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1.  We consider in the 2 dimensional space with the coordinate (zx,y).
Let I be a segment of the y-axis containing the origin in its interior and
let 2 be a domain whose boundary contains I. We treat the solutions u,
(p=1,.-.,m) of the elliptic system

o, | 3 _
3y +q§.1 by, y)ug =0,

ou, , &
(1. 1) o +q§1ap,q(x,y)

where a,,, € C{(2), b,,€ L*(2) and u, € C}(2). The system (1. 1) is written
in the form

(L 2) U, + AU, + BU =0,

where U = (uy, + -+, u,), A= (ap,) and B=(b,,). The characteristics of
this system are said to have multiplicities not greater than two in 2, if the
following condition is satisfied: There is a non-singular matrix 7 whose
elements belong to C!(2) such that the matrix

A" =T AT

o, 0
A = \""-\
0 a;

of one- or two-rowed square blocks of the type

has the direct sum

o = ()

or
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respectively.

Douglis [3] showed in 1960 that if the characteristics of the system (1. 2)
are complex and of multiplicities not greater than two in 2, then any solu-
tion of (1. 2), which is zero on I', is identically zero in Q.

If the direct sum A’ consists of only one-rowed blocks, that is, the
characteristics are distinct, then this theorem was proved by Carleman [2].
On the other hand uniqueness for elliptic equations, in any number of
dimensions, whose characteristics are at most double was shown by several
mathematiciens (see c.f. [5], [6], [10], [11], [12], [13],).

In this note we shall try to prove uniqueness in Cauchy’s problem for
the elliptic system (1. 2) under weaker assumptions. That is the following

MAaIN THEOREM.  Assume that the characteristics of the system (1. 2) are
complex (elliptic) and of multiplicities not greater than two in 2. Then there is a
posttive constant & such that if the solutions u, of (1. 2) are in C\Q) and satisfy

uy, =o0(exp(—y2)) (y—=0, p=1,:+-,m)

along T, then u=0 in Q.

For single elliptic equations of second order with real coefficients this
theorem was proved in any dimension by Mergelyan [9], Landis [7] and
Lavrentév [8]. When characteristics of (1. 2) are distinct, this statement was
shown by the author [4]. Thus we proceed as in [4]. The method used
in this note consists in establishing an energy integral estimates developed
by Calderén [1] and Mizohata [10].

2. In this section we assume that © is a domain which contains the
origin 0. We consider in 2 the first order elliptic system

Uiy + Ay + HUgy = fi
(2. 1)
Ugy + AUy = fzr

where #,2€ CY(2). We set

Uy fi 2 1
U=< ), F=< )and /1=( )
Uy Se 0 2
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Then the system (2. 1) is written in the form
(2. 2) LU=U, + AU, = F.

We put |U| = |u,| + |u,]. Let us prepare a mean value property for
solutions of (2. 2).

Prorosttion 1. For solutions of (2.2), it holds that if 1<p<<2 and
I<R<1,

w9 w0 geren{(] y ivinin) (] orasan) ).

where C is a constant independent of R and depends only on the values of U, A
and F in Q.

Proof. We denote simply by C the constants independent of R. We
take a C= function such that

1 in r=<R/2
#(r) = { .
0 in r>R
and |¢,], |4,] =CR'. Set V=g¢U. Then we see
(2. 4) LV = LoU + ¢F,
where

1 0 A %
L¢=¢z( >+¢y< >'
0 1 0 A

Let E(x,y) be the fundamental solutions of the following elliptic system
with constant coefficients

It is well known that
(2. 5) E(x,y)=0("") (r—=>0, r = (x4 y2)¥2.

Since V has compact carrier and V,+ A0)V, = LV + (4(0) — 4)-V,, we have
from the property of E

(2. 6) U = {{,_, B, 9) {LV + (4(0) — 4V, }dzdy.
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We see by (2. 4) and (2. 5)
2.7 §f, . B )Ly dzay]
= cr (| _, m(Ul+IF)dzdy.
By Green’s formula we have
{1, o B, 9) (100 = 2, dzdy
=—{{, _ B(a,v) (4(0) — ),V daay
([, -  Eol, ) (40) — W dway.
Hence we get from (2. 5)
2. 8) 1S, & B@,) (40) — AV, dwdy
=cl| _.r1uldzay.
Combining (2. 6), (2. 7) and (2. 8), we obtain
2. 9) ol =c r [ _ r(U1+IF)dsdy.

