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ON CONSECUTIVE RECORDS IN
CERTAIN BERNOULLI SEQUENCES
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Abstract

In an infinite sequence of independent Bernoulli trials with success probabilities pk =
a/(a + b + k − 1) for k = 1, 2, 3, . . . , let Nr be the number of r ≥ 2 consecutive
successes. Expressions for the first two moments of Nr are derived. Asymptotics of the
probability of no occurrence of r consecutive successes for large r are obtained. Using
an embedding in a marked Poisson process, it is indicated how the distribution of Nr can
be calculated for small r .
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1. Introduction

In this paper we study the number of runs of successes or consecutive records in an infinite
sequence of independent Bernoulli trials where the success or record probability in the kth trial
is pk = a/(a + b + k − 1) for k = 1, 2, 3, . . . , a > 0, and b ≥ 0. Note that, for a = 1
and b = 0, the ps are the probabilities of records in a sequence of independent, identically
distributed, continuous random variables. For this case, results on the distributions of the
number of consecutive records are given in Chern et al. (2000), Chern and Hwang (2005), and
Hahlin (1995).

For a > 0 and b = 0, it follows from general results of Arratia et al. (1992), see also
Arratia et al. (2003), on the limiting distributions of the cycle lengths in certain random
permutations that the number of double records, that is, two consecutive successes, is Poisson
with mean a. For the general case a > 0 and b ≥ 0, Móri (2001) proved that the distribution
of the number of double records is a beta mixture of Poisson distributions. Some recursion
formulae concerning multiple records are also given there. An explicit expression for the
binomial moment of the number of double records in the first n trials is derived in Holst (2008a).
Letting n → ∞ gives the limit distribution of Móri. This is also proved by other methods in
Holst (2007), Holst (2008b), and Huffer et al. (2009).

Apart from the works of Chern et al. (2000), Chern and Hwang (2005), and Hahlin (1995) for
the case in which a = 1 and b = 0, the author is not aware of other detailed studies on multiple
records. In Section 2 we calculate for general a > 0 and b ≥ 0 the first two moments of the
number of r consecutive records and obtain an asymptotic expansion for the probability of no
occurrence of r consecutive records. In Section 3 we illustrate how we can obtain distributions
for the number of multiple records for small r , triple and quadruple records in particular. For
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1202 L. HOLST

a = 1 and b = 0, we compare our numerical results with those of Chern et al. (2000). An
embedding of the Bernoulli sequence in a marked Poisson process is used in our derivations.

2. Notation, moments, and occurrence of runs

In the rest of the paper I1, I2, I3, . . . are independent Bernoulli random variables with

P(Ik = 1) = 1 − P(Ik = 0) = a

a + b + k − 1
,

where a > 0 and b ≥ 0. An infinite random sequence S of 1s and 0s is generated by the I s.
The number of r ≥ 2 consecutive 1s in S can be written as

Nr =
∞∑

k=1

IkIk+1 · · · Ik+r−1.

By the Borel–Cantelli lemma, it follows that Nr < ∞ with probability 1. In the following the
notation sn = s(s + 1) · · · (s + n − 1) is used for rising factorials.

Theorem 2.1. The first two moments of the number of r consecutive records satisfy

E(Nr) = ar

(r − 1)(a + b)r−1
,

E(N2
r ) = E(Nr) + 2

2r−1∑
j=r+1

E(Nj ) + 2a

r − 1
E(N2r−1).

Proof. Using the fact that the I s are independent, we obtain a telescoping sum, i.e.

E(Nr) =
∞∑

k=1

E(Ik · · · Ik+r−1)

=
∞∑

k=1

ar

(a + b + k − 1)r

= ar

r − 1

∞∑
k=1

1

(a + b + k)r−2

(
1

a + b + k − 1
− 1

a + b + k + r − 2

)

= ar

(r − 1)(a + b)r−1
.

The independence of the I s, the identity I 2
j ≡ Ij , and the formula for E(Nr) give

E(N2
r ) = E

( ∞∑
k=1

IkIk+1 · · · Ik+r−1

∞∑
�=1

I�I�+1 · · · I�+r−1

)

= E(Nr) + 2 E

( ∞∑
k=1

Ik · · · Ik+r−1

k+r−1∑
�=k+1

I� · · · I�+r−1

)

+ 2 E

( ∞∑
k=1

Ik · · · Ik+r−1

∞∑
�=k+r

I� · · · I�+r−1

)
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= E(Nr) + 2
r−1∑
j=1

E

( ∞∑
k=1

Ik · · · Ik+r−1+j

)

