
Thirty Years of Sound Hacking: From
freeware to Eurorack

TOM ERBE

University of California San Diego, United States
Email: tre@ucsd.edu

For slightly more than 30 years I have been developing audio
software and hardware under the moniker soundhack. Through
these years I have programmed applications, plugins,
externals, hardware and Eurorack modules – usually focusing
on signal processing techniques and applications that are not
easily available or offered by mainstream software companies.
In this article, I would like to share my point of view and relate
the rationale behind the development of these tools, my
evolving sonic and design aesthetic, and some of the
advantages, disadvantages and other differences between the
the various hardware and software contexts.

1. SOUNDHACK

1.1. Robert Ashley and the beginning of SoundHack

In the spring and summer of 1989 I was engaged as a
recording engineer and electronic musician (along
with David Rosenboom, Tom Hamilton and Sam
Ashley) for the recording of Robert Ashley’s opera
Improvement (Ashley 1992). We worked at the record-
ing and electronic music studios of the Center for
Contemporary Music at Mills College. One of my
main tasks was to develop unique sonic identities
for each of the characters in the opera. With our ‘stu-
dio as an instrument’ (a Lexicon PCM70, Drawmer
dynamics processor, Alesis Quadraverb, mixer, 24-
track and Opcode Vision to automate parameters),
David Rosenboom and I were to develop vocal treat-
ments and backgrounds specific to each scene and to
each performer. For instance, the protagonist Linda’s
voice (played by Jacqueline Humbert) was recorded
with multiple layers: spoken, sung, echoed and spatial-
ised. This represented both her constant internal
dialog and her mnemonic system in ‘The Contents
of Her Purse’. The character Don (played by
Thomas Buckner) was a tap dancer, hence a layer
of Tom’s vocals containing only plosives and fricatives
that I filtered and gated for more percussive effect.
When developing the treatments for the Greek chorus
and scene 2, ‘The Airline Ticket Counter’, I needed to
create specific spaces and resonances that followed the
score and conveyed the location, the relation of the
characters and any subtext. I realised that to sculpt this
sound I really would have liked to use sound-file

convolution for cross-synthesis. Unfortunately:, the
CCM did not own an expensive Unix workstation
to run the CARL software distribution (Loy 2002),
and my attempts to quickly port Mark Dolson’s con-
volvesf application to a Macintosh System 6 were
too difficult to complete while following our 60 hour
a week recording schedule. Instead, the airport was
created with reverb, live equalisation and panning,
and the Greek chorus modulated a gated Buchla
Touché drone providing the pitched resonance.
When production moved from Oakland to NYC in
the fall, and Tom Hamilton took over my role, I
finally had time to create the tool I no longer needed
for Improvement, but wanted regardless. I bought a
book on programming with Think C and the Mac
Toolbox, and started work on SoundHack (Figure 1).
I released the first version, SoundHack 0.1, two

years later in October 1991. I named it SoundHack
as I felt electronic music-making on small home com-
puters had some affinity to the then-present hacker
culture. Version 0.6 included sound file conversion,
convolution and the phase vocoder. From this version,
the software became used widely by a diverse group of
musicians, educators and sound designers: from Alvin
Curran to Richard D. James, from the Sal Soul
Orchestra to the sound designers for The Matrix.

1.2. Motivations

My main motivation for programming SoundHack
was to make new computer music techniques easily
available to the experimental musician community. I
became aware of much of the interesting research in
computer music during my time as a research assistant
at the Center for Music Experiment at UC San Diego
(1984–87). Not only was I excited by the sonic possi-
bilities of these techniques, but I was also excited at
what sonic creations experimental and electronic
musicians might make with them.
There was also a very practical motivation for the

development of SoundHack. At the time, the tools that
we used all had their own sound file formats. For
example, Csound used the IRCAM file format,
Sound Designer II used the SD2 format, the AIFF for-
mat had just been announced (Apple Computer 1989).

Organised Sound 27(1): 20–25 © The Author(s), 2022. Published by Cambridge University Press. doi:10.1017/S1355771822000176
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S1355771822000176 Published online by Cambridge University Press

mailto:tre@ucsd.edu
https://doi.org/10.1017/S1355771822000176
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1355771822000176&domain=pdf
https://doi.org/10.1017/S1355771822000176


SoundHack could fill these gaps and allow one to use
multiple music software as well as hardware samplers.
We were far from applying ‘studio as an instrument’
techniques to the computer, but it was a start.
There were no design or research motivations to

SoundHack at this point. The focus was simply sound,
synthesis and music.

