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ABSTRACT

Individual automobile insurance claims are characterized by over-dispersion
relative to the Poisson model. In addition, claim propensities vary among
individuals in any insurance portfolio. This paper presents a model which
takes account of both characteristics. The model employs the negative-
binomial distribution as the distribution for individual-level claims and a
Pareto distribution as the distribution for claim propensities within the
portfolio. The paper shows that the resulting model is tractable and has a
number of attractive properties which make it suitable for this application.
The fit of the model to actual claim numbers for automobile third party
liability insurance is examined and found acceptable. Bayes theorem is then
applied to this model to calculate illustrative optimal premiums under the
Bonus-Malus System (BMS).

1. INTRODUCTION

The Poisson distribution has a long history in insurance as a model for claim
counts for individuals. Actual experience shows, however, that the
distribution of claim counts in repeated observations for a single individual
tend to have greater dispersion than can be accounted for by the Poisson
model. This characteristic is certainly observed in the field of automobile
insurance. It also has been known since the earliest studies of insurance that
the propensity to make claims differs among individuals. In automobile
insurance, these differing propensities are explained by a variety of
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personality, health, physical and environmental risk factors for individual
policyholders that are not accounted for by premium-related risk adjust-
ments.

In the next section, we propose the negative-binomial distribution as a
model for individual automobile insurance claims that can account for over-
dispersion relative to the Poisson model. We then take account of variation
in individual claim propensity by assuming that the mean number of claims
is distributed across individual policyholders according to a Pareto
distribution. The section examines the properties of this mixture model
and shows that it is both mathematically tractable and suitable for this
application in a number of respects. Section 3 presents a demonstration of
the fit of the model to actual claim numbers for automobile third party
liability insurance. In Section 4, Bayes theorem is applied to this model to
calculate illustrative optimal premiums under the Bonus-Malus System
(BMS).

2. NEGATIVE BINOMIAL-PARETO MODEL

We assume that the number of claims K of an individual policyholder in a
given time period follows a negative binomial probability distribution
NB(/i,r) with probability function

— — r for k = 0, 1, ... (2.1)
l {r)K< ( r -|- ^ )

Parameter fi>0 is the mean number of claims in the period, i.e.,
E(K\n) = n, and, hence, measures the individual's claim propensity.
Parameter r > 0 is an unknown constant that is assumed to be the same
value for all individuals. The variance of the number of claims K is given by

(2.2)

The quantity /j,/r in (2.2) determines the extent of over-dispersion in the
negative binomial model relative to the Poisson model. This quantity is
proportional to the mean number of claims /i and inversely proportional to
the parameter r. Thus, the negative binomial model implies that over-
dispersion increases with the mean number of claims n. Moreover,
parameter r governs the responsiveness of over-dispersion to this mean
number. The larger is r, the smaller is the degree of over-dispersion. In the
limit, as r tends to oo, p(k\n) in (2.1) tends to a Poisson distribution with
mean a.
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The probability distribution of the mean parameter n among policy-
holders in the insurance portfolio is assumed to be a Pareto distribution with
the following density function.

We denote this Pareto distribution by Pareto ((, r, s). Parameter ( > 0 is the
mean of the distribution, i.e., E(fi) = C- Parameter r is the same parameter
that appears in the negative binomial distribution in (2.1). Parameter s > 0
measures the homogeneity of claim propensities among individual policy-
holders, with larger values of s implying more uniform propensities. As s
increases, the density function/(/z) becomes more concentrated and, in the
limit, tends to a degenerate distribution centered on (. This parameterization
of /(/i) is somewhat elaborate but facilitates interpretation of the portfolio
effect, as we shall explain shortly. We choose a Pareto distribution for
several reasons. It is conjugate to the negative binomial distribution which
makes it mathematically tractable. It is right skewed and unimodal which
makes it suitable for describing the variation that is typically found in the
mean claim parameter of individual policyholders. Finally, it has consider-
able mathematical flexibility for fitting different distribution patterns. This
three-parameter version of the Pareto distribution is sometimes called the
generalized Pareto distribution. Klugman et al. (1998:574) give some
properties of this distribution.