Put m = mgxIU |. Then we see by Holder’s inequality

I, cprimUlazdy < (], rodsay)”.
(1], gt 10z
where p~* + ¢ =1. Since ¢>2 and m™|U|=1, it holds
[§, 7 im iU dwdy
2 e[ gt vasir)”
Thus we get

(2. 10) [, xr101dway

2 -1

ze B3] L ovasan) .

https://doi.org/10.1017/50027763000013271 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013271

CAUCHY’S PROBLEM FOR ELLIPTIC SYSTEMS 41
Similarly we have

SgrgRr“IFldxdy
2 -1
<CR? (SgréRinzdxdy) v,

Combining (2. 9), (2.10) and (2. 11) we have obtained the inequality (2. 3).
3. Let us denote by S, an open disk with the center (d/2,0) and with

the radius df2. We put 2,={0<z<h}nS, T.={0=2=<hr}N3S,, I,=

{x =h}INS, and ||U(z, )| = Sz |U(x,y)|2dy. In this section we see how the

local behavior of the solutions of (1. 2) are controled by the Cauchy data.
We shall apply the method developped by Mizohata [10].

Lemma 1 ([4]). Let u e CY(R,) and u = olexp(—r—26-¢)) (r »0) along I,
Jor some positive numbers 5, e. Then there is a function v such that

(3. 1) ve C(R,)NCY 2, — {0}) and v =u on T,
(3. 2) lo(R)I2, Ml (RI12 and |jv,(R)?
= o(exp(—h%) (h—0).

The details of the proof are omitted (see [4]). Here we show only how
the function is constructed. Let ¢ be a C= function on real line such that
S:o o(x)dx =1 and the carrier of pc{|2|=1]}.
Then we define v in the form
u(x, Ya—2a*) fayy—vrz—a*) for y=0
v, y)= _ —
u(@, —/2—2*) fuamnly+/z—a®) for y <0,

where k(z) = exp (—2~°~¢/9) and f,(x)= st o((x — y)/s)s™ds.

-2s

LemMA 2 (Mizohata [10]). Let 2€ C(2,) and w e C(2,) N CY(2, — {0}).
We assume that the imaginary part of 2#0 in Q, and w=0 on ', and |w(e)|,
llw (e, Nlwy(e)ll = 0 (6—0). Then there are positive constants hy ny and c depending
only on 2 and w such that if 0 <<h<<hy n>ng it holds

13
[, o3, + aw, Idw + cotn)

=L ([ otluitae + [ otlam,itaz),
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where ¢ (2) = (& +n"1)"" and 2= 2, + il;.
The proof is omitted (see [10]).
Now we consider in 2, the nonlinear elliptic system

Uiy + Ay + phyy = Fi(2, Y, g, ),
(3. 3)
u2:c + Zuzy = Fz(x’ ?/, uls uz)y

where 2, ¢ e CY2,) and the imaginary part of 2+0 in 2,. We assume
that

(3. 4) [Fy(@, gy, uy )] < Clluy| + |upl) (i =1, 2).
We prepare the following

ProposiTioN 2. Let uy, u, be in CY(2,) and solutions of (3.3) in Q,. If
Sor some e>0, 6>1,

Uiy Uy = o(exp(—r=26=¢)) (r—0) on I,
then we have
[luditde = olexpi—h=)) (>0, i =1, 2).
Proof. From Lemma 1 there are functions v; (i = 1,2) such that

(3. 5) v, € C(2,)NCY2, — {0}) and v, = u; on I,
(3. 6) o B2, Nlvso(R)I? and |lvg,(R)|*

= olexp(—h 2 ) (h—0).
We put w; = u; —v,. Then the equations (3. 3) are reduced to

Wiy + AWy + W0y = G2y Y, Uys Upy V145 Vags Vgy)s

Wyy + AWy = Gz(xs Yy Uyy Uy Vo gy Z)21/)-
We easily see
(3.7 |Gl = Cllus |+ lual + 01zl +veal + vy ) i =1, 2.