1.3. Collaboration and community

The development of SoundHack led to a number of
interesting collaborations. The binaural filtering pro-
cessor was the result of working with Durand
Begault at NASA-Ames Research Center. We incor-
porated one HRTF oriented towards accurate
spatialisation, and another oriented towards better
music fidelity as well as developing a method for posi-
tion interpolation. My collaboration with Larry
Polansky applied his morphological mutation func-
tions to spectral data (Polansky and Erbe 1996), and
a conversation with Zack Settle led to the Spectral
Extractor module – a method of separating pitched
and unpitched sound.
SoundHack was also increasingly used by the aca-

demic music community. I found it used at any
school with a curriculum in electroacoustic music,
and I took many suggestions from my peers at other
institutions. Ideas from fellow academics included a
spectral file format with examples on how to use it,
support of Csound file formats, variable parameter
functions and the PEAK chunk in AIFF files. As men-
tioned earlier, I also was hearing SoundHack in many

commercial contexts: time stretching on the Hafler
Trio’s An Utterance of the Supreme Ventriloquist
and Duran Duran’s Medazzaland, or convolution as
a skyscraper froze on The Day After Tomorrow.
Hearing my work in these places was satisfying, but
what really became valuable to me was the community
of experimental musicians that emerged around
SoundHack and other music freeware such as
Thonk, Mammut, nato.0�55�3d, Metasynth and
Argeïphontes Lyre.

1.4. Winding down

My work on SoundHack slowed down for several rea-
sons. At the end of the 1990s, I found that the program
had grown too large to maintain as it had little overall
internal design or growable structure. I was contem-
plating incorporating an internal scripting language,
but soon found that to do this most everything in
SoundHack would simply need to be reprogrammed.
I learned the hard way that any such scriptable or
patchable structure needs to be designed at the begin-
ning of a project. Second, before Steve Jobs returned,
there was a lot of speculation that Apple might go out
of business. I was looking for a new platform for audio
processing. I spent two years programming a new
Java-based SoundHack DAW, but had to abandon
this as I found that the application grew less responsive
the larger it became (likely this would no longer be the
case with current versions of Java). I was getting lost in
the weeds of programming options, but thought I
should move to something more modular and fixed.

Figure 1. SoundHack application: 1991–2021.

Thirty Years of Sound Hacking: From freeware to Eurorack 21

https://doi.org/10.1017/S1355771822000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771822000176


Hence, the idea of programming plugins became quite
attractive. Steinberg had published the VST spec
(Johnson and Poyser 1996), which seemed well
thought out and I could contain each idea in an indi-
vidual project and experiment without affecting other
work. This was the fresh path.

SoundHack became dormant. I kept it up to date
through the transition to OS X and released the last
version in 2007 (using Apple’s 32-bit CarbonLib to
keep System 9 code working under OS X). Sadly, with
the elimination of 32-bit support in Big Sur, it is no
longer runnable. On the other hand, 29 years is not
a bad lifespan for a piece of music shareware.

2. SOUNDHACK PLUGINS

My immediate intention was to recreate all the fea-
tures of SoundHack as VST plugins for both Mac
and Windows. I soon found that would be difficult.
Many of these processes do not have a one-to-one rela-
tion between input and output time and cannot run in
real time. Second, not all hosts could take side chain
inputs (inputs other than the main audio input), so
cross-synthesis could not easily be supported. So I
set aside the convolution, phase vocoder, mutation
and varispeed processes, and went ahead with the
remainder: spectral dynamics, spectral extraction
and the binaural filter. I was confident that offline
processing and side chain inputs would be well sup-
ported in the future.

My first collection of plugins, the Spectral Shapers,
was released in 2003, and contained binaural, spectral-
gate, spectralcompand and morphfilter. Dividing the
processes into separate plugins really allowed me to
focus on each individually. This resulted in a general
improvement of sound, a better interface design, and a
better and more functional parameterisation. You can
see this clearly in the evolution of the binaural inter-
face from SoundHack to Spectral Shapers 1.0 to
Spectral Shapers 2.0 (Figure 2).

2.1. Studio needs, distortion and delay

Concurrent with the development of Spectral Shapers,
I developed plugins to address what I thought was
missing in the digital studio. In the late 1990s and early
2000s, I found many of the plugins available too clean
and controlled. I created decimate in 2000 to add bit-
crushing, and chebyshev to add variable harmonic
enhancement to instruments without alerting the musi-
cian that I am adding distortion to their track. I
created matrix and compand to do mid-side compres-
sion and expansion, and thus help me in my role as a
mastering engineer. I started working on delay plugins
in 2004, as I wanted to show my recording class some
effects with more character. This was the motivation

