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Instance-Based Transfer Learning

2.1 Introduction

Intuitively, instance-based transfer learning approaches aim to reuse labeled data
from the source domain help to train a more precise model for a target learning
task. If the source domain and the target domain are quite similar, we can directly
merge the source domain data into the target domain. Then it becomes a standard
machine learning problem in a single domain. However, in many cases, this “di-
rect adoption” strategy of source domain instances cannot help to solve the target
task.

A common motivation behind instance-based transfer learning approaches is
that some source domain labeled data are still useful for learning a precise model
for the target domain while some are useless or even may hurt the performance
of the target model if used. We can use the bias-variance analysis to understand
this motivation. When the target domain data set is small, the model may have a
high variance level and thus the model’s generalization error is large. By adding
a part of the source domain data as an auxiliary data set, the model’s variance
can potentially be reduced. However, if the data distributions of the two domains
are very different, the new learning model may have a high bias. Therefore, if we
can single out those source domain instances that follow a similar distribution as
those in the target domain, we can reuse them and have both the variance and
bias of the target learning model reduced.

Briefly, there are two key issues to resolve in using instance-based transfer learn-
ing. The first issue is how to single out the source domain-labeled instances that
are similar to the target domain ones, because these instances are useful to train
the target domain model. The second issue is how to utilize the identified “sim-
ilar” source domain-labeled instances in an algorithm to learn a more accurate
target domain learning model.

Recall that a domain D= {X ,PX } has two components: a feature space X and a
marginal probability distribution PX . Given D, a task T= {Y ,PY |X } has two com-
ponents: the label space Y and the conditional probability distribution PY |X . A
common assumption behind most instance-based transfer learning approaches
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24 Instance-Based Transfer Learning

is that the input instances of the source domain and the target domain have the
same or very similar support, which means that the features for most instances
have a similar range of values. Furthermore, the output labels of the source and
target tasks are the same. This assumption ensures that knowledge can be trans-
ferred across domains via instances. According the definitions of a domain and
a task, this assumption implies that, in instance-based transfer learning, the dif-
ference between domains/tasks is only caused by the differences of the marginal
distribution of the features (i.e., PX

s �=PX
t ) or conditional probabilities (i.e., PY |X

s �=
P

Y |X
t ).

When PX
s �= PX

t but PY |X
s = P

Y |X
t , we refer to the problem setting as noninduc-

tive transfer learning.1 For example, suppose a hospital, either private or public,
aims to learn a prediction model for a specific disease from its own patients’ elec-
tronic medical records. Here we consider each hospital as a different domain. As
the populations of patients of different hospitals are different, the marginal prob-
abilities PX s are different across different domains. However, as the reasons that
cause the specific disease are the same, the conditional probabilities PY |X across
different domains remain the same. When P

Y |X
s �= P

Y |X
t , we refer to the problem

setting as inductive transfer learning. For instance, consider avian influenza virus
as the specific disease in the previous example. As avian influenza virus has been
evolving, the reasons causing avian influenza virus may change across different
subtypes of avian influenza virus, for example, H1N1 versus H5N8. Here we con-
sider learning a prediction model for each subtype of avian influenza virus for a
specific hospital as a different task. As the reasons that cause different subtypes of
avian influenza virus are different, the conditional probabilities PY |X are different
across different tasks. In noninductive transfer learning, as the conditional prob-
abilities across domains are the same, that is, PY |X

s = P
Y |X
t , it can be theoretically

proven that, even without any labeled data in the target domain, an optimal pre-
dictive model can be learned from the source domain-labeled data and the target
domain-unlabeled data. While in the inductive transfer learning case, as the con-
ditional probabilities are different across tasks, a few labeled data in the target
domain would then be required to exist to help transfer the conditional proba-
bility or the discriminative function from the source task to the target task. Since
the assumptions of noninductive transfer learning and inductive transfer learn-
ing are different, the designs of instance-based transfer learning approaches for
these two settings are different. In the following, we will review the motivations,
basic ideas and representative methods for noninductive and inductive transfer
learning in detail.

