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Let S be a regular semigroup and V(S) be its congruence lattice. For p s W(S), we consider the sublattice
Lp of <$(S) generated by the congruences pw where w e {K, k, T, t)' and w has no subword of the form KT,
TK, kt, tk. Here K, k, T, t are the operators on V(S) induced by the kernel and the trace relations on <?(S).
We find explicitly the least lattice L whose homomorphic image is Lf for all p e <if(S) and represent it as a
distributive lattice in terms of generators and relations. We also consider special cases: bands of groups, E-
unitary regular semigroups, completely simple semigroups, rectangular groups as well as varieties of
completely regular semigroups.
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1. Introduction and summary

Congruences on a regular semigroup have recently attracted considerable attention
which they richly deserve. For they exhibit various features intimately related to the
structure of the semigroup. The emergence of the kernel-trace approach provided
additional impetus whose full effect has most probably not reached its climax yet.

For a regular semigroup S and its congruence p, it is natural to consider the lattice
Lp generated by the set of congruences obtained from p by the repeated application of
the operators

K : X^>XK, k : X—»/lx, T : A—•A7', t: X—>AT. (1)

Here XK,XK,XT,XT denote, respectively, the greatest and the least congruences on S
with the same kernel and trace as X. For an arbitrary congruence p on S, it appears
difficult to characterize this lattice.

We may limit our scope in various ways in order to arrive at some more tractable
problems. In particular (a) we may require that S satisfy suitable conditions bearing
upon the behaviour of congruences and/or (/?) we may consider the lattice generated
only by a small subset of the above set.

As the restriction of type (a), essential to all our discussion, we require that the
kernel relation Jf on the lattice <#{S) of congruences on 5 be a congruence. This is a
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strong restriction indeed, but we point out important examples of regular semigroups
with this property. For example, primitive regular semigroups have this property ([6,
Theorem 3.6]). For strong semilattices of simple regular semigroups, for Reilly
semigroups and for a retract extension of one Brandt semigroup by another, we gave
necessary and sufficient conditions for the kernel relation to be a congruence ([6,
Theorems 4.3, 4.7, 5.5] and [5, Theorem 5.7]).

For the restriction of type (/?) above, we have chosen the sublattice of the following
description. With the notation of (1), we consider the lattice generated by the set

{pw \w e {K, k, T, t}*, w has no subword of the form KT, TK, kt, tk},

where ( )* means the free monoid.
For fully invariant congruences on a free completely regular semigroup Ftftft of

countably infinite rank, Pastijn-Trotter ([4, Theorem 5.3]) determined the lattice
generated by the set

{pw | w e {K, k, T, t)*, w has no subword of the form Kt, tK, kT, Tk},

If p is a fully invariant congruence on F&M, then pK, pk, pT, pt are all fully invariant
and hence the case studied in [4] restricts only p to be fully invariant and S to be equal
to F<gg&. Pastijn ([2, Theorem 11]) proved that the kernel relation restricted to fully
invariant congruences on ¥^01 is a congruence. Hence in this case, we again have the
restriction (a) above, whereas the restriction of type (/?) adopted in [4] seems to be, in a
certain sense, diametrically opposite to ours.

Section 2 contains most of the needed preliminaries. A sequence of lemmas in
Section 3 leads to the main result of the paper which characterizes our lattice as a
homomorphic image of a lattice given by a diagram. We study in Section 4 certain
conditions on a regular semigroup which imply that some of the vertices of our lattice
coincide. In Section 5 we restrict our attention to completely simple semigroups where
we also present an example.

2. Preliminaries

We generally follow the notation and terminology of [1]. We list only a few of the
most frequently used notations.

Throughout the paper S denotes a regular semigroup, E(S) denotes the set of its
idempotents and *<?(S) the lattice of its congruences. For p e

ker p = {a e S | ape for some e e E(S)},

tr p = p|E(S)

are, respectively, the kernel and the trace of p. Relations Jf and 9" are defined on
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kJTp&kerk = kerp, k 9~p <&tr k = tr p.