From now on we denote simply by ¢ the constants independent of »
and 2. We have by Lemma 2 for & <hy 7> n,,

h
(3. 8) [, #21G, — s, lPdz + coin)

1 h ,2 2
=L | eilwas
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and
3
(3. 9) |, exiGaeds + cozm)

1 h ,2 . h . .
= An So ou llwell*dz + So 07 | A wayll dx) .

Multiplying both sides of (3. 9) by 4uM for large M, we add (3. 9) to (3. 8).
Then it holds

h
[, 232161k + anMGylo)dz + neoith)
h )2 1 h )2
= M| eitlwlrds + -1 oitlwrdz
h
+ (M= 0| gl *da.
Let us fix M such that M—¢>0. Then we obtain
h
ne | oHIGIE+ G dw + o3h)
= 1 (", 2 2
= — - | onlllwl® + llwel*)de.
0
We substitute w; = u; —v; and (3. 7) into this inequality. Then we have
h
ne { o2l + Nl + lo,al + logell* + lowy 1)dz + 23 (k)
_I..

[\ ool + o)z

£
n
1 (", 2 2
=10 o2 + lul)dz.
0

If n+ _}7 is sufficiently small, we see

ne {7 6t (ol + lowali + o9 s + 93(0)]
+ S o8 ol + loalda
=L (" o2 (it + ).

n

Combining (3. 6) and (3. 10), we obtain

https://doi.org/10.1017/5S0027763000013271 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013271

44 KAZUNARI HAYASHIDA

(e ) et + 5+ 1))
= [l + s)?)dz

Let us take & +~}1— sufficiently small and =% sufficiently large. As an

easy computation shows, in order to prove

(3. 11) S:/z loe;]|2d2x = o (exp(—(—g—>—3)) (h—0),

it is sufficient to show that we can choose » in such a way that

(3. 12) n2n+? < exp ((_;1_)"3'€1>
and
(3. 13) an++22 ) éexp( (_) 5-¢ > e >0

where ¢, is a given number and ¢’ will be determined later. If there is a
positive number g such that

= h —3-51
(3. 14) e < (270,
then (3. 12) holds. Since n# is sufficiently large, if we show that

0.1 (2" zen(=(£)"™),

then (3. 13) holds. Let us take positive numbers &', g such that

it+e'<(@+e)L+5E.

Noting that 1 <2log (%), we can take » in such a way that

(3. 16) @<%)a+e << (%><a+e1>/(1+z)

It is easily seen that the inequality (3. 16) implies (3. 14), (3. 15) and that
nh— oo, Thus we have proved (3. 11).
We consider the following elliptic system in Q,.

(3. 17) Ux + AUy = F(x’ ?/,U),
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where U= (uy, «* *,ttp), F=(F, +++, F,) and

A= /“1.\\ 0) .

o @
We assume that a, & C(2,) and «; is one- or two-rowed square blocks of the
type

o = (A)

<2k /«!k>
ay = ’
0 A

respectively. Further let us assume that

or

(3. 18) [Fil®s Ysthsy o o oy thn)| < Clluy| + « o« 4 lunl).

Then we can prove the following in a quite similar manner as in Proposi-
tion 2.

CoroLrary 1. Let U be in CY2,) and a solution of (3.17) in Q,. If for
some € >0, ¢>1,

U = olexp(—#~28=¢)) (r—0) on Iy,

then we have
[ huslidz = ofexp(—h-3) (h=0, i =1, ++ -, m)
0
Now we can prove the following

TuEOREM 1. Let U be a solution of the elliptic system (3. 17) in 2, and U
be in CY(2,). Then if for some ¢ >0, 6>1,

U = olexp(—r=22=¢)) (r—>0) on Iy,
we have

U = o(exp(—r7%)) (r—>0) n SN2,

Proof. We set —25 —¢ = ——2<5 + %) — —g— . We regard s + % as new

6 and % as ¢ in Theorem 1. Then by Corollary 1 we have
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(3. 19) S: llwll2da = o(exp (—h“’"?e» (h—>0, i=1, -, m)

