =−1
2 . The cycle Zv can be decomposed as

Zv = kL+Δ,

where k � 0 and Δ does not contain L.

Lemma 7.4. The inequality Δ ·L < 4γn2 holds.

Proof. Let H be the subsystem of
∣∣−KF

∣∣ of divisors containing L. We claim that

dimH = 1. Pick a point P ∈ L such that X is smooth at P. Then it is easy to see that

the linear system of divisors in
∣∣−KF

∣∣ containing P has dimension 1. On the other hand,

any divisor in
∣∣−KF

∣∣ containing P also contains L. Let H be a general element of H.

Let L′ =H−L. Since H does not have fixed points except points on L, the linear system∣∣L′∣∣ is mobile, in particular, L′ is numerically effective. The valuation ν is a supermaximal

singularity, and hence we have degZv < 4γn2, and therefore

Δ ·L�Δ ·L+Δ ·L′ =Δ ·H � Zv ·H = degZv < 4γn2.

Denote νQ = νEQ
. Since the pair (X, 1nM) is canonical at Q, we have νQ(D) � n

2 for

general D ∈M.

Lemma 7.5. Suppose D is a general member in M, then

D(0) ·L0 =
n

2
−νQ(D), and

D(i) ·Li =
n

2
−νQ(D)+λ1 for i� 1,

where λ1 =multL0 M(0).

Proof. Lemma 6.6 implies

D(0) ·L0 = σ∗
Q(D) ·L0−νQ(D)EQ ·L0 =D ·L−νQ(D)

=−nKX ·L−νQ(D) =
n

2
−νQ(D).

On the other hand, by Lemma 6.2 and (iii) of Theorem 6.1,

D(1) ·L1 = (σ∗
1D

(0)−λ1E
(1))(σ∗

1L0+f1) =D(0) ·L0+λ1.

By Theorem 6.1, we have σ∗
i Li =Li+1 for i� 1. Thus, the equality D(1) ·L1 =D(i) ·Li holds

for all i� 1.
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Denote Zi = D
(i)
1 ·D(i)

2 , and we have the decomposition Z0 = Z
(0)
v +Z

(0)
h +ZQ, where

ZQ ⊂ EQ. We can disregard the part ZQ because it is away from P.

For every Zi, we have the part of the cycle in E(i), and let us denote it Γ(i). Recall that

E(1) ∼= P1×P1 and E(i) ∼= F1 for i � 2. The map σi

∣∣
E(i) is the corresponding P1-fibration.

We say that a curve B on E(i) is vertical if σi(B) is a point and horizontal otherwise. We

can decompose the cycle Γ(i) into Li with multiplicity, the rest of the horizontal part, and

the vertical part:

Γ(i) = kiLi+C
(i)
h +C(i)

v .

Since E(i,i+h) is disjoint from Li+h for any h � 2, i � 2, we have σ∗C(i,i+1) ≡ C(i,i+h) for

any h � 2, i � 2. Similarly Δ(i) ≡ σ∗Δ(2) for i � 3 since F (i) is disjoint from Li for i � 2.

Thus, we can decompose

Z0 = Z
(0)
h +Z(0)

v = Z
(0)
h +Δ(0)+k0L0,

Z1 = Z
(1)
h +Δ(1)+C

(1)
h +C(1)

v +k1L1,

Z2 = Z
(2)
h +Δ(2)+C

(1,2)
h +C(1,2)

v +C
(2)
h +C(2)

v +k2L2,

Zi = Z
(i)
h +σ∗(Δ(2)

)
+C

(1,i)
h +C(1,i)

v +σ∗C
(2,3)
h +σ∗C(2,3)

v

+ · · · · · ·+C
(i−1,i)
h +C(i−1,i)

v +C
(i)
h +C(i)

v +kiLi.

Recall that additional upper indices mean the proper transforms.

Denote the multLi−1 M(i−1) as λi. Recall that by fi we denote the class of the fiber of

the ruled surface E(i). Thus, C
(i)
v ≡ d

(i)
v fi and C

(i)
h ≡ d

(i)
h Li+βifi for some d

(i)
v , d

(i)
h , and

βi. Moreover, d
(i)
h � βi, because C

(i)
h does not contain the exceptional section. Recall that

δ = 1 if L1 ⊂ F (1) and δ = 0 otherwise. We now describe how the classes in components of

Zi change as we climb up the staircase.