We call JT the kernel relation for S. For any p e #(S), we denote by

pK, pk - the greatest and the least congruences on S with the same kernel as p,
respectively,

pT, pt - the greatest and least congruences on S with the same trace as p,
respectively,

and consider K, k, T and t as operators on
For any set X, we denote by X* the free monoid on X, 3F2)&(X) the free

distributive lattice on X, and e and a> the equality and universal relations on X. If p is
a relation on S, p* denotes the congruence on S generated by p.

We will use freely the well-known results that Jf" is a A-congruence and 2T is a
congruence on #(S), as well as that JT A &~ — e. For proofs of these statements, see ([3,
Lemma 2.5(i), Corollaries 4.9 and 2.11]).

3. The theorem

Five lemmas will be needed for the proof of this theorem certain of which provide
additional information.

Lemma 3.1. Let k, p e #(S). If k c p, then kk c pk, kT c PT, kt c pt.

Proof. Assume that k c p. Then kk A pk Jf k A p — k since Jf is a A-congruence,
and thus kk c kk A pk and finally kk c pk. Further, kTvpT&~kvp = p since 3T is a
congruence whence AT v pT c pT and thus kT c pT. The relation kt c pt follows as
for kk c pfc using the congruence 9~.

Lemma 3.2. The following conditions are equivalent.

(i) JT is a congruence on #(S).

(ii) For a/ry A, p e <€{S), kc.p implies kK c PK.

(iii) For a/jy A, p e #(S), kv pJT kKv p.

Proof, (i) -> (ii). The argument here is the same as in the proof of Lemma 3.1 for
T.

(ii) ->• (iii). Let k, p € <€(S). Then kv p c.kKv p and hence (A v p)X c (kK v p)K.
Also A c ^ v p implies kKc.(kvp)K and p c (A vp)K whence kKvp <z(kvp)K so
that (AK v p)K c (A v p)X and equality prevails.

(iii) -> (i). Let k,p,6e <g(S) and assume that k Jf p. Then AK = pK and thus
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Lemma 3.3. The following statements are valid: TkT = Tk, kTk -kT. If tf is a
congruence, then also: KtK = Kt, tKt — tK.

Proof. We will use freely Lemma 3.1. Let pe<g(S). First pTkT c pTT = pT;
then ker pTkT 2 ker pTk — ker pT and thus ker pTkT = ker pT = ker pTk. Also
tr pTkT = tr pTk and therefore pTkT - pTk.

Further pkTk 2 pkk = pk; next tr pkTk c tr pkT = tr pk and hence tr pkTk =
tr pk = tr pkT. Also ker pkTk — ker pkT and therefore kTk — kT.

If Jf is a congruence, we may use both Lemmas 3.1 and 3.2, and by interchanging
the roles of t and k, capital and lower case, above obtain the remaining two
equalities.

Lemma 3.4. Let JT be a congruence and let p G "^(S).

(i) tr pk c tr pTk c tr p c tr ptK c tr pK.

(ii) ker pt c ker pKt c ker p c ker pkT c ker pT.

Proof. We will freely use Lemmas 3.1 and 3.2.
(i) First p C p T implies pk c pTk and thus tr pk c tr pTk. Now let e,f e E(S). If

e pTkf, then e pTf and so e pf which proves that tr pTk c tr p. If e pf, then e ptf
so also e ptKf which proves that tr p c tr ptK. Since pt c p, we have ptK c pK and
thus tr ptK c tr pK.

(ii) If a e feer pKt, then a pKt e for some e e £(S) whence a pK e and thus
a € fcer pX = ker p. Hence ker pKt c ker p. If a 6 ker p, then a e ker pk c fcer pfcT.
Therefore ker p c. ker pkT. The remaining two inclusions follow by monotonicity, as
above.

Lemma 3.5. Let k, p e

(i) tr k C. tr p <$• tr (k A p) = tr X <$• tr {kv p) = tr p.

(ii) ker k c ker p 4> ker (k A p) = fcer A.

(iii) //" JT /J a congruence, then ker k c feer p <» ker (A V p) = ker p.

Proof. Straightforward from the congruence properties of 9~ and Jf.

