are all similar to the whole triangle. Now $P R$ and $Q R$ are equally inclined to $A D$ (a pedal property), and N is the image of Q in $A D$. $\therefore P R$ produced passes through N; similarly $L M$ produced passes through Q. Let these lines cut $B C$ in S and S^{\prime}.

Again $P N \| D B$ since alternate angles $B D R, D R P$ are corresponding angles of the similar triangles $B D A, D R P$; similarly $L Q \| D C$.

$$
\text { But } \begin{aligned}
B S: S C & =D P: P C & & (B D \text { parallel to } S P) \\
& =B L: L D & & \text { (complete similarity of the figures) } \\
& =B S^{\prime}: S^{\prime} C & & \left(L S^{\prime} \text { parallel to } D C\right)
\end{aligned}
$$

$\therefore S$ and S^{\prime} coincide.
Now area of triangle $N B S=$ area of triangle $N D S$ ($N S$ parallel to $B D$)

$$
" \quad, \quad Q C S=\quad, \quad,, \quad Q D S(Q S \quad,, \quad D C)
$$

To the sum of these areas add area $A N S Q$.
\therefore in area, triangle $A B C=$ kite $A N D Q=$ twice triangle $A N D$.
G. D. C. Stokes.

Editor's Note.-Mr John T. Brown suggests the following neat method of proving that the triangle $A B C$ is twice the triangle $A N D$:

Suppose $D N$ produced its own length to E.
Then the angles $E A D, B A C$ are equal,

$$
\text { and } A E \cdot A D=A \nu^{2}=A B \cdot A C \text {. }
$$

Hence, by Euc. VI, 15, the triangles $A E D, A B C$ are equal; i.e. twice triangle $A N D=$ triangle $A B C$.
W. A.

A Proof of the Theorem of Pythagoras.

The triangle $A B C$ has a right angle at B. On $A C$, on the same side as B, describe a square $A D E C$. Draw $D F$ perpendicular to $A B$ or $A B$ produced.

The triangles $A B C$ and $D F A$ are congruent, having sides $C A$ and $A D$ equal, and the corresponding angles equal. Hence $D F$ is equal to $A B$.
xiv
Join $D B$: then the triangle $A D B$ is equal to half the rectangle with $A B$ as base and $F D$ as altitude; that is, to half the square on $A B$.

Now through B draw $G B H$ parallel to $A D$ to meet $A C$ in G and $D E$ in H. Then the rectangle $A D H G$, being equal to twice the triangle $A D B$, is equal to the square on $A B$.

Similarly the rectangle $C G H E$ is equal to the square on $B C$. Thus, on adding, we find that the square on $A C$ is equal to the sum of the squares on $A B$ and $B C$.
T. M. MacRobert.

Note on a Vanishing Determinant.

1. In one of Sir Thomas Muir's more recent historical papers on the theory of determinants (Proc. R.S.Edin., XLIII, 1922, p. 129), is included a result due to V. Jung, commented on as being "verified in an unsuggestive way for the first three cases." The theorem is that the determinant

$$
\left\lvert\, \begin{array}{ccccc}
1 & 1^{2} & \ldots & \mathbf{1}^{n} & 1^{n+1} \\
2 & 2^{2} & \ldots & 2^{n} & 2^{n+1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
n & n^{2} & \ldots & n^{n} & n^{n+1} \\
n & \frac{n^{2}}{3} & \cdots & \frac{n^{n}}{n+1} & \frac{n^{n+1}}{n+2} \\
2 & \frac{1}{3} & & n &
\end{array}\right.
$$

vanishes when n is even. Below we give a simple proof.