behind the delay trio, to create three delay effects
(modulated delay, pitch shifting delay and granular
delay), each with a very distinct personality. I found
that by adding additional processing elements in an
effect it is easy to achieve a wide range of sound: clean
to dirty, bright to dark, straight-ahead to weird. Once
the structure is set, much of the work is to tune the
parameters so that the extremes are balanced, and
to make sure the combination of all the changing
parameters contain many sweet spots. Specific effects
can be given personality or colour by adding specific
elements. In delay algorithms, adding the right mix of
filters, compression and saturation in the feedback
path can have a dramatic effect, and certain applica-
tions such as comb filtering, flanging or chorusing
need different internal adjustments of these submod-
ules to sound their best. With so many parameters it
is difficult to build a usable user interface. One could
expose every internal control of every module to the
user, but when faced with over 10 parameters to
adjust, most musicians will have a hard time finding
the sound they want. After I finished programming
bubbler, my granular delay, I felt I had reached the
limit of usability with 12 controls and even more but-
tons (Figure 3). In present designs, I try to combine
internal parameters to create more powerful meta-
parameters and to minimise the number of controls
that only have a subtle effect.

2.2. Bypassing the real-time time stretching issue

My most recently released plugin bundle is a set of
phase vocoder based plugins called the Pvoc Kit
(Erbe 2011). I was hoping that offline processing
would become more universally supported among
plugin hosts, but in the meantime I decided to work
around the issue. In the Pvoc Kit there is a time
stretcher, spiralstretch, that runs in real time by time
compressing first, that is, it captures small grains of
the incoming sound and overlaps the time stretched
version of each grain on the output. The result sounds
time stretched, but is the same length. The second time
stretcher in this bundle simply holds the sound file
internally with full control of playback rate. These
work-arounds point to one of the problems in plugin
development. One does not have control of the plugin
software development kit (SDK) or the plugin host,
and because of this there will always be certain types
of sound processing or synthesis that one cannot do.

2.3. Supporting plugin updates

The constant problem with plugin support is the per-
petually changing computing environment. The plugin
host will likely change every year, and often this will
break your plugin. The computer OS or OS

22 Tom Erbe

https://doi.org/10.1017/S1355771822000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771822000176


requirements will also change every year. Even if you
have made no improvements to your plugin, it will
need to be recompiled and tested at least once a year.
Presently I have 17 plugins published that run on
macOS as VST, AU, AAX and VST3 and on
Windows as VST and VST3. This means for every
revision I need to compile, test, package and upload
119 pieces of software. If there was only just one uni-
versal plugin format and computer companies made
reverse compatibility a priority, individual music soft-
ware developers could focus more on new sonic
techniques. Cross-platform APIs like JUCE (Raw

Material Software Limited 2021) help the situation
greatly, but plugin support is still a huge time sink.
The plugin format has the advantage of cross-platform
compatibility and modularity, but the lack of control
of the computing environment makes it much less
attractive.

3. BACK TO HARDWARE: SOUNDHACK
EURORACK MODULES

For the past 10 years, the cost of hardware develop-
ment, high-quality components and construction has
been low enough that custom hardware development
has been accessible to many people. There are low-cost
development boards from Teensy, beagleboard,
ElectroSmith and others that provide easy starting
points for hardware programming. One great advan-
tage in programming hardware is that the
environment is under your control. However, control
comes at a cost. There is often very little in software
library support. You will be responsible for setting
up all of the hardware components (e.g., RAM,
CODEC, DMA) in detail. You will not have many
examples to help you. Finally, sharing your work
can be complex or costly. A DIY/open-source project
requires the user to have a certain amount of expertise
in building, and often one has to devote a lot of time to
user support. A commercial project obviously carries
its share of risk. That said, it is extremely satisfying to

Figure 2. SoundHack binaural (top left), Spectral Shapers 1.0 �binaural (top right), Spectral Shapers 2.0 ��binaural
(bottom).

Figure 3. SoundHack��bubbler: my upper limit for control
density.

Thirty Years of Sound Hacking: From freeware to Eurorack 23

https://doi.org/10.1017/S1355771822000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771822000176


create a device that has a physical existence, that has
buttons, dials and indicators with dedicated parame-
ters, and can be played on its own.

The past 10 years I have collaborated with Tony
Rolando of Make Noise Music in the design of a series
of Eurorack synthesis modules. So far our collabora-
tion has resulted in Echophon, a pitch-shifting delay,
Erbe-Verb, a very flexible and complex reverb,
Telharmonic, an additive synthesis oscillator with
minimised timbre controls,Morphagene, a looper with
extensive granular options and live-splicing, and
Mimeophon, a very clean and lush delay with complex
filtering (Figure 4). I will not go into the specific devel-
opment of each module, but I will share the general
design process and guidelines Make Noise and I have
developed during this collaboration.