+ 2
∞∑

k=1

E

(
Ik · · · Ik+r−1

∞∑
�=k+r

I� · · · I�+r−1

)

= E(Nr) + 2
r−1∑
j=1

E(Nr+j ) + 2
∞∑

k=1

E(Ik · · · Ik+r−1) E

( ∞∑
�=k+r

I� · · · I�+r−1

)

= E(Nr) + 2
r−1∑
j=1

E(Nr+j ) + 2
∞∑

k=1

ar

(a + b + k − 1)r

ar

(r − 1)(a + b + k + r)r−1

= E(Nr) + 2
r−1∑
j=1

E(Nr+j ) + 2a

r − 1

∞∑
k=1

a2r−1

(a + b + k − 1)2r−1

= E(Nr) + 2
2r−1∑

j=r+1

E(Nj ) + 2a

r − 1
E(N2r−1),

proving the assertion.

In particular, for a = 1 and b = 0, we have

E(Nr) = 1

(r − 1)! (r − 1)
,

var(Nr) = 1

(r − 1)! (r − 1)
+

2r−2∑
j=r

2

j ! j + 1

(2r − 2)! (r − 1)2 − 1

(r − 1)!2(r − 1)2 ,

in agreement with Chern et al. (2000). For triple records, we obtain E(N3) = 1
4 and var(N3) =

95
288 > 1

4 . Thus, the distribution of N3 is not Poisson. Recall that the number of double records,
N2, is Poisson with mean 1.

Corollary 2.1. For the mean of Nr , as r → ∞,

E(Nr) = �(a + b)ar

(r − 1)! ra+b

(
1 + O

(
1

r

))
.

Proof. Using Stirling’s formula for the gamma function, we obtain, as r → ∞,

E(Nr) = ar

(r − 1)(a + b)r−1

= ar

(r − 1)!
(

1 + a + b

r − 1

)
(r − 1)!
(a + b)r

= ar

(r − 1)!
(

1 + a + b

r − 1

)
�(a + b)�(r)

�(a + b + r)

= �(a + b)ar

(r − 1)! ra+b

(
1 + O

(
1

r

))
.
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Corollary 2.2. The probability of r ≥ 2 consecutive records satisfies

E(Nr) > P(Nr ≥ 1) > E(Nr)

(
1+ b

a + b + r
+ (a + b)(b + 1)

(a + b + r)(a + b + r + 1)

)(
1+a + b

r − 1

)−1

.

Proof. As P(Nr ≥ 2) ≥ P(I1 = · · · = Ir+1 = 1) > 0, the left-hand side inequality in the
assertion follows. The right-hand side inequality follows from

P(Nr ≥ 1) > P(I1 = · · · = Ir = 1) + P(I1 = 0, I2 = · · · = Ir+1 = 1)

+ P(I2 = 0, I3 = · · · = Ir+2 = 1)

= ar

(a + b)r

(
1 + b

a + b + r
+ (a + b)(b + 1)

(a + b + r)(a + b + r + 1)

)

and the above formula for E(Nr).

Combining the above results we obtain the following asymptotic expansion.

Corollary 2.3. The probability of no occurrence of r consecutive records satisfies

P(Nr = 0) = 1 − �(a + b)ar

(r − 1)! ra+b

(
1 + O

(
1

r

))

as r → ∞.

For a = 1 and b = 0, we obtain

E(Nr) = 1

(r − 1)! (r − 1)
> P(Nr ≥ 1) >

1

r! + 1

(r + 2)! ,

which implies that

P(Nr = 0) = 1 − 1

(r − 1)! (r − 1)
+ O

(
1

r! r
)

,

in agreement with Corollary 2 of Chern and Hwang (2005), proved in a different way. Using
recursions of generating functions, P(Nr = 0) is numerically computed in Table 1 of Chern et
al. (2000). With these values in the above inequality for P(Nr ≥ 1) we obtain, for r = 3, 4, 5, 6,

0.250 > 0.192 > 0.175, 0.0556 > 0.0451 > 0.0431,

0.0104 > 0.008 75 > 0.008 53, 0.001 67 > 0.001 44 > 0.001 41.

The simple approximation P(Nr ≥ 1) ≈ 1/r! + 1/(r + 2)! is accurate; for example, P(N7 ≥
1) = 0.000 203 compared to 1/7! + 1/9! = 0.000 201. This is not surprising: if a long run of
records occurs then, with high probability, it should start in the first or third trial.