Lemma 7.6. We have the following relations for the proper transforms and the pullbacks

of the cycles:

Δ(1) ≡ σ∗
1Δ

(0)−
(
Δ(0) ·L0

)
F (0)f1,

Δ(2) ≡ σ∗
2Δ

(1)− δ(Δ(0) ·L0)F (0)f2,

C
(1,i+1)
h ≡ σ∗

i+1C
(1,i)
h −β1fi+1 for i� 1,

C(1,i+1)
v ≡ σ∗

i+1C
(1,i)
h −d(1)v fi+1 for i� 1,

C
(i,i+1)
h ≡ σ∗

i+1C
(i)
h −

(
βi−d

(i)
h

)
fi+1 for i� 2,

C(i,i+1)
v ≡ σ∗

i+1C
(i)
v −d(i)v fi+1 for i� 1,

Z
(i+1)
h ≡ σ∗

i+1Z
(i)
h −αi+1fi+1 for some αi+1 � 2n2.

Proof. First equivalence follows from Lemma 7.1 directly. If δ = 0, that is, if F (1) and

hence Δ(1) is disjoint from L1, then we have Δ(2) ≡ σ∗
2Δ

(1). If δ = 1, that is, if L1 ⊂ F (1),

then the equivalence follows from Lemma 7.1.

Note that

(C
(1,i)
h ·Li)E(1,i) = (C(1) ·L1)E(1) = β1,

(C(1,i)
v ·Li)E(1,i) = (C(1) ·L1)E(1) = d(1)v ,
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(C
(i)
h ·Li)E(i) = βi−d

(i)
h ,

(C(i)
v ·Li)E(i) = d(i)v .

Thus, all equivalences but the last follow from Lemma 7.1. By Lemma 7.2, we have

αi � Z
(i)
h ·E(i) � Zh ·F.

Let D1,D2 be general divisors in M, then

Zh ·F =D1 ·D2 ·F = 2n2,

since Di ∈
∣∣−nKX + lnF

∣∣.
Lemma 7.7. We have the following relations for vertical degrees on X(i). For i= 1,

β1+d(1)v = α1+
(
Δ(0) ·L0

)
F (0) −λ1

(
n−2νQ(D)

)
−2λ2

1−k1−d
(1)
h ,

for i= 2,

β2+d(2)v = α2+ δ
(
Δ(0) ·L0

)
F (0) −λ1

(
n−2νQ(D)

)
−λ2

2−2λ1λ2+β1+d(1)v ,

and for i� 3,

βi+d(i)v = αi−1+
(
β1+d(1)v

)
+d(i−1)

v +
(
βi−1−d

(i−1)
h

)
−λi

(
n−2νQ(D)

)
−2λ1λi−λ2

i ,

where D is a general member in M.

Proof. By Lemma 7.3, we have the equivalence

Z1 ≡ σ∗(Z0)+λ2
1

(
E(1)

)2−2λ1

(
D(0) ·L0

)
f1

≡ σ∗(Z0

)
−λ2

1σ
∗(L0)−

(
λ1

(
n−2νQ(D)

)
+2λ2

1

)
f1.

On the other hand, from the decomposition of Z1 and Lemmas 6.4(i) and 7.6, we have

Z1 = Z
(1)
h +Δ(1)+C

(1)
h +C(1)

v +k1L1

≡ σ∗
1

(
Z

(0)
h +Δ(0)+(k1+d

(1)
h )L0

)
+(β1+d

(1)
h )f1+C(1)

v −
(
α1+

(
Δ(0) ·L0

)
F (0) −k1

)
f1.

Combining these equivalences, we conclude that, in A2(X(1))/σ∗
1A

2(X(0)), we have

(β1+d
(1)
h +d(1)v )f1 ≡ C

(1)
h +C(1)

v

≡−
(
λ1

(
n−2νQ(D)

)
+2λ2

1

)
f1+

(
α1+

(
Δ(0) ·L0

)
F (0) −k1

)
f1.

Similarly, by Lemma 7.3,

Z2 ≡ σ∗(Z1

)
+λ2

2

(
E(2)

)2−2λ2

(
D

(1)
1 ·L1

)
f2

≡ σ∗(Z1

)
−λ2

2σ
∗(L1)−

(
λ2

(
n−2νQ(D)

)
+λ2

2+2λ1λ2

)
f2.