1 Note that here we do not adopt the term “transductive transfer learning” used by Pan and Yang
(2010) because the term “transductive” has been widely used to distinguish whether a model has
an out-of-sample generalization ability, which may cause some confusion if used to define
transfer learning problem settings.
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2.2 Instance-Based Noninductive Transfer Learning

As mentioned earlier, in noninductive transfer learning, the source task and the
target task are assumed to be the same, and the supports of the input instances
across domains are assumed to be the same or very similar, that is, Xs =Xt . The
only difference between domains is caused by the marginal distribution of input
instances, that is,PX

s �=PX
t . Under this setting, we are given a set of source domain-

labeled data Ds = {(xsi , ysi )}ns
i=1, and a set of target domain-unlabeled data Dt =

{(xti )}nt
i=1. The goal is to learn a precise predictive model for the target domain

unseen data.
In the following, we show that, under the assumptions in noninductive transfer

learning, one is still able to learn an optimal predictive model for the target do-
main even without any target domain-labeled data. Suppose our goal is to learn
a predictive model in terms of parameters θt for the target domain, based on the
learning framework of empirical risk minimization (Vapnik, 1998), the optimal so-
lution of θt can be learned by solving the following optimization problem.

θ∗t = arg min
θt∈Θ

E(x,y)∈PX ,Y
t

[�(x, y,θ)], (2.1)

where �(x, y,θ) is a loss function in terms of the parameters θt . Since there are no
target domain-labeled data, one cannot optimize (2.1) directly. It has been proven
by Pan (2014) that, by using the Bayes’ rule and the definition of expectation, the
optimization (2.1) can be rewritten as follows,

θ∗t = arg min
θt∈Θ

E(x,y)∼P
X ,Y
s

[
Pt (x, y)

Ps (x, y)
�(x, y,θt )

]
, (2.2)

which aims to learn the optimal parameter θ∗t by minimizing the weighted ex-
pected risk over source domain-labeled data. In noninductive transfer learning,
as P

Y |X
s = P

Y |X
t , by decomposing the joint distribution PX ,Y = PY |X PX , we obtain

Pt (x,y)
Ps (x,y) = Pt (x)

Ps (x) . Hence, (2.2) can be further rewritten as

θ∗t = arg min
θt∈Θ

E(x,y)∼P
X ,Y
s

[
Pt (x)

Ps (x)
�(x, y,θt )

]
, (2.3)

where a weight of a source domain instance x is defined as the ratio of marginal
distributions of input instances between the target domain and the source do-
main at the data point x. Given a set of source domain-labeled data {(xsi , ysi )}ns

i=1,

by defining β(x)= Pt (x)
Ps (x) , an empirical approximation of (2.3) can be written as2

θ∗t = arg min
θt∈Θ

ns∑
i=1

β(xsi )�(xsi , ysi ,θt ), (2.4)

Therefore, to properly reuse the source domain-labeled data to learn a target model,
one needs to estimate the weight’s {β(xsi )}. As shown in (2.4), to estimate {β(xsi )},

2 In practice, a regularization term is added to avoid model overfitting.
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26 Instance-Based Transfer Learning

that is, density ratios, only input instances without labels from the source domain
and the target domain are required. A simple solution to estimate {β(xsi )} for each
source domain instance is to first estimatePX

t andPX
s , respectively, and then com-

pute the ratio
Pt (xsi )
Ps (xsi ) for each specific source domain instance xsi . However, it is

well known that density estimation itself is a difficult task (Tsuboi et al., 2009), es-
pecially when data are of high dimensions. In this way, the error caused by density
estimation will be propagated to the density ratio estimation .

In the literature (Quionero-Candela et al., 2009), more promising solutions have

been proposed to estimate
PX

t

PX
s

, directly bypassing the density estimation step. In

the following sections, we introduce how to directly estimate the density ratio by
reviewing several representative methods.