The marginal distribution of K, the number of claims in the period for a
randomly chosen policyholder from the insurance portfolio, is obtained
from the distributions in (2.1) and (2.3) by integrating over the mean
parameter [L as follows.

T « + sr+ l)r(r + sr + l ) r « + k)Y(r + k)

T{sQT(sr + l)r(r)r(r + sr + sQ + k+ \)k\
(2.4)

We refer to this marginal distribution as a negative binomial-Pareto
distribution and denote it by NBP(£, r, s). We note for later that the
probabilities for this distribution are readily computed recursively using the
following properties.

p(k)
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The NBP model has characteristics that are consistent with those of
traditional models for insurance claims but it also has new features that
allow it to capture important aspects of real insurance portfolios. Moreover,
it is a tractable model that lends itself to useful operational interpretation.
We now look at the NBP distribution more closely.

1. It is known that a negative binomial distribution may be derived from
a Poisson distribution by letting the Poisson mean parameter have a
gamma distribution. It is this characterization, in fact, which has been
used in the insurance literature to justify the use of the negative
binomial distribution as a model that accounts for variation in claim
propensity. Here we use this same rationale for explaining individual
over-dispersion. The negative binomial distribution in (2.1) is a
gamma mixture of Poisson distributions where the gamma mean
parameter is /x and its shape parameter is r.

2. We have already noted that parameter r controls the extent of over-
dispersion of the individual claim distribution. As r approaches oo, the
individual claim distribution approaches a Poisson distribution. In
addition, however, as r increases, the Pareto distribution for ji in (2.3)
approaches a gamma distribution with mean parameter £ and shape
parameter s(. It follows therefore that, as r approaches oo, the NBP
distribution in (2.4) approaches a negative binomial distribution

NB(CX).
3. The NBP distribution also approaches a negative binomial distribu-

tion NB(£, r) as s approaches oo, i.e., as claim propensities become
more uniform in the portfolio. Thus, the negative binomial distribu-
tion for the number of claims is a special case of the NBP model under
two different scenarios — when there is no over-dispersion or when
there is no variation in claim propensity.

4. If both r and s approach infinity, the NBP model reduces to the simple
Poisson model (with mean parameter Q.

5. The NBP model uses conjugacy to extend the Poisson model in two
aspects. The negative binomial model for individual claims in (2.1)
follows from the conjugacy of the Poisson and gamma distributions.
The NBP model in (2.4) follows from the conjugacy of the negative
binomial and Pareto distributions.

Admittedly, the mathematical convenience of conjugacy is no guarantee that
individual over-dispersion and variation in claim propensity have precisely
the distributional forms implied by the NBP model. The negative binomial
and Pareto distributions, however, are plausible models for these
phenomena and are likely to capture their influence to a good approxima-
tion.

Now we wish to examine how the NBP model responds to claim
experience. Consider a policyholder, drawn randomly from the insurance
portfolio, who is observed to have the sequence of claims k\, ..., k, over
t periods. We assume that each claim number is drawn independently from
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the negative binomial distribution (2.1) for that policyholder. The density
function/(/z) in (2.3) serves as a prior distribution for the mean number of
claims for the policyholder. We use Bayes theorem to derive the posterior
distribution for the policyholder's mean number of claims, given this claim
record, as follows.

f{n\ku ..., kt) <xf(riflp(kt\tj) (2.7)

Letting c = Yl'i=i ki, the posterior distribution /(/z|&i, ..., kt) remains a
Pareto distribution but now with the updated parameters Pareto(£,,r, st),
where

s, = s + t. (2.86)

Observe that the parameter r continues to remain fixed. The result in (2.8b)
shows that parameter st serves as a time counter with s being the implicit
time count implied by the prior density /(/z). The parameter Q serves as the
current estimate of the claim rate for the policyholder with £ being the
implicit claim rate implied by the prior density /(/z).