For the point (x®, y®) in S,, we denote by 7(zx®, y®) the radius of a
circle tangent to S whose center is (z®, y®). It is easily seen that

(3. 20) 7,2, y®) ~ z® (z® (),

Let us apply Proposition 1 for the disk with center (x©®, y®) and with
radius 7,(x®, y®). Putting p = 3/2 in (2. 3) we have for (z®, y©) e S,

luy(2®, y©)]

(0) (0)y—-2/3
= Cry(a®, y©) [(Ssrnén(z“”,y“’))

(3] tcl)dzdy)

(15, <o g (2| Fel Dy

where 7, = /(x — 2@ 4 (y — y®)2 and C is a constant independent of (2,
y®), Combining (3. 18) and (3. 21), we see

Ju(2®, y®)|

~ 2o 471 (2C0), yC0O)) m
=C 7, (29, y©) 2/3[50

(3 lwal)dzdy] "
By Corollary 1 and (3. 20), we obtain

L, (2@, y®)| < C x52’3exP(~x0“‘*‘?e) .
Thus we have proved the theorem.

4.  We consider the next transformation from (x, y)-plane to (4, p)-plane
as in [4].

(4. 1) o =7z, 0= tan"y/x).

Put R, = {(6,0)|16]<=/2, 0<p<1/2}. We eliminate the part ¢ = 1/2 from
the boundary of R, and denote the remainder by 6R,,. And let us put
R;=R;+ 8R,. Then the transformation (4. 1) maps S,, onto R, in one-
to-one way. And we see that this transformation and its inverse are C=.
we have
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(”’w 9v) (— L tang 1/e )
= o
Ps Oy 1 — tan? 2 tang

For the function #(z,y) in S,;, we define a function @4, ¢) ‘n R, by
u(8, p) for (6,0) € Ryie
ﬁ(09 P) =
%#(0, 0) for (8, p) € 4Ry,

From now on we denote (6, p) simply by u. It is easily seen that if
u(x,y) € CYS,,) then u(6, p) € CR,).
We consider the next equation in S,

(4. 3) ug, + Au, = H,

where # € C'(S,), 1€ CYS,,,) and the imaginary part of 20 in S,/ We
set f(6,0) = |0, + 20,]%cos'd and 2= 1, + i2,. Then by (4. 2) the equation
(4. 3) 1s transformed into

(4. 4) u, + 3; (@ + iP)u, = H,
where

H= fcos'd(p, + ip,)H,
P(6, p) = 2,/ cos®,

and

Q(0, p) = f'cosb{ sinf(sin%0 — cos?d)
=+ 24(cos®d — 3cosf sin®f) -+ 2] 1|2cosd sin®d}.

Lemma 3 ([41).  The function f(6,p) is in CYR,,) and there is a posttive
constant m such that f>m in Ry;,. And QP,/P is continuous in R,,.

The proof is omitted (see [4]).

From now on we denote by || || a L? norm with respect to 0 (]| <xz/2).
And we put

éa(0) = exp(np=®) (6>0, n>0).

We denote ¢, simply by ¢. Then we have
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ProposiTioN 4 ([41). If u € CYS,.) and satisfies for some positive numbers
5, €(6>1),

u = o(exp(—r=9=¢)) (r—=0) in Sy
then we have
3 1 .
[, #tuy +4-@+ iPyu,lirdo

> né( +1— M) S:;’@z— luli*do

& lulirde — -5 g

- cnés p—‘;*r

h
0

N

rdp s

where M = max Q,+1 _—P}it and ¢ is a constant independent of n, h and §.

1/2
Since the proposition was shown in detail in [4], we omit the proof.

We consider the elliptic system (3. 3) in S,,,. Then we have the fol-
lowing

ProposITION 5.  Let uy, u, be in CX(S,s,) and solutions of the elliptic system
(3. 3) in Sy If it holds for 6 > max (2, M—1) (M is the constant in (4. 6))
u, = o(exp(—r~?%)) (r—0, i =1,2) in Sy,

then wu; vanish identically in a neighborhood of the origin.