2.2.1 Discriminatively Distinguish Source and Target Data

One simple and effective approach to learn the weights is to transform the prob-
lem of estimating the marginal probability density ratio to the problem of distin-
guishing whether an instance is from the source domain or the target domain.
This can be formulated as a binary classification problem with data instances
from the source domain being labeled as 1 and those from the target domain be-
ing labeled as 0.

For example, Zadrozny (2004) proposes a rejection sampling-based method for
correcting sample selection bias. The rejection sampling process is defined as fol-
lows. A binary random variable δ ∈ {1,0}, which is called selection variable, is in-
troduced. An instance x is sampled from the target marginal distribution PX

t with
probability Pt (x), that is, Pt (x) = P (x|δ = 0). Similarly, Ps (x) can be rewritten as
Ps (x) = P (x|δ= 1). x is accepted by the source domain with probability P (δ= 1|x)
or rejected with probability P (δ = 0|x). In mathematics, with the new variable δ,
the density ratio for each data instance x can be formulated as

Pt (x)

Ps (x)
= P (δ= 1)

P (δ= 0)

P (δ= 0)

P (δ= 1)

Pt (x)

Ps (x)
, (2.5)

where P (δ) is the prior probability of δ in the union data set of the source domain
and the target domain. By using the Bayes, rule and the equivalent forms of Ps (x)
and Pt (x) in terms of δ, (2.5) can be further reformulated as

Pt (x)

Ps (x)
= P (δ= 1)

P (δ= 0)

(
1

P (δ= 1|x)
−1

)
.

Therefore, the density ratio for each source domain data instance can be esti-
mated as Pt (x)

Ps (x) ∝ 1
Ps,t (δ=1|x) . To compute the probability P (δ = 1|x), we regard it

as a binary classification problem and train a classifier to solve it. After calculating
the ratio for each source data instance, a model can be trained by either reweight-
ing each source data instance or performing importance sampling on the source
data set.

Following the idea of Zadrozny (2004), Bickel et al. (2007) propose a framework
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to integrate the density ratio estimation step and the model training step with
reweighted source data instances. Let PX denote the probability density of x in
the union data set of the source domain and the target domain. We can use any
classifier to estimate the probability P (δ = 1|x). Suppose the classifier is param-
eterized by v and the parameters for the final learning model that is trained on
the reweighted source domain data are denoted by w. All the parameters can be
optimized using the maximum a posterior (MAP) approach:

[w,v]M AP = argmax
w,v

P (w,v|Ds ,Dt ),

where Ds and Dt denote the source data set and the target data set, respectively.
Note that P (w,v|Ds ,Dt ) is proportional to P (Ds |w,v)P (Ds ,Dt |v)P (w)P (v). There-
fore, the MAP solution can be found by maximizing P (Ds |w,v)P (Ds ,Dt |v)P (w)P (v).

2.2.2 Kernel Mean Matching

Another effective approach to estimate the density ratio is using the techniques
of kernel embedding of distributions (Smola et al., 2007a). For instance, Huang
et al. (2006) propose the Kernel Mean Matching (KMM) method to directly learn
the density ratio by aligning the mean of source domain data instances to that of
target domain data instances in a reproducing kernel Hilbert space (RKHS).

Specifically, we use βi to denote
Pt (xs

i )

Ps (xs
i ) for each source domain data instance

xs
i and define βββ as βββ = (β1,β2, . . . ,βns ), where ns is the size of the source domain

data set. KMM makes use of the theory of Maximum Mean Discrepancy (MMD)
(Gretton et al., 2007) between distributions. Given two samples, based on MMD,
the distance between two sample distributions is simply the distance between the
two mean elements in an RKHS. Therefore, KMM aims to learn the weights of
source domain instances by matching the mean of the reweighted source domain
instances to that of the target domain instances in an RKHS:

min
βββ

∥∥∥μ(PX
t )−EPX

s
[β(x)Φ(x)]

∥∥∥ s.t. β(x)≥ 0, EPX
s

[β(x)Φ(x)]= 1, (2.6)

where Φ transforms each source domain data instance into the RKHS F , and
μ(PX

t ) is the expectation of the target domain instances in the RKHS, that is,
μ(PX

t )= EPX
t

[Φ(x)].