For a policyholder with the claim record k\, ..., k,, we are interested in
the probability distribution for the claim number in the next period, namely,
K = Kt+\. It follows from (2.4) and (2.7) that the predictive distribution for
K, given c and /, is of the form

K\c,t~NBP((t,r,st). (2.9)

Under a BMS, the policyholder's premium for period t + 1 would be set
with reference to the parameters of this distribution, which reflect the
policyholder's claim record. This distribution is readily computed using (2.5)
and (2.6), with an appropriate substitution of the updated parameters. We
note for later reference that the mean and variance of the number of claims
under this predictive distribution are given by

E(K\c,t) = (t, (2.10a)

^ | e , Q = Ct +
 (j> + 1)C? + (

i
r + 1 ) C t - (2.106)

TS 1
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3. FITTING THE MODEL TO AUTOMOBILE INSURANCE DATA

It would be ideal to have access to claim data at the individual level for
multiple time periods (/ > 1) in order to validate the negative binomial
model for individual claim experience and the Pareto model for the
distribution of claim propensity for the insurance portfolio. However, we do
not have access to detailed claims data of this type. We do have access to
published claim numbers for the automobile third party liability insurance
portfolio of a Belgian insurance company for a recent year (Lemaire, 1995,
page 25). The data and the fitted NBP distribution appear in Table 1. The
frequency n(k) represents the number of policyholders in the portfolio for
whom the insurer experienced k claims. The total number of policyholders is
given by n = J2kn(k)-

TABLE I

OBSERVED AND FITTED CLAIM NUMBERS FOR THE NBP DISTRIBUTION

Claim number

k

0

1

2

3

4

> 4

Total

Observed Frequency

n(k)

96978

9240

704

43

9

0

106974

Fitted Frequency

np{k)

96980.0

9235.9

702.1

51.8

3.9

0.3

106974.0

The claim distribution in Table 1 corresponds to the marginal distribution
p(k) in (2.4) and, hence, can be used to estimate the parameters (, r and s of
the NBP model on the assumption that it is a valid model. We have
estimated the parameters by maximum likelihood using the ml procedure in
the statistical package STATA and obtained the estimates ( = 0.1011,
r = 3.736 and s = 36.93. The standard errors for the parameter estimates
provided in the maximum likelihood output show that r and s are not
estimated with great accuracy from the marginal distribution p(k). The fitted
values in Table 1 are computed using these parameter estimates.

The estimation results give some useful insights into the claim
distribution pattern. Given the estimate of r, we can gauge the extent of
over-dispersion (relative to the Poisson model) for the claim distribution of
an individual policyholder with any given mean claim rate (i. The estimated
mean of the fitted NBP distribution in Table 1 is ( = 0.1011 claim per year.
For a policyholder having this average claim rate, we see from (2.2)
that ///r = 0.1011/3.736 = 0.027. Thus, the variance is inflated by about
3 percent relative to a Poisson model for this kind of policyholder. This is a
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small effect. For a policyholder with a mean claim rate of/x = 0.5 per year (a
very extreme case), the over-dispersion amounts to fi/r = 0.5/3.736 = 0.13,
which is still only a modest effect. The magnitude of over-dispersion for
other automobile insurance portfolios remains an outstanding empirical
question that we will examine in subsequent research. Another interesting
result that can be inferred from the NBP parameter estimates is the extent of
variation in the mean number of claims among policyholders. The coefficient
of variation of the density function /(//) in (2.3) (expressed as a fraction) is
given by

From our parameter estimates, C.V. is estimated to be 0.53 or 53%. This
estimate suggests that there is substantial variation among individual
policyholders in terms of claim propensity. We also note that since
s( — 3.731 > 1, it follows that the mode of the density function /(/x) lies
away from zero.