From the decomposition of Z2 and Lemma 7.7, we see that

Z2 = Z
(2)
h +Δ(2)+C

(1,2)
h +C(1,2)

v +C
(2)
h +C(2)

v +k2L2

≡ σ∗(Z(1)
h +Δ(1)+C

(1)
h +C(1)

v +k2L1

)
+C

(2)
h +C(2)

v

−
(
α2+ δΔ(0) ·L0+β1+d(1)v

)
f2.
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Combining these equalities, we conclude that, in A2(X(2))/σ∗
1A

2(X(1)), we have

C
(2)
h +C(2)

v ≡ (d(2)v +β2)f2 ≡
(
α2+ δ

(
Δ(0) ·L0

)
F (0) +β1+d(1)v

)
f2

−
(
λ2

(
n−2νQ(D)

)
+2λ1λ2+λ2

2

)
f2.

Hence, we find d
(2)
v +β2.

We treat the general case the same. Once again by Lemma 7.3, we have

Zi ≡ σ∗(Z(i−1)
)
+λ2

i

(
E(i)

)2−2λi

(
D

(i−1)
1 ·Li−1

)
f

≡ σ∗(Z(i−1)
)
−λ2

iσ
∗(Li−1)−

(
λi

(
n−2νQ(D)

)
+λ2

i +2λ1λi

)
fi.

Once again from the decomposition of Zi and Lemma 7.6, we see that

Zi ≡ Z
(i)
h +C

(1,i)
h +C(1,i)

v +σ∗(Δ(2)+C
(2,3)
h +C(2,3)

v + · · ·+C
(i−2,i−1)
h +C(i−2,i−1)

v

)
+C

(i−1,i)
h +C(i−1,i)

v +C
(i)
h +C(i)

v +kiLi = σ∗(Z(i−1)
h +Δ(1+δ)+C

(1,i−1)
h +C(1,i−1)

v

+C
(2,3)
h +C(2,3)

v + · · ·+C
(i−2,i−1)
h +C(i−2,i−1)

v +C
(i−1)
h +C(i−1)

v +kiLi−1

)
+C

(i)
h +C(i)

v

−
(
αi+β1+d(1)v +(βi−1−d

(i−1)
h )+d(i−1)

v

)
fi.

Combining these equalities, we conclude that, in A2(X(i))/σ∗
1A

2(X(i−1)), we have

C
(i)
h +C(i)

v ≡
(
αi−1+

(
Δ(0) ·L0

)
F (0) +(βi−1−d

(i−1)
h )+d(i−1)

v +β1+d(1)v

)
fi

−
(
λi

(
n−2νQ(D)

)
+2λ1λi+2λ2

i

)
fi.

Hence, we find d
(i)
v +βi.

Corollary 7.8. The vertical degrees are bounded as follows:

β1+d(1)v < 2n2−2λ2
1+4n2γ,

βM +d(M)
v < (M −1)

(
2n2−2λ2

1+4n2γ
)
+

M∑
i=2

(
2n2−λ2

i −2λ1λi

)
+4δn2γ for M � 2.

Proof. Since the pair (X, 1nM) is canonical at Q, the inequality n� 2νQ(D) holds. For

i= 1, by Lemma 7.7, we have

β1+d(1)v = α1+
(
Δ(0) ·L0

)
F (0) −λ1(n−2νQ(D))−2λ2

1−k1−d
(1)
h .

Combining this with the inequalities α1 � 2n2, k1,d
(1)
h � 0, and

(
Δ(0) ·L0

)
F (0) �

(
Δ ·L

)
F
<

4γn2, we get

β1+d(1)v < 2n2+4γn2−2λ2
1.

We prove the second bound by induction. Suppose M = 2. Then, using the same bounds,

we get

β2+d(2)v = α2+ δ
(
Δ(0) ·L0

)
F (0) +d(1)v +β1−λi(n−2νQ(D))−λ2

1−2λ1λ2

< (2n2+4γn2−λ2
1)+(2n2−λ2

2−2λ1λ2)+4δγn2.
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Now, suppose the inequality holds for M−1. Then, similar to the previous case, we have

βi+d(i)v = αi+(β1+d(1)v )+d(i−1)
v +(βi−1−d

(i−1)
h )−λi(n−2νQ(D))−2λ1λi−λ2

i

< (2n2−2λ1λi−λ2
i )+(β1+d(1)v )+d(i−1)

v +βi−1.

