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NONOSCILLATORY SOLUTIONS OF x(m) = (-l)mQ(t)x 

BY 

SUI-SUN CHENG 

ABSTRACT. A continuous real vector function is said to be nonos-
cillatory on an interval if at least one of its components is of 
constant positive or negative sign there. In this note, various exis
tence criteria for nonoscillatory solutions of the system x(m) = 
(-l)mQ(f)x are established. In some cases, additional monotonicity 
properties for these solutions are also given. 

A continuous real vector function is said to be nonoscillatory on an interval 
if at least one of its components is of constant positive or negative sign there. 
In analyzing linear differential equations or systems, nonoscillatory solutions 
are often desirable, especially when they satisfy certain monotonicity properties 
(for recent examples, see [2, 3, 5]). In this note, we shall be concerned with 
linear differential systems of the form 

(1) x(m) = (-l)mQ(f)x m > l 

where Q(f) = (qy(f)) is an n-square continuous matrix function defined on 
[a, °°). Existence criteria for nonoscillatory solutions of (1) will be established 
under various assumptions. In some cases we shall also be able to deduce 
additional monotonicity properties for these solutions. Theorem 5 will be our 
main result which is basically a comparison theorem. 

In the sequel, a real matrix A = {a^ is called positive (nonnegative), if 
ayXMOi^O) for i,/= 1,2 , . . . , n. We write A>0(A>0) . If x = 
col (xl9 x2,..., xn) and y = col (yl9 y 2 , . . . , yn) are n-tuples, we will define the 
product xy to be the vector xy = col(jc1y1, x2y2,. • •, xnyn). For any n-square 
matrix Q = (qiy), the matrix diag Q is defined to be the diagonal matrix 
diag[qn, q22, . . . , q n n ] . 

The following lemma is fundamental and its proof is given in [1]. 

LEMMA 1. If in (1), m = 1 and Q(t)^0 for t>a, then (1) has a nontrivial 
solution x(t)^0 for t>a. 
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Clearly, the nontrivial solution x(t) in Lemma 1 satisfies x'(0 — 0 and hence 
at least one of its components is positive for t>a (so that JC(0 is 
nonoscillatory). 

LEMMA 2. In the linear differential system 
m - l 

(2) PoWz(m)+ £ (-l)k+1
Pk(t)z

(m^ = (-irR(t)z, 
k = l 

let R(t) be a nonegative continuous n-square matrix function and let 
p0(t),..., pm-i(t) be continuous vector functions on [a, <*>) satisfying po(t)>0 
and pk(f)>0 for k = 2 , . . . , m - 1 and a^t<™ (while px(r) is arbitrary). Then 
(2) has at least one nontrivial solution z(t) satisfying (-l)Jz( / )(t)>0 for j = 
0 , 1 , . . . , m - l . 

The proof of the above lemma is omitted since it follows from Lemma 1.1 in 
a way similar to an argument given in [1, p. 737]. As a corollary, we see that if 
Q > 0 for t>a , then (1) has a nontrivial solution x(t) satisfying (-l)kx(k)(f)>0 
for k = 0 , 1 , . . . , m. 

Before stating the next theorem, we first recall [4, p. 122] that a nonnegative 
n-square matrix A = (ati) is said to be decomposable if the indices 1,2,. . . , n 
can be divided into two disjoint nonempty sets {/(l), i(2),..., i(h)} and 
{/(l),/(2),...,/(fc)}(h + k = n), such that aiMm = 0 (a = 1, 2 , . . . , h; 
(5 = 1, 2 , . . . , k). Otherwise A is said to be indecomposable. 

THEOREM 3. If Q(t) is indecomposable on any subinterval [b, <») of [a, oo), then 
(1) has at least one positive solution x(t) satisfying (-l)kxik)(t)>0 for k = 
1,2, . . . ,m . 

Proof. Let x(t) be the nontrivial solution of (1) satisfying (-l)kx ( k )(0^0 for 
k = 0 , 1 , . . . , m. Assume to the contrary that there is a nonempty subset I of 
{1,2 , . . . , n} such that for each i in I, the corresponding component x,(r) of 
x(t) vanishes at some point tt>a. Then ^(0 = 0 for t^tt since xt(t)^0 and 
jcj(f) <0 for f > a. Hence for each i in I, xt(t) = 0 for t> f*, where t* = max {$ | i 
in /}. Let J = {1, 2 , . . . , n}-L Note that / is nonempty since otherwise x(t) = 0 
for t>t* would imply that x(f) is trivial. Note further that for each / in J, 
Xj(0>0 for t>a. Consequently for each i in I and t>t*y 

0 = x^>(0 = (-l)m I qik(t)xk(t) = (-ir 1^(0^(0. 
k = l j e J 

However, since x,-(f) > 0 and qtj(t) > 0, we must have qtj(t) = 0 for i in I and / in 
J, where t>t*. This contradicts our assumption and shows that x(t)>0 for 
r>a. Q.E.D. 

So far we have assumed that Q ̂  0. We will now relax this assumption. Let T 
be a diagonal matrix diag [tl912,..., fn] where ^ = ±1. 
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THEOREM 4. Suppose Q(t) = TH(t)T, where H(t) is continuous and nonnega-
tive /or a< f <o°. Then (1) has a nontrivial solution x(t) such that 

(-l)kTx(k)(t)>0 

for k = 0 , 1 , . . . , m; and for t > a. 