In practice, one can optimize the following empirical objective:

min
βββ

∥∥∥∥∥ 1

ns

ns∑
i=1

βiΦ(xs
i )− 1

nt

nt∑
i=1

Φ(xt
i )

∥∥∥∥∥
2

s.t. βi ≥ 0,

∣∣∣∣∣ 1

ns

ns∑
i=1

βi −1

∣∣∣∣∣≤ ε, (2.7)

where ε is a positive real number. After solving the optimalβββ, that is, the weights,βββ
can be incorporated into (2.4) with any specified loss function to learn a predictive
model θ∗t for the target domain.
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2.2.3 Function Approximation

A third representative approach to estimate density ratio is to consider the density
ratio as an unknown function, and learn a combination of a series of base func-
tions to approximate it. This is also known as covariate shift methods (Sugiyama
et al., 2008). To be specific, by defining Pt (x)

Ps (x) as a function ω(x), one could assume
ω(x) is a linear combination of several base functions as

ω̃(x)=
b∑

l=1
αlφl (x),

where ααα= (α1, . . . ,αb)T are coefficients to be learned and φl (·) is the l th base func-
tion that can be linear or nonlinear. In this way, Pt (x) can be approximated by
P̃t (x)= ω̃(x)Ps (x). The coefficients ααα can be learned by minimizing a loss function
between Pt (x) and P̃t (x). Different loss functions lead to different specific meth-
ods.

For instance, Sugiyama et al. (2008) propose to use Kullback–Leibler (KL) di-
vergence as the loss function. The resultant method is known as KL Importance
Estimation Procedure (KLIEP), whose objective is written as follows,

DKL(PX
t , P̃X

t ) =
∫
Xt

Pt (x) log
Pt (x)

ω̃(x)Ps (x)
dx (2.8)

=
∫
Xt

Pt (x) log
Pt (x)

Ps (x)
dx−

∫
Xt

Pt (x) logω̃(x)dx. (2.9)

Note that, in (2.9), the ground-truth marginal probability of the target domain
data, PX

t , is used. However, it can shown that, empirically, minimizing the afore-
mentioned KL divergence can be approximated by solving the following optimiza-
tion problem, where the ground truth marginal probability of the target domain
data is canceled out:

max
ααα

1

nt

nt∑
j=1

log

(
b∑

l=1
αlφl (xt

j )

)
s.t.

1

ns

ns∑
i=1

b∑
l=1

αlφl (xs
i )= 1, αl ≥ 0 ∀l ∈ {1, . . . ,b}.

Another example of the loss function in discrepancy between ω(x) and ω̃(x) is
the squared loss (Kanamori et al., 2009). The resultant optimization problem can
be written as follows,

min
α

∫
Xs∪Xt

(ω̃(x)−ω(x))2Ps (x)dx.

Besides, using KL divergence and squared loss as the loss function, many other
forms of loss functions can be used.

2.3 Instance-Based Inductive Transfer Learning

Different from noninductive transfer learning, in inductive transfer learning, the
source task and the target task can be different in terms of conditional probabil-
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ities, that is, PY |X
s �= P

Y |X
t . As the conditional probability is changed across differ-

ent tasks, if there are no labeled data in the target domain, then it is very difficult
if not impossible to adapt P

Y |X
s to construct a precise P

Y |X
t . Therefore, in most

instance-based inductive transfer learning approaches, besides a set of source
domain-labeled data Ds = {(xsi , ysi )}ns

i=1, a small set of target domain-labeled data
Dt = {(xti , yti )}nt

i=1 is also required as inputs.3 The goal is still to learn a precise
predictive model for the target domain unseen data.