3. Embedding and multiple records

Apart from special cases, no simple formula for the distribution of Nr seems possible to give.
However, using the embedding below, we will indicate how the distribution can be calculated
for any a > 0 and b ≥ 0.
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In Holst (2008b) the following embedding of the sequence S = I1I2I3 · · · of 1s and 0s is
given. First, generate an outcome p of a random variable P with a Beta(a, b) distribution, that
is, P has density

f (p) = �(a + b)

�(a)�(b)
pa−1(1 − p)b−1, 0 < p < 1;

Beta(a, 0) is interpreted as P ≡ 1. Conditional on P = p, generate independent Poisson
processes �1p, �2p, . . . on the positive real line, where ��p has intensity

λ�(t) = (1 − pe−t/a)�−1pe−t/a, t > 0.

Independent of �1p, �2p, . . . , let L0 be a geometric random variable with

P(L0 = �) = (1 − p)�−1p, � = 1, 2, . . . .

The superposition �p of �1p, �2p, . . . is a Poisson process of intensity 1. Suppose that the
kth point of �p originates from the process �Lkp. Define a sequence Sp of 1s and 0s by letting
the first 1 occur at position L0, the second at position L0 + L1, the third at L0 + L1 + L2, and
so on. It was proved in Holst (2008b) that the sequences S and SP have the same distribution.
We can identify S and SP with each other.

Note that a point in �p originating from �1p corresponds to a double record in S. As the
number of points in �1p is Poisson with mean

∫ ∞
0 pe−t/a dt = ap, it follows that, conditional

on the Beta(a, b) random variable P = p, the number of double records, N2, is Poisson with
mean ap, as was proved in Móri (2001). Also, note that, conditional on P = p, the superposition
�≥2p of �2p, �3p, . . . is a Poisson process of intensity 1 − pe−t/a and independent of �1p.

We have, for j = 0, 1, 2, . . . ,

P(N2 = j) = E(P(N2 = j | P))

= E

(
(aP )j e−aP

j !
)

=
∫ 1

0

(ap)j e−ap

j !
�(a + b)

�(a)�(b)
pa−1(1 − p)b−1 dp

= aj

j !
∞∑

�=0

(−a)�

�!
aj+�

(a + b)j+�

and

E(N2) = E(E(N2 | P)) = E(aP ) = a2

a + b
.

For the number of r consecutive records, P(Nr = k) = ∑∞
j=0 P(N2 = j, Nr = k), where the

probability P(N2 = j, Nr = k) can, at least in principle, be found using the embedding above.
As an illustration, we will study triple records and briefly quadruple records.

3.1. Triple records

First consider the probability of no triple record:

P(N3 = 0) = P(N2 ≤ 1) +
∞∑

j=2

P(N2 = j, N3 = 0).
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Proposition 3.1. For two or three double records and no triple record,

P(N2 = 2, N3 = 0) = P(N2 = 2) −
∞∑

�=0

P(N2 = 2 + �)
(� + 1)!

(a + 1)�+1

and

P(N2 = 3, N3 = 0)

= P(N2 = 3) −
∞∑

�=0

P(N2 = 3 + �)

(
(� + 1)!

(a + 1)�+1
+ (� + 2)!

(a + 2)�+1
− (� + 2)! (� + 1)

(a + 1)�+2

)
.

Proof. Conditional onP = p, we can argue as follows. Given two fixed numbers 0 < u < v,
the number of points of �≥2p in the interval (u, v) is Poisson with mean∫ v

u

(1 − pe−t/a) dt = v − u − ap(e−u/a − e−v/a).

The event ‘N2 = j, N3 = 0’ means that the Poisson process �1p has j points and that between
all adjacent points there is at least one point from �≥2p. Given that the j points of �1p occur
at t1 < t2 < · · · < tj , the probability that N3 = 0 is

j−1∏
k=1

(1 − exp(−tk+1 + tk − ape−tk+1/a + ape−tk/a)).

As the points of the Poisson process �1p occur with intensity pe−t/a , the probability of having
no points of �1p outside a fixed discrete finite set is e−ap. Hence,

P(N2 = j, N3 = 0 | P = p)

=
∫

· · ·
∫

1(0 < t1 < · · · < tj )e
−appe−t1/a · · · pe−tj /a

×
j−1∏
k=1

(1 − exp(−tk+1 + tk − ape−tk+1/a + ape−tk/a)) dt1 · · · dtj

= e−ap

∫ ap

0

∫ xj

0
· · ·

∫ x2

0

j−1∏
k=1

(
1 −

(
xk

xk+1

)a

exk+1−xk

)
dx1 · · · dxj .