Combining this with the bound on β1+d
(1)
v and the assumption of induction, we get the

statement of the corollary.

Corollary 7.9. The following bounds on multiplicities hold.

(i) Let B be a fiber of a ruled surface E(i), then

multBZ1 =multBC(1)
v � 2n2−2λ2

1+4n2γ,

multBZi =multBC(i)
v �

M∑
i=2

(
4n2−2λ2

1−λ2
i −2λ1λi

)
+4(M −1+ δ)n2γ, for i� 2.

(ii) Let B be a point on E(i), and suppose B is not on the exceptional section, then

multB(C
(1)
v +C

(1)
h )�

(
2n2−2λ2

1+4n2γ
)
,

multB(C
(i)
v +C

(i)
h )�

M∑
i=2

(
4n2−2λ2

1−λ2
i −2λ1λi

)
+4(M −1+ δ)n2γ, for i� 2.

Proof. Clearly, multBC
(i)
v is bounded by a vertical degree d

(i)
v whether B is a point or

a curve. Thus, the inequality holds if B is a curve.

Similarly, if B is a point, then multBC
(i)
h � d

(i)
h , and hence multB(C

(i)
v +C

(i)
h ) � d

(i)
v +

d
(i)
h . Since C

(i)
h does not contain the exceptional section, we have d

(i)
h � βi. Therefore, by

Corollary 7.8, the inequalities hold.

§8. Method of supermaximal singularity upstairs

In the previous section, we found an upper bound on the multiplicity of components

of ZM at the center of ν on X(M). In this section, we show that it contradicts Corti’s

inequality.

Lemma 8.1. The pair(
X(M),

1

n
M(M)−

( 1

n
(n−λ1)+γ

)
E(1,M)

−
M∑
j=2

( 1

n

j∑
i=2

(2n−λ1−λi)+(j−1+ δ)γ
)
E(j,M)−γF (M)

)

is not canonical at ν on X(M).

Proof. By Theorem 6.1, we have Li ⊂ E(1,i) for all i and Li 
⊂ E(j,i) for i > j > 1, and

therefore the following equivalence holds:

KX(M) −E(1,M)−
M∑
i=2

2(i−1)E(i,M)− 1

2
EQ ∼ σ∗(KX).
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We disregard EQ in this equivalence and in the next ones since EQ is away from P. For a

general member D ∈M, we have

D(1)+λ1E
(1) ∼ σ∗(D) and

D(M)+

M∑
j=1

( j∑
i=2

(λi+λ1)E
(j,M)

)
∼ σ∗(D), for j � 2.

By Theorem 6.1(vii) and (viii), we have

F (M)+E(1,M)+
M∑
j=2

(j−1+ δ)E(i,M) = σ∗(F ).

Thus, the pair in the statement of the lemma is the log pullback of the pair(
X,

1

n
M−γF

)
.

Hence, by Remark 2.6, the pair is not canonical at ν.

8.1 End of the proof of the Main Theorem

Suppose X(M) is as in Proposition 6.7, that is, the center of ν on X(M) is not a point

on the exceptional section of E(M). We consider the three possibilities for the center of ν,

and in each case, we obtain a contradiction.

8.2 Case A

Suppose the center B of ν on X(M) is a fiber of the ruled surface E(M). Then the only

divisor in the boundary which contains B is E(M). First, suppose M = 1, then the pair(
X(1),

1

n
M(1)−

( 1

n
(n−λ1)+γ

)
E(1)

)
is not canonical at ν. By Lemma 2.7,

multBZ1 > 4n2−4nλ1+4n2γ.

Combining this inequality with Corollary 7.9, we get

2n2−2λ2
1+4n2γ > 4n2n−λ1

n
+4n2γ

or, equivalently,

0> 2n2−4nλ1+2λ2
1 = 2(n−λ1)

2,

which is a contradiction.

Now, suppose M � 2. By Lemma 8.1,

(
X(M),

1

n
M(M)−

( 1

n

M∑
i=2

(2n−λ1−λi)+(M −1+ δ)γ
)
E(M)

)
is not canonical at ν. By Lemma 2.7, we have

multBZM >

M∑
i=2

(8n2−4nλ1−4nλi)+4(M −1+ δ)n2γ.
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Combining this inequality with Corollary 7.9, we get

M∑
i=2

(4n2−2λ2
1−λ2

i −2λ1λi)+4(M −1+ δ)n2γ

>
M∑
i=2

(8n2−4nλ1−4nλi)+4(M −1+ δ)n2γ.

or, equivalently,

(M −1)λ2
1+

M∑
i=2

(
2n−λ1−λi

)2
< 0,

which is again a contradiction.