We are now ready for the principal result of the paper.

Theorem 3.6. Let S be a regular semigroup for which Jf is a congruence. Fix
p G <#(S) and let Lp be the sublattice of<g(S) generated by the set

{pw | w e {K, k, T, ty, w has no subword of the form KT, TK, kt, tk}. (2)

Then Lp is a homomorphic image of the lattice L depicted by the following diagram.
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pT

Labels on the sides indicate traces and kernels. Moreover,

L =* &Q)<£(ptK, pKt, p, pkT, pTk)/®

where

SI = {ptK < pKt, pkT < pTk, pKt A pTk < p < ptK v pkT)

and none of these relations may be omitted.

Proof. First Lemma 3.3 asserts that the set in (2) equals

{p, pK, pk, pT, pt, pKt, pkT, pTk, ptK}. (3)

Hence we must characterize the lattice generated by the set (3). Starting with p and
applying the formula

pKApT — p = pfe v pt,
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see ([3, Theorem 3.5]), and applying the operators K, k, T, t to the resulting
congruences, we obtain the part of the above diagram consisting of the
congruences listed in (3) and representing a partially ordered set. Plotting these
vertices in the diagram, we draw next the lines indicating the Jf- and ^"-classes of
these vertices observing that pk, p and pK are Jf-related and pt, p and pT are
^"-related.

The resulting Jf- as well as ^"-classes are linearly ordered as established in
Lemma 3.4. We can now identify the joins and the meets of congruences in (3) by
the intersections of the corresponding JT- and ^"-classes following the rule in
Lemma 3.5. In order to see that Lp is a homomorphic image of the lattice L, we
first coordinatize L as follows. We label the lines in the left hand corner of its
diagram by the numbers 1, 2, 3, 4, 5 from the bottom to the top, and do the
same for the lines in the right hand corner. Let / = {1, 2, 3,4, 5}. Hence the lattice
L may be coordinatized by the set

with componentwise usual order of integers. Suppose that Lp satisfies a relation u = v
which corresponds to (i,j) ~ {k, I). Call the sets

{(x,y)\yel), {(x,y)\xel)

the rows and the columns of L, respectively. By taking meets and joins with suitable
elements, we see that ~ induces the congruence on L which identifies all the rows
between i A k and i v k and all the columns between j A I and j v /. If we do this for
every relation u — v valid in Lp, we obtain a congruence 9 on L with the property that
L/9 — Lp. It follows that for our particular regular semigroup S and the particular
congruence p, the lattice Lp is a homomorphic image of the lattice depicted by the
above diagram.

We prove next the isomorphism assertion of the theorem. It will be convenient to
introduce the notation

a = ptK, A = pKt, b = pkT, B = pTk. (4)

Our task is to construct the free distributive lattice D on the generators a. A, b, B, p
subject to the relations

a < A, b < B, A A B < p < a v b. (5)

We consider D as a subdirect product of copies of the nontrivial subdirectly irreducible
distributive lattice Y = {0, 1}. Since D is generated by five elements, homomorphisms
of D into Y may be represented by all quintuples of 0's and l's which satisfy the
restrictions (5):

https://doi.org/10.1017/S0013091500023944 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023944


CONGRUENCE LATTICE OF A REGULAR SEMIGROUP 463

a A b B p

1
1
1

0
0
0

1
1
1

0
0
1

0
0
0

1
1
1

0
0
1

1
1
1

0
1
1

0
1
1

0 0 0 1 0
0 1 0 0 0

where we have omitted the quintuples consisting entirely of 0's or entirely of l's above
since they provide no information.

We wish to represent the elements of D as joins of meets of generators (which is
possible since D is distributive). We obtain

a = (11100000) a A b = (00000000)
4 = (11100101) a A B = (00100000)
b = (00011100) aAp = (01100000)
B = (00111110)
p = (01101100)
A A b = (00000100) b A p = (00001100)
AAB = (00100100) BAp = (00101100)
AAp = (01100100)

and the remaining meets equal one of those above. Now

X vfe = (11111101)
a v B = (11111110) /I vB = (11111111)
a v p = (11101100) A V p = (11101101)
bvp = (01111100) av(/lA&) = (11100100)

= (01111110) fcv(aAB)

and the remaining joins of meets equal one of those above. Instead of checking the last
two assertions, we may draw the diagram with the above octuples as vertices and verify
that they already form a lattice. Now taking into account the change of notation (4),
we see that Diagram 1 is essentially identical with the one in the statement of the
theorem, which proves the isomorphism assertion.