2.3.1 Integration of Source and Target Loss

An intuitive solution to make use of both source domain-labeled data and target
domain-labeled data to train a model for the target domain is to decompose the
loss function into two parts: one is for the source domain-labeled data, and the
other is for the target domain-labeled data. A trade-off parameter is usually intro-
duced to balance the impact of the two losses.

As an early representative work, Wu and Dietterich (2004) propose an instance-
based K -nearest-neighbor (K NN) classifier to optimize the classification accuracy
on both the source domain and the target domain. Specifically, in a traditional
K NN classifier, the hypothesis h(x) is defined by k training data instances that
are closest to each test instance x. In the proposed K NN-based inductive transfer
learning method, Ks nearest source domain instances and Kt nearest target do-
main instances are first identified for a target domain test data instance xt

i . Then,
for each class label y , the overall vote on the instance xt

i , denoted by V (y), is com-

puted as V (y)= θ( Vt (y)
Kt

)+ (1−θ)( Vs (y)
Ks

), where Vt (y) and Vs (y) are the numbers of
votes on class y from the Kt and the Ks nearest instances from the target domain
and the source domain, respectively, and θ is a trade-off parameter to control the
relative importance of the source domain nearest neighbors and the target do-
main nearest neighbors.

Such an idea can be applied to other base classifier beyond K NN. Wu and Di-
etterich (2004) also propose a support vector machine (SVM) based approach
(Smola and Schölkopf, 2004) for instance-based inductive transfer learning meth-
ods. Recall that the objective function of SVMs is

min
∑

j
α j +C

∑
j
ε j s.t. yi

(∑
j

y jα j K (x j ,xi )+b

)
≥ 1−εi ∀i , α j ≥ 0 ∀ j ,

where α j s are the model parameters of a SVM, ε j s are slack variables to absorb
errors and C is a parameter to control how much penalty is conducted the mis-
classified examples. In the inductive transfer learning setting, Wu and Dietterich
(2004) proposed to modify the objective function and constraints by considering
the source domain-labeled data and the target domain-labeled data differently.
Supposeαs

j and εs
j denote the model parameters and slack variables for the source

3 In some approaches, a set of target-unlabeled data is assumed to be given as well.

https://doi.org/10.1017/9781139061773.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781139061773.004


30 Instance-Based Transfer Learning

domain instance xs
j for j ∈ {1, . . . ,ns }, respectively. Similarly, αt

j and εt
j denote the

parameter and slack variable for the target domain instance xt
j , respectively, for

j ∈ {1, . . . ,nt }. The parameters Cs and Ct are trade-off parameters. Then the re-
vised objective function of SVMs is formulated as

min
ns∑

j=1
αs

j +
nt∑

j=1
αt

j +Cs

ns∑
j=1

εs
j +Ct

nt∑
j=1

εt
j ,

s.t. y t
i

(
ns∑

j=1
y t

jα
t
j K
(
xt

j ,xt
i

)
+

ns∑
j=1

y s
jα

s
j K
(
xs

j ,xt
i

)
+b

)
≥ 1−εt

i i ∈ {1, . . . ,nt },

y s
i

(
nt∑

j=1
y t

jα
t
j K
(
xt

j ,xs
i

)
+

ns∑
j=1

y s
jα

s
j K
(
xs

j ,xs
i

)
+b

)
≥ 1−εs

i i ∈ {1, . . . ,ns },

αt
j ≥ 0 j ∈ {1, . . . ,nt }, αs

j ≥ 0 j ∈ {1, . . . ,ns }.

Generally speaking, the revised SVM jointly optimizes the losses on the labeled
data of both the source domain and the target domain.