We have also compared the fit of the NBP model with two competing
mixture models that have been proposed in the literature for claim
distributions, namely, the pure negative binomial model and the Poisson-
inverse Gaussian model. As we noted earlier, the negative binomial model is
a special case of the NBP model in which either r = oo or s = oo. The fitted
distributions for the pure negative binomial and Poisson-inverse Gaussian
models are taken from Lemaire (1995). Table 2 shows chi-square goodness-
of-fit statistics for the three models, subject to pooling categories so that all
expected frequencies np(k) are 2 or more and at least 80% are 5 or more. The
chi-square statistics are based on maximum likelihood estimates derived
from the full frequency distribution. The table shows the chi-square statistic
for each model, as well as its degrees of freedom. All of the chi-square
statistics are significant at the 5% level, indicating that all models show a
lack of fit. We comment shortly on why this may be so. The Poisson-inverse
Gaussian model has the smallest chi-square statistic but by a small margin.
There is little basis for choosing among the models in terms of their fit to the
observed frequencies.

TABLE 2

COMPARISON OF FIT OF THREE MODELS

Model Chi-square Statistic

Negative Binomial-Pareto %2 = 6.74, df = 1

Negative Binomial X2 = 9.15, df = 2

Poisson-inverse Gaussian x2 = 6.25, df = 2
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There is one feature of the data set in Table 1 that may explain the apparent
lack of fit. We note that the frequency counts «(3) = 43, «(4) = 9 and
YlT=5n(k) = 0 in Table 1 exhibit an unnatural pattern. The pattern suggests
that perhaps administrative or other actions by the insurer (including
warnings or suspensions of coverage) may have prevented claim numbers in
excess of 2 from following their 'natural' statistical pattern. The sudden drop
to zero of frequency counts for 5 or more claims is surprising. We cannot
verify our suspicions about this pattern. We note, however, that a distortion
of frequency counts would expose the measures of fit to suspect frequencies
n(k) for k > 2. This effect may explain the lack of fit of all models. The
possible distortion of larger frequency counts argues for parameter
estimation based on a truncated version of the NBP distribution but there
are too few degrees of freedom here to allow the truncated version to be
tested for fit.

4. APPLICATION OF MODEL IN SETTING AUTOMOBILE INSURANCE PREMIUMS

The expected value principle for calculating an insurance premium sets the
premium equal to P(c, t) = (1 + p)E(K\c, t) where E{K\c, t) is the expected
number of claims in period t + 1, conditional on the policyholder having
made a total of c claims in an earlier experience period of length t. The
constant p is a multiplicative loading factor for the premium. For the NBP
model, the expected value E(K\c,t) is given in (2.10a). Setting a new
policyholder's premium to 100, i.e., P(0, 0) = 100, we can calculate the
relative premiums l00P(c, t)/P(0, 0) for various experience conditions (c, t)
under the BMS rule. These relative premiums are shown in Table 3. Tables 4
and 5 show comparable relative premiums for the pure negative binomial
and Poisson-inverse Gaussian models taken from Lemaire (1995, pages 165
and 169).

TABLE 3

B M S RELATIVE PREMIUMS FOR THE N B P MODEL BASED ON THE EXPECTED VALUE PRINCIPLE

Years

t

0
1

2

3
4
5

0

100

97.36

94.86

92.49

90.23
88.08

1

123.45

120.28

117.26

114.40
111.67

2

149.53

145.69

142.04

138.57
135.26

Total claims c

3

175.61

171.10

166.82

162.74
158.86

4

201.69

196.51

191.59

186.91
182.45

5

227.78

221.93

216.37

211.08
206.05

6

253.86
247.34

241.14

235.25
229.64
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The NBP model has several other noteworthy features in the context of BMS
automobile insurance pricing.