In order to prove the last claim of the theorem, we construct quintuples each of
which satisfies all the restrictions in (5) except one as follows.
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1
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A

0

0

1

0

b

0

1

0

0

B

0

0

1

0

p

1

1

0

1

Example 3.7. Let S be the semigroup of all transformations on the set {1,2}, say

• - ( ! I)- ' -
Let p be the Rees congruence relative to the minimal ideal. Then pT — pTk = n, the
least semilattice congruence on S, and pk — pkT = e. Therefore tr pk c tr pTk and
ker pkT C ker pT. Also, ^(S) is a chain with Jf-classes: {e, p}, {r\, co] whence it follows
easily that JT is a congruence.

The above example shows that in the diagram of Theorem 3.6, the ^"-classes of pk
and pTk are distinct and the Jf-classes of pkT and pT are also distinct. We will see in
Example 5.4 that the remaining kernel and trace classes are in general also distinct.
This implies that no proper homomorphic image of the lattice depicted in Theorem 3.6
has the property enunciated in that theorem.

We recall from Section 1 the case considered by Pastijn-Trotter [4]. As in the case
they studied, we could consider, for an arbitrary regular semigroup S, a sublattice L of
#(S) for which JT |L is a congruence. The above arguments would go through in this
case with obvious modifications. Hence letting L be the lattice of fully invariant
congruences on F^St, we obtain a result concerning varieties of completely regular
semigroups. For the operators K, k, T and t may be transferred to the lattice
of varieties of completely regular semigroups via the usual antiisomorphisms

-\p),

. Indeed, for any V e , we setof L and

With this preamble, Theorem 3.6 has the following consequence.

Corollary 3.8. Fix "V e &(<£&) and let Lr be the lattice generated by the set

{•fw | w e {K, k, T, t}\ w has no subword of the form KT, TK, kt, tk}.

Then Lr is a homomorphic image of the lattice depicted by the diagram
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l/t

4. Two special cases

We consider here the cases when S is a band of groups and when ker a — E(S)

(E-unitary regular semigroups).

Proposition 4.1. The following conditions on a completely regular semigroup S are

equivalent.

(i) Jf = JT.

(ii) For every p e <$(S), pk = p/\3tf.

(iii) For every p e #(S), pT = p v Jf (join of equivalence relations).

(iv) For every p e <${S), pkT = 3tf.

(v) For every p e #(S), pTk = J?.

Proof. Let p stand for any congruence on S.
(i) -»• (ii). Indeed

S = ker p,

tr(p A Jf) =

which evidently implies that pk = p
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(i) -> (iii). Indeed, ker (p v tf) = ker Jf = S and

tr(pv 3f) = tr pvtrJf = tr pV£ = tr p

which evidently implies that pT — pv 2tf.
Now assuming (i) and using (ii) and (iii), we obtain

pkT = (p/\JiT)vjf = je, pTk = (p v Jf) A Jf =

giving (iv) and (v). If (ii) holds, then J^-a>AJif = u)ke #(S). If (iii) holds, then
3V = e v 3te = eT e #(S). If (iv) holds, then Jf = pkT e ^(S) and if (v) holds, then
Jf = pTk € <€(S). Therefore each of (ii)-(v) implies (i).

Recall that a denotes cot, the least group congruence, and T denotes eK, the greatest
idempotent pure congruence.

Proposition 4.2. The following conditions are equivalent.

(i) ker a = E(S).

(ii) For every p e ^(S), ptK = T.

(iii) For every p e <#(S), pKt c T.

If any of these conditions hold, then also pt — p A a for every p e #(S).