The proof is elementary. We first note that T= T"1. By setting y = Tx, (1) 
can be transformed into the system yim) = (-l)mH(t)y, which has a nontrivial 
solution y(t) satisfying (-l)ky(k)(f)^0 for fc = 0 , 1 , . . . , m. But then x = Ty is a 
solution of (1) satisfying the conclusion of the theorem. 

Before proving the main theorem of this note, we remark that matrices of 
the form Q = THT where H > 0 satisfies diag Q > 0. Furthermore, if the matrix 
(sgn hij) is symmetric, so is (sgn qtj). 

THEOREM 5. Suppose Q(t) = (q{/(f)) ond ^(0 = (Pi/(0) in (1) and 

(3) y(m) = (-l)mP(0y 

respectively, are continuous n-square matrix functions satisfying 

Pij(t) ^qij(t) i = j 

P i /(0<0<^(0 iV/ 

/or t>a. Suppose further that (3) has a solution y(0>0 satisfying 
(-l)k + 1y ( k )(0^0 /or fc = 2, . . . , m - l and for t>a {while y'(0 is arbitrary). 
Then (1) has a nonoscillatory solution x(t) and a positive constant K such that 
0^x(t)^Ky(t) for sufficiently large t. If, furthermore, that y'(0 — 0, then x'(0 — 
0 for t>a. 

Proof. We shall seek a solution of (1) in the form x(r) = y(t)z(t) where z(f) 
is to be determined. Substitution of x(t) into (1) leads to the following 
differential system for z(t): 

Ë(fc)y(k)af(m'k)=(-1)m0W(y^)-

Subtracting y(m)z = (-l)m[P(t)y]z from both sides, we obtain 

(4) Y ( ^ y ( k ) z ( m - k ) = (-l)mQ(0(y2)-(-i)m[P(0y>. 

Let r4j- = ^y, if iV / and rtj = q^y - I J . 1 Pikyk if i = j , and let R(t) = (ri;(0). Then 
(4) can be written in the form (2) where 

(- i ) t + 1
f t( ' ) = (™)y(fc> 

for fc = 2, 3 , . . . , m - 1 . Furthermore, our assumptions imply R > 0. It follows 
from Lemma 2 that (4) has a nontrivial solution z(f) satisfying (- l) ;z0 )(0^0 
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for / = 0 , 1 , . . . , m - 1 . The conclusion of the theorem now follows readily from 
x(t) = y(t)z(t). Q.E.D. 

The above theorem has many consequences. We list some of them here. The 
first of which is an improvement of Lemma 1. 

COROLLARY 6. If in (1), m = 1 and q i;(f)^0 for iïj and for t>a, then (1) 
has a nontrivial solution x(t)>0 for f>a . 

COROLLARY 7. Suppose in (1), m = 2 and qtj(t)>0 for i^j and for t>a. 
Suppose further that u1=qa(t)Ui ( l < i < n ) is nonoscillatory. Then (1) has a 
nontrivial solution which is nonnegative and nonoscillatory for large t. 

COROLLARY 8. Suppose G(0 = (ftj(0) & an n-square continuous matrix func
tion such that gij(t) ^ 0 in [a, <») for i^j, and J*gu(s) ds<<*> for each i, 1 < i < n. 
If the system 

x" + 4F*(f)x = 0 F(t) = [ [diag G(s)] ds 

has a positive solution on [a, <»), then the system 

y'+G(f)y = 0 

has a solution y(t) such that y(t) is nonoscillatory and 

0 < y ( t ) < [exp [ F(s) ds\ x1/2(f), xin = col (x\n,..., x]!2) 

for sufficiently large t. 

Proof. For t> a, the vector u(f) = [exp iaF(s) ds]x1/2(t)> 0. Furthermore, an 
easy calculation shows that u(t) satisfies the system 

u"+[diag G(t) + (H(t) - F(t))2]u = 0 

where H = diag [JC'I /2*! , . . . , x'J2xn]. Since for f > a, G(f) < diag G(t) + 
(H(f)-F(0)2> an application of Theorem 5 then leads to the desired conclu
sion. 

Suppose p(t) is a continuous function satisfying ( - l ) m p(f)>0 and p&0 on 
every subinterval [b, <») of [a, <»). According to a result of Kim [3, Th. 1], if y is 
a nontrivial solution of 

(5) y(m) + p(f)y = 0 

such that y > 0 and y(0/ ' 2-»0 as *-*«>, then y ( 0 > 0 and (- l )k + 1y ( k ) ( f )>0 for 
k = 1 , 2 , . . . , m - 1 as t—»°°. In this connection, we have the following corollary 
of Theorem 5. 

THEOREM 9. Let q(t) be a continuous function satisfying ( - l ) m q ( 0 ^ ( - l ) m p ( 0 
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for t>a. If y(t) is a nontrivial solution of (5) such that y ̂ 0 and y(t)/t2-*0 as 
f-»oo, then 

(6) xim) + q(t)x = 0 

has a nontrivial solution x(t) satisfying x^O and x(r)/r2-»0 as *-*<». 

The above theorem can be used to derive existence criteria for L2(0, o°) 
solutions of (6). Such criteria will supplement those of Read [5] and will be 
dealt with elsewhere. 
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