Liao et al. (2005) further extend this idea to logistic regression, and propose the
“Migratory-Logit” algorithm. Migratory-Logit models the difference between two
domains by introducing a new “auxiliary variable”μi for each source data instance
(xs

i , y s
i ). The parameter μi could be geometrically understood as a “intercept term”

that makes xs
i migrate toward class y s

i in the target domain. It measures how mis-
match the source data instance xs

i is with respect to the target domain distribu-
tion PX

t and thus controls the importance of source data instances. For a target
domain data instance (xt

i , y t
i ), the posterior probability of its label y t

i is the same
as the traditional logistic regression, that is, P (y t

i |xt
i ;w) = δ(y t

i wT xt
i ), where w is

the parameter vector and δ(a) = 1
1+exp(−a) is the Sigmoid function. For a source

domain instance (xs
i , y s

i ), the posterior probability of y s
i is defined as:

P (y s
i |xs

i ;w,μi )= δ(y s
i wT xs

i + y s
i μi ).

By defining μμμ= (μ1, . . . ,μm)T , the log-likelihood is computed as

L (w,μμμ;Ds ∪Dt )=
nt∑

i=1
lnδ(y t

i wT xt
i )+

ns∑
i=1

lnδ(y s
i wT xs

i + y s
i μi ).

Then, all the parameters can be learned by maximizing the log-likelihood with the
optimization problem formulated as

max
w,μμμ

L(w,μμμ;Ds ∪Dt ) s.t.
1

ns

ns∑
i=1

y s
i μi ≤C , y s

i μi ≥ 0, ∀i ∈ {1,2, . . . ,ns },

where C is a hyper parameter to control the overall importance of the source do-
main data set.

The aforementioned approaches assume that, in the target domain, only la-
beled data are available as inputs for transfer learning algorithms. In many sce-
narios, plenty of unlabeled data may be available in the target domain as well.
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Jiang and Zhai (2007) propose a general semi-supervised framework for instance-
based inductive transfer learning, where both labeled and unlabeled data in the
target domain are utilized with the source domain labeled data to train a target
predictive model.

In the work by Jiang and Zhai (2007), a parameter αi is introduced for each
source domain instance (xs

i , y s
i ) ∈ Ds to measure how Ps (y s

i |xs
i ) is different from

Pt (y s
i |xs

i ). Another parameter βi is introduced for each source domain instance

(xs
i , y s

i ) ∈Ds to approximate the density ratio
Pt (xs

i )

Ps (xs
i ) . Then, for each target domain

unlabeled instance xt ,u
i ∈Dt and each possible label y , a parameterγi (y) is used to

measure how likely the true label of xt ,u
i is y . Let Dt = Dl ∪ Du where

Dl = {(xt ,l
j , y t ,l

j )}
nt ,l

j=1 represents the subset of target domain-labeled instances and

Du = {(xt ,u
k )}

nt ,u

k=1 represents the subset of target domain-unlabeled instances. To
find an optimal classifier in terms of parameters θ, Jiang and Zhai (2007) propose
to solve the following optimization problem:

θθθ = argmax
θθθ

λs

Cs

ns∑
i=1

αiβi logP (y s
i |xs

i ;θθθ)+ λt ,l

Ct ,l

nt ,l∑
j=1

logP (y t ,l
j |xt ,l

j ;θθθ)

+ λt ,u

Ct ,u

nt ,u∑
k=1

∑
y∈Y

γk (y) log(P (y |xt ,u
k ;θθθ))+ logP (θθθ),

where Cs =
ns∑

i=1
αiβi , Ct ,l =nt ,l , and Ct ,u =∑nt ,u

k=1

∑
y∈Y γk (y) are normalization fac-

tors, the regularization parameters λs , λt ,l and λt ,u control the relative impor-
tance of each part with the sum equal to 1, and the prior P (θθθ) encodes the normal
prior for θθθ. In this way, the source domain-labeled data, the target domain-labeled
data and the target domain-unlabeled data are fully utilized to learn the optimal
solution of θθθ.