Proof. Let p stand for any congruence on S.
(i) -*• (ii) First observe that

ker (p/\o) = ker pC\kera = ker p D E(S) = E(S),
tr (p A a) = tr p C\ tr a = tr p D co = tr p,

which evidently implies that pt = pAo. Since ker pt = E(S), it follows that p t C i
whence ptK = x.

(ii) -> (i). In particular, x = atK = oK so that a c. x which implies that
ker a = E(S).

(i) -»• (iii). By the above, pKt = pK A a so that ker pKt — E(S) whence pKt c %.
(iii) —> (i). In particular, a>Kt = at = a c % and thus ker a = E(S).

Corollary 4.3. Let JT be a congruence. Then the following statements are
equivalent.

(i) ker a = E(S).

(ii) For every p e #(S), ptK = x.

(iii) For every p e <g(S), pKt = x.
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If any of these conditions hold, then also pt = p A a, pK = p v a for all p e

Proof. From Theorem 3.6, we have that ptK c pKt for any p e #(S). Now
Proposition 4.2 implies the equivalence of (i), (ii) and (iii). Let p e #(S). By the same
reference, we have pt = p ACT. Also, by (i), e Jt~ a whence p = pv£jTpv<7. Since
tr(p V CT) 2 tr a — to, it follows that pK = p v a.

There is a certain amount of duality in the statements of Proposition 4.1 and
Corollary 4.3. In the first

(i) 3V = je\

(ii) pk — pAJlC, pT = pv Jf, pkT = pTk = tf,

(iii) S has a congruence 9 with ker 9 — S,tr 9 = e,

and in the second

(i) kero = E(S),

(ii) pt = p ACT, pK — p v cr, ptK = pKt = T,

(iii) S has a congruence 0 with fcer 9 = E(S), tr 9 — to,

for all p e <i?(S).

5. Completely simple semigroups

In the discussion preceding Corollary 3.8, we pointed out that we may restrict our
attention to a sublattice L of #(S) for which Jf|L is a congruence, and everything goes
through without essential changes. On the other hand, we may preserve the setting of
our main considerations in Theorem 3.6 but require S to belong to some restricted class
%> of regular semigroups. As we have seen in Proposition 4.1 and Corollary 4.3, in such
a case we may get certain coincidences in the diagram in Theorem 3.6 thereby the
lattice corresponding to the class # would be a proper homomorphic image of the one
depicted in Theorem 3.6.

Here we let # be the class of completely simple semigroups, so by Proposition 4.1,
we already know that kT = Tk. We will see in the theorem below that this is essentially
the only collapse for completely simple semigroups. We make strong use of the Rees
theorem by considering congruences directly on a Rees matrix semigroup of the form
S = M{1, G, A; P). Assuming, as we may, that the sandwich matrix P is normalized, we
have the following simple description of congruences on S.

Let r and n be partitions of / and A, respectively, and N be a normal subgroup of
G satisfying: for any i,j e I, X, \i e A,

e N, knn=* pup~J € N.
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In such a case, (r, N, n) is termed an admissible triple for S and the relation p = p(rN n)

defined by

(i, g, X)p (j, h,f*)e>irj, ghrx eN,Xnp.

is a congruence on S. Conversely, every congruence on S can be so represented
uniquely. For related considerations and further details, consult ([1, III.4]). It will be
convenient to introduce the following symbolism.

Notation 5.1. Let S — Jt(I, G, A; P) with P normalized. For every normal subgroup
N of G, define two relations rN and nN by

irNj <$> pXipj} e N for all A e A (i,j e I),

XnN p. o PxiPia e N for all i e I (A,/je A).

For a partition r of I and a partition n of A, let rn be the normal subgroup of G
generated by the set

pxiPj \knn).

It follows easily that rN and nN are equivalence relations on / and A, respectively.

Lemma 5.2. Let S = Jt(l, G, A; P) and (r, N, n) be an admissible triple for S. Writing
triples instead of congruences and 6 = (r, N, n), we have

9K = (rs, N, nN), 6T = (r, G, n),

9k = (e, N, e), 0t = (r, rn, n).