8.3 Case B

Suppose the center B of ν on X(M) is a point which is not on E(M−1,M). Then the only

divisors in the boundary containing B are E(M) and possibly F (M) if M = 2.

First, suppose M = 2 and B ∈ F (2), then δ = 1. Then the pair(
X(2),

1

n
M(2)−

( 1

n
(2n−λ1−λ2)+2γ

)
E(2)−γF (2)

)

is not canonical at ν, and the components of Z2 which may contain B are: Z
(2)
h , C

(2)
v , C

(2)
h ,

and Δ(2). By Corti’s inequality, there are numbers 0< t,tF � 1 such that

multBZ
(2)
h + tmultB

(
C(2)

v +C
(2)
h

)
+ tF multBΔ(2)

� 4n2+ t(8n2−4nλ1−4nλ2+8n2γ)+4tFn
2γ.

On the other hand,

multBΔ(2) �Δ(2) ·E(2) =
(
Δ(0) ·L0

)
F (0) � 4n2γ,

and we already mentioned the bounds on the other cycles. Combining the bounds, we get

2n2+ t(4n2−2λ2
1−λ2

2−2λ1λ2+8n2γ)+4tFn
2γ > 4n2+ t(8n2−4nλ1+8n2γ)+4tFn

2γ,

or, equivalently,

2n2+ tλ2
1+ t(2n−λ1−λi)

2 < 0,

which is again a contradiction.

Note that the proper transform on F (2) of the half-line L which gave us so much trouble

earlier is a part of C
(2)
h , and thus its contribution to multiplicity is bounded.

Suppose M � 2 and B 
∈ F (2). Then the pair

(
X(M),

1

n
M(M)−

( 1

n

M∑
i=2

(2n−λ1−λi)+(M −1+ δ)γ
)
E(M)

)
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is not canonical at ν, and the components of ZM which may contain B are Z
(M)
h , C

(M)
v ,

and C
(M)
h . By Corti’s inequality, there is a number 0< t� 1 such that

multBZ
(M)
h + tmultB

(
C(M)

v +C
(M)
h

)
� 4n2+ t

M∑
j=2

(
8n2−4λ1n−4λin

)
+4t(M −1+ δ)n2γ.

Combining this inequality with the bounds from Corollary 7.9, we get

2n2+ t
M∑
j=2

(
4n2−2λ2

1−λ2
i −2λ1λi

)
+4t(M −1+ δ)n2γ

> 4n2+ t
M∑
j=2

(
8n2−4λ1n−4λin

)
+4t(M −1+ δ)n2γ,

or, equivalently,

2n2+ t(M −1)λ2
1+

M∑
i=2

(2n−λ1−λi)
2 < 0,

contradiction.

8.4 Case C

Suppose the center B of ν on X(M) is a point on the intersection E(M)∩E(M−1,M). These

are the only divisors of the boundary containing B, that is, B 
∈ F (M). Denote M− =M−1

for compactness of formulae. The components of ZM which may contain B are: Z
(M)
h ,

C
(1,M)
v , C

(1,M)
h , C

(M−,M)
h , and C

(M−,M)
v . Furthermore, the pair

(
X(M),

1

n
M(M)−

( 1

n

M−∑
i=2

(2n−λ1−λi)+(M−−1+ δ)γ
)
E(M−,M)

−
( 1

n

M∑
i=2

(2n−λ1−λi)+(M −1+ δ)γ
)
E(M)

)

is not canonical at ν. By Corti’s inequality, there are numbers 0< t,t− � 1 such that

multBZ
(M)
h + tmultB

(
C(M)

v +C
(M)
h

)
+ t−multB

(
C(M−,M)

v +C
(M−,M)
h

)
� 4n2+ t

M∑
j=2

(
8n2−4λ1n−4λin

)
+ t−

M−∑
j=2

(
8n2−4λ1n−4λin

)
+4t(M −1+ δ)n2γ+4t−(M−−1+ δ)n2γ.