3.1. Design process

The design process has been consistent throughout
most of these projects. First, we have a collaborative
brainstorming session in which we relate all our new
ideas for projects. Any of the potential projects are
then analysed to determine whether they can be imple-
mented in full with current technology, and to see if we
can design it to be more interesting or musical than
other instruments of the same type. Also, as these
are modules, we look at how they may interact with
other modules. An echo device may gain an external
feedback path to patch into other processors, an oscil-
lator will need to work well with external source of

FM, and most all control-voltage parameters will need
to respond well to audio and control rate modulation.
At this point I conduct research on similar instru-
ments, current and past, in order to gain a thorough
knowledge of the sonic effect of their algorithms
and implementation. This leads to a synthesis of our
initial idea and the subsequent research, and a proto-
type is built for alpha testing by a group of musicians
and engineers. If the prototype is too hard to use, too
bizarre, unmusical, one dimensional, or underwhelm-
ing, I take this feedback and try to address the critique,
while being careful to maintain my vision for the proj-
ect. Finally, the project undergoes weeks of beta
testing as hardware is expected to be bug-free on
release, This is unlike software, which will have many
subsequent updates and fixes.

3.2. Design guidelines

First, your parameters should affect the sound, not
just the algorithm. Find natural combinations of inter-
nal parameters that can be mapped onto a single
control. For example, a reverb might have a liveness
control that actually controls the feedback filtering,
diffusion and output filtering. A filter might retune
resonance or slope when you change frequency.
Give your parameter a balance of beautiful and ugly
sounds. The extreme settings should be too much for
most cases, 80 per cent of the control should be the set-
tings one uses the most.

Figure 4. Make Noise/SoundHack: Morphagene and Mimeophon.

24 Tom Erbe

https://doi.org/10.1017/S1355771822000176 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771822000176


Second, complicate the internal structure. An oscil-
lator with a wave-shape control has one dimension.
Add a tilt or spectral flux control and you have
squared or cubed the timbre-space.
Third, try to avoid modal user interfaces. If you find

you have modes, see if there is a way to morph
between modes (and hence, one mode). If you have
to have modes, do not enter and exit modes with com-
plex button combinations.
Fourth, limit the number of controls to those that

make a significant change. Buttons, jacks and potenti-
ometers add a lot to the cost. In addition, keep enough
room around them so that it is playable.
Finally, good sound is primary. Every position of

every dial should create compelling sound.
Overloads, over modulation and so on should be han-
dled in a way that does not detract from the sound. If
you reach the point in your design where you think it
sounds good, you are not finished. If you reach the
point that you cannot stop playing the device, then
you are getting close. There is often room in your
design for more musical flexibility or an additional
sonic twist.

REFERENCES

Apple Computer. 1989. Audio Interchange File Format, A
Standard for Sampled Sound Files, Version 1.3.

Erbe, T. 2011. PVOC KIT: New Applications of the Phase
Vocoder. Proceedings of the 2011 International Computer
Music Conference, University of Huddersfield, UK, 31
July–5 August, 143–6.

Johnson, D. and Poyser, D. 1996. Steinberg Cubase VST.
Sound On Sound, July. www.soundonsound.com/
reviews/steinberg-cubase-vst (accessed 9 July 2021).

Loy, G. 2002. The CARL System: Premises, History, and
Fate. Computer Music Journal 26(2): 52–60.

Polansky, L. and Erbe, T. 1996. Spectral Mutation in
SoundHack. Computer Music Journal 20(1): 92–102.

Raw Material Software Limited. 2021. JUCE 6.0.7. https://
github.com/juce-framework/JUCE/releases/tag/6.0.7
(accessed 9 July 2021).

DISCOGRAPHY

Ashley, R. 1992. Improvement (Don Leaves Linda).
Nonesuch, 79289-2.

Thirty Years of Sound Hacking: From freeware to Eurorack 25

https://doi.org/10.1017/S1355771822000176 Published online by Cambridge University Press

http://www.soundonsound.com/reviews/steinberg-cubase-vst
http://www.soundonsound.com/reviews/steinberg-cubase-vst
https://github.com/juce-framework/JUCE/releases/tag/6.0.7
https://github.com/juce-framework/JUCE/releases/tag/6.0.7
https://doi.org/10.1017/S1355771822000176

	Thirty Years of Sound Hacking: From freeware to Eurorack
	1.. SOUNDHACK
	1.1.. Robert Ashley and the beginning of SoundHack
	1.2.. Motivations
	1.3.. Collaboration and community
	1.4.. Winding down

	2.. SOUNDHACK PLUGINS
	2.1.. Studio needs, distortion and delay
	2.2.. Bypassing the real-time time stretching issue
	2.3.. Supporting plugin updates

	3.. BACK TO HARDWARE: SOUNDHACK EURORACK MODULES
	3.1.. Design process
	3.2.. Design guidelines

	REFERENCES
	DISCOGRAPHY