Proof. All the assertions of the lemma follow easily from the definitions of an
admissible triple and 9K, 9k, 9T and 9t.

Theorem 5.3. Let S be a completely simple semigroup. For p e #(S), let Lp be as in
Theorem 3.6. Then Lp is a homomorphic image of the lattice L depicted by the following
diagram
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PT

pTk = pkT = H

If we represent p by an admissible triple (r, N, n), the above labels stand for the
X -classes of the corresponding congruences. Moreover,

~- and

L =* &3)ie(ptK, pKt, p, pkT)/®

where

0t = (ptK < pKt, pKt A pkT <p< ptK v pkT)

and none of these relations may be omitted.

Proof. According to ([6, Lemma 3.2]), Jf is a congruence on ^(S). Any congruence
p on S can be represented by an admissible triple, say (r, N, n). By Proposition 4.1,
we know that pTk = pkT — Jff. The first assertion of the theorem now follows as in
the proof of Theorem 3.6. The representation of ^"- and Jf-classes of the above
congruences follows easily from Lemma 5.2.

Before proving the remaining assertions of the theorem, we compare it with Theorem
3.6. In fact, to the relations in Theorem 3.6 we now add the relation pTk = pkT. This
eliminates one of the generators in Theorem 3.6, say B = pTk, the relation
pKt < ptK, and we must write pkT instead of pTk in the third relation in Theorem
3.6. This gives the generators and relations in the present theorem.

A direct proof of the present theorem runs along the same lines as the proof of
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Theorem 3.6. For this reason, we provide only an outline, the filling in text is almost
the same as there, and the notation is retained. All quadruples of 0's and l's satisfying
the requisite conditions are listed in the following table:

1
1

0
0

0
0

1
1

0
0

1
1

0
0

1
1

0
1

0
1

0
1

0

1

This is used to find the lattice generated by a, A, b, p. Independence of the relations
follows from the next table:

A

P

a < A
AB < p
< av b

a

1

0

0

A

0

1

0

b

0

1

0

P

0

0

1 .

And now the example promised in Section 3.

Example 5.4. Let S - Jt{l, G, A; P) where / = {1, 2, 3,4}, G is the group of additive
integers, A = {1, 2, 3} and

(0 0 0 0
0 1 5 13 .
0 9 13 21

For N = (2), we obtain

and for r = £, 7i = {{1}, {2, 3}}, we get

rjjfî  = (4),

It follows that (e, N, n) is an admissible triple for S. For traces, we have
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all of which are distinct, and for kernels

GDJV = (2)D r^% = (4) D rn = (8),

which are also distinct.

It follows that the vertices in the diagram in Proposition 5.3 are, in general, all
distinct.

We can further restrict the class of semigroups under consideration by taking the
class of rectangular groups, that is completely simple semigroups whose idempotents
form a subsemigroup. In the normalized Rees representation M(l, G, A; P) of such a
semigroup, all sandwich matrix entries are equal to the identity of G.

Proposition 5.5. Let S be a rectangular group. For p e ^(S) the sublattice of ^(S)
generated by the set

{pw | w € {K, k, T, k}'} (6)

is a homomorphic image of the lattice depicted by the following diagram

u = pKT = pTK

PT

T = ptK = pKt H = pTk = pkT
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If we represent p by an admissible triple (r, N, n). the above labels stand for the 9~- and
X -classes of the corresponding congruences.

Proof. For any partition r of /, any normal subgroup N of G, and any partition n
of A, the triple (r, N, n) is admissible, rN =co, nN = a> and rn is the trivial group. Let p
be represented as above. One can verify easily that 3V = pTk = pkT, which also
follows from Proposition 4.1, that T = ptK = pKt, which also follows from Corollary
4.3, and that co = pKT = pTK and e = pkt = ptk. In view of so much commutativity,
this exhausts the elements in the set (6). The partial ordering in the diagram is clearly
correct. The relations pT = pv 3V and pk — pA^f follow from Proposition 4.1 and
pK = p v T and pt = p A T from Corollary 4.3. The remaining joins and meets are well
known. The argument here is similar to that in the proof of Theorem 3.6.
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