By combining the inequality with the bounds from Corollary 7.9, we get

2n2+ t
M∑
j=2

(
4n2−2λ2

1−λ2
i −2λ1λi

)
+ t−

M−∑
j=2

(
4n2−2λ2

1−λ2
i −2λ1λi

)
+4t(M −1+ δ)n2γ+4t−(M−−1+ δ)n2γ >
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> 4n2+ t
M∑
j=2

(
8n2−4λ1n−4λin

)
+ t−

M−∑
j=2

(
8n2−4λ1n−4λin

)
+4t(M −1+ δ)n2γ+4t−(M−−1+ δ)n2γ,

or, equivalently,

2n2+ t(M −1)λ2
1+ t

M∑
i=2

(2n−λ1−λi)
2+ t−(M−−1)λ2

1+ t−
M−∑
i=2

(2n−λ1−λi)
2 < 0,

which is a contradiction.

In addition, this ends the process of exclusion of points in fibers containing singular

points of X, and therefore the proof of the Main Theorem is complete. �

Appendix. Explicit computations on K2-condition

A.1 On preservation of the K2-condition

Here, we prove a result in favor of K2-condition being preserved in the running of the

Sarkisov links at singular points of X.

Throughout this section, we assume that π : X → P1 is a del Pezzo fibration and

that X is a general quasi-smooth hypersurface of degree (4, �) in a P(1,1,1,2)-bundle

T = P(1,1,1,2)(0,a,b,c). We may assume 0 � a � b without loss of generality, and allow c

to take value in Z. Let u,v be the coordinates on the base P1, and let x,y,z,w be the

coordinates on the fiber.

Denote by MT the divisor with the equation {x = 0}, and let M = MT

∣∣
X
. Denote by

F a fiber of π on X, and let FT be a fiber of the P(1,1,1,2)-bundle. Thus, we have that

X ∼ 4MT + �FT . Clearly, for the cone of effective divisors on the toric level, we have that

Eff1(T ) = 〈MT ,FT 〉 if c≥ 0.

By the choice of T, we have KT =−5MT − (2+a+ b+ c)FT and by adjunction

KX =−M +(�−2−a− b− c)F.

The following relations for the intersection numbers are rather easy to calculate.

Lemma A.1. With notation as above, we have that

M3
T ·FT = 1/2,

2M4
T =−a− b− c/2,

M2 ·F =M2
T ·FT ·X = 2,

M3 =M3
T ·X = �/2−2a−2b− c.

Proof. The first equality is just computation on P(1,1,1,2). The second equality follows

from the fact that the intersection {x= 0}∩{y = 0}∩{z = 0}∩{w = 0} is empty. The rest

is computed by intersection with X.

Proposition A.2. Let π : X → P1 be a del Pezzo fibration of degree 2. Suppose X is

a quasi-smooth hypersurface of bi-degree (4, �) in a P(1,1,1,2)-bundle T over P1. Suppose

c� 2b, then for any I, the variety XI is also a hypersurface in T of bi-degree (4, �).

https://doi.org/10.1017/nmj.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.13


918 H. ABBAN AND I. KRYLOV

Proof. It is enough to prove the statement of the proposition for X ′ = X{i}, then the

general case follows for any I by induction.

In §4.2, we represented X ′ as a complete intersection in V ′ a P(1,1,1,2,2)-bundle over

P1. We change the coordinates in V ′ to have a more convenient first equation.

Suppose the singularity for which we constructed a Sarkisov link is given by x= y = z =

u= 0. Then we can decompose the coefficient at w2 in the following way:

f(u,v) = uvN−1+u2g(u,v).

The equations of X ′ in V ′ are

us= (vN−1+ug(u,v))w+ q(x,y,z;u,v) and sw+ r(x,y,z;u,v) = 0.

Let us change the coordinates s= snew+g(u,v)w. Then the new equations are

us= vN−1w+ q(x,y,z;u,v) and sw+g(u,v)w2+ r(x,y,z;u,v) = 0.

Since c� 2b, we may also decompose

q(x,y,z;u,v) = uq1(x,y,z;u,v)+vN−1q2(x,y,z;u,v).

Indeed, the degree of the first equation is (2, c+N), and thus

q ∈ 〈u,v〉c+N−2b ⊂ 〈u,v〉N ,

where 〈u,v〉 is the ideal generated by u,v. Then we change coordinates

s= snew+ q1(x,y,z;u,v),

w = wnew− q2(x,y,z;u,v).