For j = 2, we find, with u = x1/x2, the series expansion and the beta function:

P(N2 = 2, N3 = 0 | P = p)

= e−ap

∫ ap

0
x2

∫ 1

0
(1 − uaex2(1−u)) du dx2

= e−ap

∫ ap

0
x2

(
1 −

∞∑
�=0

x�
2

�!
∫ 1

0
ua(1 − u)� du

)
dx2

= e−ap

∫ ap

0
x2

(
1 −

∞∑
�=0

x�
2

(a + 1)�+1

)
dx2

= P(N2 = 2 | P = p) −
∞∑

�=0

P(N2 = 2 + � | P = p)(� + 1)!
(a + 1)�+1

,
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which gives the unconditional probability in the assertion. With similar calculations we obtain
the formula for P(N2 = 3, N3 = 0).

Analogously, it is possible to calculate P(N2 = j, N3 = 0) for j = 4, 5, . . . .

At least two double records are needed to obtain a triple record. Therefore,

P(N3 = 1) =
∞∑

j=2

P(N2 = j, N3 = 1),

which can be calculated in a similar way as P(N3 = 0). Note that

P(N2 = 2, N3 = 1) = P(N2 = 2) − P(N2 = 2, N3 = 0).

The integral

P(N2 = j, N3 = 1 | P = p)

= e−ap

∫ ap

0

∫ xj

0
· · ·

∫ x2

0

j−1∑
�=1

j−1∏
k=1
k �=�

(
1 −

(
xk

xk+1

)a

exk+1−xk

)(
x�

x�+1

)a

ex�+1−x� dx1 · · · dxj

has to be evaluated. Similar expressions can be given for P(N3 = 2), P(N3 = 3), . . . .

3.2. Triple records for a = 1 and b = 0

For record probabilities in a sequence of independent, identically distributed, continuous
random variables, we have a = 1 and b = 0. Using the above results, we find, after some
computations, that

P(N2 = j) = e−1

j ! , P(N2 ≤ 1) = 0.735 758 88,

P(N2 = 2, N3 = 0) = 0.066 990 05, P(N2 = 3, N3 = 0) = 0.005 047 15,

P(N2 = 4, N3 = 0) = 0.000 207 57, P(N2 = 5, N3 = 0) = 0.000 005 32.

Summing these probabilities gives

P(N2 ≤ 5, N3 = 0) = 0.808 008 98.

By subtle asymptotic analyses of a recurrence and a differential equation, a complicated formula
for the probability generating function of N3 is given in Chern et al. (2000); see also Chern and
Hwang (2005). From this, they obtained

P(N3 = 0) = 0.808 009 125 346 368 . . . .

For general a > 0 and b ≥ 0, the methods used in Chern et al. are not applicable.

3.3. Quadruple records

To obtain a quadruple record, that is, four consecutive records, at least three double records
are needed. Hence,

P(N4 = 0) = P(N2 ≤ 2) +
∞∑

j=3

P(N2 = j, N4 = 0).
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Proposition 3.2. For three double records and no quadruple record,

P(N2 = 3, N4 = 0) = P(N2 = 3) −
∞∑

�=0

P(N2 = 3 + �)
(� + 2)! (� + 1)

(a + 1)�+2
.

Proof. As in the proof of Proposition 3.1, we see that

P(N2 = 3, N4 = 1 | P = p)

= e−ap

∫∫∫
1(0 < x1 < x2 < x3 < ap)

(
x1

x3

)a

ex3−x1 dx1 dx2 dx3

= e−ap

∫ ap

0

∫ x3

0

(
x1

x3

)a

ex3−x1(x3 − x1) dx1 dx3

=
∞∑

�=0

(ap)�+3e−ap

�!
1

� + 3

∫ 1

0
ua(1 − u)�+1 du

=
∞∑

�=0

(ap)�+3

(� + 3)!e−ap (� + 2)! (� + 1)

(a + 1)�+2
,

from which the assertion follows.

Similar formulae can be derived for P(N2 = j, N4 = 0) for j = 4, 5, . . . .

For a = 1 and b = 0, we find that P(N2 ≤ 2) = 0.919 70, P(N2 = 3, N4 = 0) = 0.030 97,
and, after computations similar to those for triple records, P(N2 = 4, N4 = 0) = 0.003 91.
Thus, P(N2 ≤ 4, N4 = 0) = 0.954 58. Chern et al. (2000) obtained the value P(N4 = 0) =
0.954 90. Recall that

1 − E(N4) = 1 − 1

3! 3
= 0.944 44 < P(N4 = 0) = 0.954 90 < 1 − 1

4! − 1

6! = 0.956 94;

see the end of Section 2.
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