Proof. We denote simply by ¢ the positive constant independent of #.
We assume # %0 in p<h. And we shall show that =0 in o <n/2.
Then we see by (4. 6)

N

ut L@+ iPu,|do)
= nf, o lulpae

(4. 8) + S:

ipqSiPuﬂ — ¢'u

‘2
dp

rog?
= nSoW ||u||2d.0
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no 8 _4 2
+{ 16 7 giPu, — 0T gruldo,
We set

w8
1; = le= g ulrdp

XA
2

h -1 .
pili = | 10 giPu,ldo,

Then (4. 8) becomes
#*(h) "
e 3 +So¢2

= (pn — V% + =13

U, +—17<Q + iP)u, Mzdp }

Hence we have

(4. 9) cn [ﬂ}(th_) + S:séz

up+ - (Q+iPu, | do |
=pili+ 15,
We consider the first equation of the elliptic system. That is
(4. 10) Uy + Ay, + ptty, = F,
Then this equation is transformed into

3 _ 3
lpz + ZP,,IZ(PTuI)p + (0.7; + lﬂy)(P‘” + lpy)(pTul)g

_ KA -
=(0,+20,)02 Fy— p(o, + 40y)+

A 8 8 _
02 (Uay 0y + Ug0,) + 5|04 + 20, ]2+ 07 iy,

By Lemma 3 we see
Ilow+ lpylz = COS-lﬁf(ea P) (f>m>0 in Rl/z)
and

o, + 2p,| < const. cos™26.

Thus (4. 10) becomes
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2 1 . Xl
(e u), + — (@ + iP) (P2 uy),]
(4. 11) < c{|F,|+lu |+ PTacoszﬁ-
(5t |+ el 1)

s
where P and @ are of the type (4.5). Let us regard pzu, in (4.11) as u
in (4. 9). Then we have from (4. 9)

|

)+ g*IFddo + ] s¥lulido

1,
X
h P 1
+ So 321102~ costbuyltdp
(4. 12) )
+§,

3
#21loz cosd sind sz”zdtg]
hog? A
= S loTwlide,

Now we consider the second equation of the elliptic system. Then we
have from (4. 4) and (4. 5)
(4. 13) [Usp] < | Fy| + c0™cosO]ug|.
By (4. 12) and (4. 13), we see
h
[}

o[-0 + | $HUIFIE + IF,)de

h )
(4. 14) + So 2|0z " cos?d uyg|2d o

h 2
= nf f5 leFulrde.
On the other hand we have from (3. 3), (4. 5) and (4. 9)

en {1 g2+ [ gIFolean)
(4. 15) v, .
= NowgiPuglide + § lloFs udlde.

Let us note that |P| =c cos?6(c >0). Then (4. 15) becomes

(4. 16) en (Lt +{ gIRaiieao)
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L 3 _1 h ¢2
= (" gt0F" costt umlitdo + n* | G lualide.
0 o P

Multiplying both sides of (4. 16) by a large constant, we add (4. 16) to (4. 14).

Then we obtain
e[ grn) + " 2P + 17l do)
(4. 17) ‘

= (L (e + alPide.

Combining (3. 4) and (4. 17), we have for sufficiently small #

g =] gl + ludlide.

Hence

£ g2mg~ () = [ sl + llwal)de.

Let n tend to zero. Then u, = u, =0 in p < hk/2. Thus we have completed

the proof.

We consider the elliptic system (3. 17) in S;,. Then we can prove the
following in a quite similar manner as in Proposition 5

CorOLLARY 2. Let U be in CSy,) and a solution of the elliptic system
(3. 17) in Sy If it holds for > max (2, M —1)

U = o(exp(—r-%) (r—0) in Sy,
then U vanish identically.

Combining Theorem 1 and Corollary 2, we obtain

TaEOREM 2. Let U be a solution of the elliptic system (3. 17) in Q, and U
be in CY(RQ,). Then there is a positive number & such that if for &' > o

U = o(exp(—7r=¢")) (r—>0) on I,
then U = 0 in a neighborhood of the origin.

Theorem 2 means our Main Theorem by an adequate coordinate trans-
formation.
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