The new first equation is us = vN−1w. Clearly, this equation defines a P(1,1,1,2)-bundle

over P1. Let (uT ,vT ,xT ,yY , zT ,wT ) be the coordinates on T. Consider a map from T into

V ′ defined as follows:

u= uT , v = vT , x= xT , y = yT , z = zT ,

w = uwT , s= vN−1wT .

It is easy to see that this map is well defined and gives an embedding of T into V ′. The

equation of T in V ′ is us = vN−1w, that is, the first equation of X ′. Thus, we have X ′

embedded into T, substituting coordinates of T into the second equation we conclude that

the equation ofX ′ has degree (4, �) that is the same degree as that of the equation of X in T.

Remark A.3. Let X be as in Proposition A.2, and suppose X satisfies the K2-

condition. Then all XI live in the same family of hypersurfaces by Proposition A.2. Yet, we

cannot say whether XI also satisfies the K2-condition.

The general expectation is that K2-condition is an open property in the moduli. Given

this, let U be an open subset in a given family for which the K2-condition is satisfied.

Then, by Proposition A.2, X satisfies the total K2-condition if and only if XI ∈ U for all

I ⊂ {1, . . . ,N}, which suggests that K2-total condition must also be open in moduli.

A.2 Sufficient conditions for K2-total condition

Lemma A.4. Let D1,D2,D3 be divisors on X. Fix I ⊂ {1, . . . ,N}, and let G1,G2,G3 be

divisors on XI of the same bi-degrees. Then D1 ·D2 ·D3 =G1 ·G2 ·G3.
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Proof. It is enough to check it for the case of degG1 =degG2 = (1,0) and degG3 = (1,0)

or degG3 = (0,1). We are going to compute the intersections on the ambient scroll V∣∣I∣∣.
Let M∣∣I∣∣ be the divisor given by x= 0, and let F∣∣I∣∣ be a fiber of the projection onto P1

u,v.

Then, similar to Lemma A.1, we compute that M4∣∣I∣∣ ·F∣∣I∣∣ = 1/4 and 4M5
I = −a− b− �/2.

Now, suppose degG3 = (0,1), then

G1 ·G2 ·G3 =M2∣∣I∣∣ ·F∣∣I∣∣ · (2, �− c) · (4, �) = 2.

If instead degG3 = (1,0), then

G1 ·G2 ·G3 =M3∣∣I∣∣ · (2, �− c) · (4, �) = �/2−2a−2b− c.

These intersections coincide with the ones we computed on X in Lemma A.1

Lemma A.5. For XI for any I we have the following. Let MI denote the divisor given

by x= 0, and let FI be a fiber of πI . Then the divisor MI + bFI is nef.

Proof. The base locus of
∣∣MI +bFI

∣∣ is contained in {x= y = z = 0}. On the other hand,

{x= y = z = 0}= {
∏
i∈I

li = w = 0}∪{
∏
j �∈I

lj = s= 0}= SingXI ,

which is of cardinality N. Thus, the base locus of
∣∣MI + bFI

∣∣ is finite, and hence MI + bFI

is nef.

Proof of Proposition 1.7. First, let us compute KXI
. By adjunction, we have

degKXI
= degKV∣∣I∣∣+(2, c+N)+(4,2c+N) =

=
(
−1,3c+2N −2−a− b−

(
c+

∣∣I∣∣)− (c+N −
∣∣I∣∣)).

Since d= 2c+N , we have

degKXI
= (−1, �−2−a− b− c) = degKX .

If the intersection of K2
XI

with a nef divisor is nonpositive, then K2
XI

is not in the interior

of the Mori cone. By Lemma A.5, the divisor DI = MI + bFI is nef, and by Lemma A.4,

the intersection of K2
XI

with DI is the same on all models XI , and thus it is enough to

compute it on X.

We compute

K2
X ·D = (−1, �−a− b− c−2)2 · (1, b) =M3+(4+2a+2b+2c−2�+ b)F ·M2 =

= 8+2a+4b+3c− 7

2
�.

If this value is nonpositive, all XI satisfy the K2-condition. This finishes the proof.

Proof of Corollary 1.8. By assumption, c� 2b, and thus Proposition 1.7 and the bounds

0� 4a� 4b� 2c� � imply that

a� 4, 2b� 4+a, and 2c� 4+a+2b.

Using these inequalities, we fill the table.
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