1. Tables 3, 4 and 5 reveal one striking characteristic, namely, that the
NBP model provides for more moderate (i.e., lower) relative premiums
for policyholders with some claim experience. This characteristic can
be explained by the fact that individual claims follow a Poisson
process in both the pure negative binomial and Poisson-inverse
Gaussian models. The NBP model, in contrast, assumes that
individual claim experience will be over-dispersed relative to a Poisson
model and the over-dispersion is larger for policyholders with larger
mean claim rates. Therefore, extreme individual claim counts are more
likely under the NBP model than under one based on a Poisson
mixture. More moderate relative premiums are the result.

TABLE 4

B M S RELATIVE PREMIUMS HOR THE NEGATIVE BINOMIAL MODEL BASED ON THE EXPECTED VALUE PRINCIPLE

Years

t

0
1
2
3
4

0

100
94.07
88.81
84.11
79.88

1

152.69

144.15
136.51
129.65

2

211.31
199.49
188.92
179.42

Total claims c

3

269.92
254.83
214.33
229.19

4

328.54
310.16
297.73
278.96

5

387.16
365.50
346.14
328.73

6

445.77
420.84
398.54
378.49

TABLE 5

B M S RELATIVE PREMIUMS FOR THE POISSON-INVERSE GAUSSIAN MODEL BASED ON THE EXPECTED

VALUE PRINCIPLE

Years

t

0
1
2

3
4

0

100
94.24
89.37
85.19
81.55

1

149.58
139.14
130.41
122.98

2

225.39

206.71
191.31
178.37

Total claims c

3

316.09
287.49
264.03
244.44

4

415.46
376.17
344.02
317.23

5

519.41
469.16
428.07
393.85

6

625.81
564.49
514.37
472.64
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2. BMS pricing is financially balanced because it can be shown for the
NBP model that

E(K)=E{ku^kl][EK(K\k1, . . . ,*:,)]. (4.1)

3. As an insurer gains experience with a policyholder (more precisely, as t
increases), the posterior Pareto distribution for fi in (2.7) becomes
concentrated around its mean value Q which, in turn, approaches c/t
as t increases. Hence, for large t, the posterior estimate of the
policyholder's mean claim rate will be approximately c/t, the empirical
claim rate.

4. If the variance principle is used for setting an insurance premium in
the NBP context, the policyholder with claim experience (c, t) will pay
the following premium

where A is the safety parameter. Tables 6 and 7 show BMS relative premiums
using this pricing principle in conjunction with the NBP model. The values
of A used for the computations are 0.235 and 1.88, respectively, which
correspond to safety loadings of 25% and 200% of the net premium. The
latter represents an extreme assumption. Even so, however, the tables show
that the relative premiums differ little from those in Table 3 that were
calculated under the expected value principle. Thus, the choice between these
two premium calculation methods makes little difference under the NBP
model.

TABLE 6

B M S RELATIVE PREMIUMS FOR THE N B P MODEL BASED ON THE VARIANCE PRINCIPLE WITH A = 0.235

Years

t

0
1
2

3
4

5

0

100
97.33

94.80

92.40

90.12

87.95

1

123.58

120.36

117.31

114.41

111.65

2

149.89

145.99

142.28

138.76

135.41

Total claims c

3

176.28

171.68

167.32

163.17

159.22

4

202.74

197.44

192.42

187.64

183.10

5

229.27

223.27

217.58

212.17

207.03

6

255.87

249.17

242.81

236.77

231.02
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TABLE 7

BMS RELATIVE PREMIUMS FOR THE NBP MODEL BASED ON THE VARIANCE PRINCIPLE WITH A = 1.8

Years

t

0
1

2

3
4

5

0

100
97.26

94.67

92.21

89.88

87.66

1

123.88

120.56

117.42

114.44

111.60

2

150.74

146.69

142.85

139.20

135.74

Total claims c

3

177.84

173.04

168.49

164.17

160.07

4

205.17

199.61

194.34

189.34

187.60

5

232.75

226.41

220.41

214.72

209.32

6

260.56

253.44

246.70

240.30

234.23
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