2.3.2 Boosting-Style Methods

Another group of methods of instance-based inductive transfer learning is based
on the boosting algorithm, which aims to identify misleading source domain in-
stances by iteratively updating their weights. For instance, the TrAdaBoost algo-
rithm proposed by Dai et al. (2007b) is the first boosting-style algorithm for an
instance-based inductive transfer learning setting.

TraAdaBoost adopts a similar instance reweighting strategy used in AdaBoost to
find useful data instances from the source domain. Specifically, TrAdaBoost first
trains a model h on the union of Ds and Dt . Then it uses h to make predictions
on the target domain data and calculates the mean loss on the target domain as

ε=
∑nt

i=1 w t
i

˙l (h(xt
i ),y t

i )∑nt
i=1 w t

i

, where w t
i is the weight for xt

i and l (·, ·) is the loss function. For

each target domain instance, its weight is updated as w t
i = w t

i β
−l (h(xt

i ),y t
i ), where

β = ε/(1− ε). This reweighting strategy is similar to AdaBoost in that, if a target
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domain data instance has a higher loss, its weight should be increased in the next
iteration.

For each source domain instance, if it has a higher loss, it may not be helpful
to the target task and so its loss will be decreased in the next iteration. The rule
to update the weight for each source domain instance is w s

i = w s
i θ

l (h(xs
i ),y s

i ), where

θ = 1/(1+
√

2lnns /(ns +nt )).
With these update rules, TraAdaBoost iteratively reweights both the source

domain-labeled data and the target domain-labeled data to reduce the impact of
misleading data instances in the source domain, and learn a series of classifiers to
construct an ensemble classifier for the target domain.

2.3.3 Instance Generation Methods

Instead of reusing source domain-labeled data for the target domain, an alterna-
tive approach is to develop generative models to generate new instances for the
target domain to be used to learn a precise target domain predictive model. Such
generative models usually require sufficient source domain data and a few target
domain data as inputs.

Instance-based transfer learning can also be used to adapt the style of instances
in the target domain based on the source domain instances. For instance, Gatys
et al. (2016) transfer image styles with a deep generative model to create new tar-
get images by preserving the semantic content of target images while synthesiz-
ing its texture from a source image. Basically, the overall loss function to generate
a new image consists of two losses: the content loss Lcontent and the style loss
Lst yl e :

L =αLcontent (G ,T )+βLst yl e (G ,S), (2.10)

where G is the output image, S is the source image providing style and T is the
target image offering content. Here Lcontent is defined as

Lcontent (G ,T, l )= 1

2

∑
i , j

(Gl
i , j −T l

i , j )2, (2.11)

where l stands for the l th layer of deep learning model, i stands for the feature
mapping of the i th filter in the layer and j stands for the j th element of the vec-
torized feature mapping. In addition, the style loss is formulated as

Lst yl e (G ,S)=
L∑
l

wl El =
L∑
l

wl

∑
i , j

(
Gamm(G)l

i , j −Gamm(S)l
i , j

)2
, (2.12)

where Gamm(·)l
i , j , the style representation, is defined as the inner product be-

tween the vectorized feature maps i and j in layer l , that is, Gamm(G)l
i , j =

∑
k F l

i k

F l
j k . Specifically, in the work by Gatys et al. (2016), a nineteen-layer Visual Geom-

etry Group Network network is used as the base model and all of its max-pooling
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layers are replaced by the mean pooling layers. First, the style and content features
are extracted from source images and target images. Then, a random white noise
image G0 is passed through the network and its style features Gl and content fea-
tures F l are computed. Gradients with respect to the pixel values can be computed
using error back-propagation and is used to iteratively update the generated
image G .

Although the task studied in Gatys et al.’s (2016) work is about style transfer for
images, the idea of generating new instances in the target domain by capturing
some important properties of the source domain can be applied to many other
transfer learning applications. We will review more generative models for transfer
learning later in Chapter 7.
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